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Abstract

Natural Language Generation (NLG) for task-
oriented dialogue systems focuses on commu-
nicating specific content accurately, fluently,
and coherently. While these attributes are cru-
cial for a successful dialogue, it is also de-
sirable to simultaneously accomplish specific
stylistic goals, such as response length, point-
of-view, descriptiveness, sentiment, formality,
and empathy. In this work, we focus on stylis-
tic control and evaluation for schema-guided
NLG, with joint goals of achieving both se-
mantic and stylistic control. We experiment
in detail with various controlled generation
methods for large pretrained language mod-
els: specifically, conditional training, guided
fine-tuning, and guided decoding. We discuss
their advantages and limitations, and evaluate
them with a broad range of automatic and hu-
man evaluation metrics. Our results show that
while high style accuracy and semantic correct-
ness are easier to achieve for more lexically-
defined styles with conditional training, stylis-
tic control is also achievable for more se-
mantically complex styles using discriminator-
based guided decoding methods. The results
also suggest that methods that are more scal-
able (with less hyper-parameters tuning) and
that disentangle content generation and stylis-
tic variations are more effective at achieving
semantic correctness and style accuracy.

1 Introduction

Natural Language Generation (NLG) for task-
oriented dialogue focuses on effectively generating
responses based on inputs that are frequently in
the form of a structured meaning representation
(MR) (Moryossef et al., 2019; Dušek et al., 2018;
Colin et al., 2016; Wen et al., 2015). Recent work
has suggested a schema-guided paradigm for task-
oriented dialogue by adding descriptions in natural
language form (Lin et al., 2021; Du et al., 2020;

∗Work done as an intern at Amazon Alexa AI.

Rastogi et al., 2019; Bapna et al., 2017). Com-
pared to structured MRs, dialogue schemata con-
tain much richer contextual information, leading to
better generated outputs.

Although the primary aim of task-oriented NLG
is to effectively generate outputs that realize system
dialogue actions and communicate their associated
contents correctly, it is often desirable to control
the stylistic variations of an output. For exam-
ple, recognizing and reacting to emotions has been
shown to enhance task outcomes and user engage-
ment in task-oriented conversations (Fraser et al.,
2018). Language generation systems that use cor-
pora and methods without awareness of emotions
may generate callous, generic or even biased re-
sponses (Bender et al., 2021; Sheng et al., 2019).
Depending on the use case or type of system, it
may be useful to stylistically vary responses, e.g.,
using shorter responses for spoken dialogue sys-
tems, longer responses if the system includes visual
modality through a screen, or emotion-specific re-
sponses that appropriately address user sentiment.

Previous work on controlled text generation
aimed at achieving stylistic goals has not focused
on a schema-guided paradigm where specific con-
tent must be communicated correctly; instead, most
work focuses more on unconstrained text-to-text
generation without explicit meaning representa-
tions (Liu et al., 2021; Krause et al., 2020; Keskar
et al., 2019; Ghazvininejad et al., 2017). Mean-
while, work on schema-guided NLG has primarily
focused on generating fluent outputs that achieve
low semantic error rather than achieving stylistic
goals (Kale and Rastogi, 2020; Peng et al., 2020;
Du et al., 2020). In this paper, we hope to fill the
gap on stylistic control and evaluation for schema-
guided NLG. Our contributions in this paper are
three-fold:

1. We describe how we pre-process and annotate
style parameters within the Schema-guided
Dialogue (SGD) dataset (Rastogi et al., 2019).
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2. We experiment with controlling different
styles with various controlled text generation
methods that aim to preserve fluency and se-
mantic correctness.

3. We present results with a broad range of eval-
uation methods, including a detailed human
evaluation.

Specifically, we consider three types of meth-
ods: conditional training, guided fine-tuning, and
guided decoding. We show that conditional train-
ing (CT) can be used for both very lexically-defined
(e.g., point-of-view) and more semantically com-
plex styles (e.g., empathy). However, CT intro-
duces the need to re-train new models per style
and is more effective at learning styles with strong
lexical characteristics (e.g., specific language pat-
terns or vocabulary). For guided fine-tuning, we ex-
plore the Plug-and-Play Language Model (PPLM)
(Dathathri et al., 2020), but show that it requires
careful hyper-parameter turning and is prone to de-
generation. For guided decoding, we evaluate the
beam search weighted decoding (BSWD) method
and show that it performs best overall on measures
of style accuracy for semantically complex styles.
The results suggest that unlike style control for
unconstrained text generation where no specific
content needs to be communicated, style control
under the schema-guided paradigm has stronger
restrictions on the degree of freedom allowed for
content generation. We show that methods that
disentangle content generation and style variations,
especially for more semantically complex styles,
result in better overall performance on semantic
and stylistic control.

2 Related Work

Controllable text generation is an emerging re-
search field. Current methods for controlling styles
in text generation involve learning a conditional
generative model or designing an appropriate de-
coding strategy. There are many methods proposed
for learning a good conditional generative model.
These include conditional training (Kikuchi et al.,
2016; Ficler and Goldberg, 2017; Keskar et al.,
2019; See et al., 2019), fine-tuning language mod-
els with external attribute models or side models
(Dathathri et al., 2020; Zhang et al., 2020), fine-
tuning models with reinforcement learning and hu-
man feedback (Ziegler et al., 2019), training gen-
erative adversarial models (Yu et al., 2017), and

training variational auto-encoders (Yu et al., 2017;
Hu et al., 2017).

Others have worked on designing a good decod-
ing strategy to guide generation, where the decod-
ing procedure is guided by a scoring function or
discriminator. These include weighted decoding
(Ghazvininejad et al., 2017; Holtzman et al., 2018;
See et al., 2019) and guided generation (Krause
et al., 2020). Other lines of work include curating
training data with rich style markup to facilitate
training models with explicit stylistic supervision
Oraby et al. (2019, 2018). While this previous
work does focus on controllable text generation,
most work has been carried out in a text-to-text
generation setting, without specific semantic con-
straints. Instead, we focus on the task-oriented
dialogue framework where specific values must be
communicated, and conduct a rigorous evaluation
of different methods and their efficacy on differ-
ent forms of style generation. Other recent work
has explored adding additional information such as
chit-chat data to task-oriented dialogue (Sun et al.,
2021; Madotto et al., 2020) and could potentially
provide new opportunities for stylistic control.

3 Data Collection and Annotation

3.1 Schema-to-Template pairs

We use the Schema-guided Dialogue (SGD)
dataset1 to create a rich corpus of schema-to-
template pairs. This dataset is one of the largest
publicly available corpora of annotated multi-
domain, task-oriented dialogues (Rastogi et al.,
2019). Each dialogue in the data is represented
as a list of user and system utterances. We use only
the system-side utterances and annotations since
we are focused on system-side generation.

Table 1 shows an example pre-processed data
instance and the final flattened input. To cre-
ate schema-to-template pairs, we follow the pre-
processing steps outlined in Du et al. (2020) with
the following modifications: (1) we replace the
slot values with generic slot values without any
slot type by adding a $ prefix and appending a
increasing index (e.g., San Jose → $slot1)
for better generalization; and (2) we use only do-
main, meaning representations (MRs), and slot de-
scription as input data. Domain provides the con-
text of the conversation (e.g., Restaurants); an

1The Schema-guided Dialogue Dataset: https:
//github.com/google-research-datasets/
dstc8-schema-guided-dialogue

https://github.com/google-research-datasets/dstc8-schema-guided-dialogue
https://github.com/google-research-datasets/dstc8-schema-guided-dialogue
https://github.com/google-research-datasets/dstc8-schema-guided-dialogue
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MR contains a dialog act, a slot and a value (e.g.,
OFFER(city=$slot2)); and the slot descrip-
tion describes the meaning of the slot in natural lan-
guage. Table 8 in Appendix A summarizes the full
statistics for the final pre-processed SGD dataset.
In summary, we have 1,698 MRs and 118,715 ex-
ample templates in the training set and 1,137 MRs
and 34,598 templates in the test set.

For a single example, there are usually multiple
dialogue acts as shown in Table 1. An MR in the
original data may also contain multiple values. In
such cases, we flatten these MRs into multiple
parts, each containing only one dialogue act. For
instance, an MR that contains two values origi-
nally, e.g., REQUEST(cuisine=[Mexican,
Italian]) becomes two separate dialogue
acts, e.g., REQUEST(cuisine=$slot1),
REQUEST(cuisine=$slot2). Templates are
obtained by delexicalizing the utterances with
generic slot values (e.g., $slot1 is a good
restaurant). Finally, we flatten the input
data into flat natural language strings similar to
Budzianowski and Vulić (2019).

3.2 Style Parameters
In order to perform style control, we also need
to annotate style parameters for the SGD dataset.
Style parameters are features of text that are stylisti-
cally expressive. These parameters can be roughly
identified at lexical (vocabulary and words), syn-
tactic (sentence structure) and semantic (abstract
meaning/emotion) levels (Verma and Srinivasan,
2019). We focus primarily on lexical and semantic
features. Specifically, we characterize lexical style
parameters as low-level linguistic features that can
be derived from the text directly such as word count
and number of adjectives, and semantic style pa-
rameters as high-level styles such as sentiment that
are more complex to characterize.

Lexical style parameters Table 2 summarizes
the lexical styles we annotate for the SGD data
and the description of each parameter. In total, we
automatically annotate six lexical style parameters
for the SGD data. Similar to Zhang et al. (2018),
the parameter “has rare word” uses the maximum
Normalized Inverse Document Frequency (NIDF)
to determine whether or not a template contains
words that are used less frequently in the corpus.2

The complete data distribution for all the style pa-
rameters is included in Table 10 in Appendix A.

2Appendix A includes the details of the NIDF calculation.

Semantic style parameters Unlike lexical pa-
rameters which consider explicit features such as
vocabulary, semantic parameters of style are less
lexically-defined. As a result, it is generally harder
to annotate these parameters directly from the orig-
inal data without auxiliary information. In this
work, we consider the following semantic param-
eters: formality, negative sentiment, positive sen-
timent and empathy. Formality and sentiment are
common stylistic parameters studied in the stylistic
control NLG literature. We also include empathy as
an interesting and complex style studied in recent
work (Wang et al., 2021; Majumder et al., 2020;
Lin et al., 2019; Zhou and Wang, 2018). We train
a classifier for each of the four styles and annotate
the utterances in SGD with these features. We in-
clude more details about the classifiers in Section 4
and show additional information about the dataset
used to train each classifier in Table 9 of Appendix
A.

4 Baseline Model

Language model Given a sequence of tokens
x =

{
x1, · · · , xt

}
, the goal of the language model

is to model the joint probability of the sequence
p(x) = p(x1, · · · , xt). The joint probability p(x)
is often factorized in terms of the product of condi-
tional probabilities using the chain rule of probabil-
ity P (x) =

∏T
t=1 P (xT |x0, · · · , xT−1) (Bengio

et al., 2001). In recent years, transformer-based
models have been used widely to model these con-
ditional probabilities (Vaswani et al., 2017). In
this work, we use GPT-23 as our baseline language
model (Radford et al., 2019) and fine-tune the GPT-
2 model with the processed SGD data using a flat
representation with the beginning of sequence, sep-
arator, and end of sequence special tokens.4

Semantic style classifiers The classifiers used to
annotate semantic parameters are single layer clas-
sifiers. To train each classifier, we encode the input
x =

{
x1, · · · , xt

}
of length t using the baseline

GPT-2 model described above and obtain the last
hidden layer ot for all time steps t. We then take
the average representation across time, denoted ōt,
and train the classifier to predict the target label
(e.g., formal vs. informal) from the average repre-

3GPT-2 small from HuggingFace: https:
//huggingface.co/transformers/model_
doc/gpt2.html

4e.g., “[BOS] flattened-schema-tokens [SEP] template-
tokens [EOS]”

https://huggingface.co/transformers/model_doc/gpt2.html
https://huggingface.co/transformers/model_doc/gpt2.html
https://huggingface.co/transformers/model_doc/gpt2.html
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Original schema Pre-processed schema

Service Restaurants_1 Domain Restaurants
Act OFFER Act OFFER
Slot restaurant_name Slot restaurant_name
Slot Description Name of the restaurant Slot Description Name of the restaurant
Values 71 Saint Peter Value $slot1
Act OFFER Act OFFER
Slot City Slot City
Slot Description City where the restaurant

is located
Slot Description City where the restaurant

is located
Values San Jose Value $slot2

Utterance I see that at 71 Saint
Peter there is a good
restaurant which is in
San Jose.

Template I see that at $slot1 there
is a good restaurant which
is in $slot2.

Flattened input after
pre-processing

restaurants offer restaurant_name name of the restaurant $slot1
offer city city where the restaurant is located $slot2

Table 1: Sample system-side schema and the flat natural language strings.

Style Parameter Description Condition

Short Number of tokens in the template. The condition is based roughly on 25th
percentile of the number of tokens per template in the training data.

≤ 7

Long Number of tokens in the template. The condition is based roughly on 75th
percentile of the number of tokens per template in the training data.

≥ 15

Has Rare Word Whether or not the template contains very specific or rarely used words
compared to other templates in the corpus

Max NIDF ≥ 0.5

First Person Pronouns Whether or not the template contains first person pronouns: I, me, my, mine -

Second Person Pronouns Whether or not the template contains second person pronouns: you, your,
yours

-

Descriptive Number of adjectives in the template > 2

Table 2: Lexical style parameters and possible values.

sentation: f(ōt) = f
(∑T

t=1
ot
T

)
. The classifiers

are used for annotating the semantic parameters
of the SGD data and for the style control models
described in Section 5.

5 Style Controlled Text Generation

In this work, we require a controlled generation
method that is able to simultaneously render the
semantic content given the schemata while achiev-
ing the desired stylistic goals. We also require
the method to be both stable (preserve the fluency
of the response even when the stylistic goals are
not met) and general-purpose (can be applied to
many styles). Under these requirements and con-
straints, we discuss three types of controlled gener-
ation methods to achieve these goals: conditional
training, guided fine-tuning, and guided decoding,
and compare their performance in Section 6. To our
knowledge, our work is the first to systematically
study the effectiveness of these control methods for
schema-guided NLG.

5.1 Conditional Training (CT)

Controllable generation entails modeling p(x|a),
where a is a control variable and x is the generated
sequence. However, a pre-trained language model
such as GPT-2 is only trained to learn p(x). On
the other hand, conditional training (Kikuchi et al.,
2016; Peng et al., 2018; Fan et al., 2018; See et al.,
2019) refers to directly learning the conditional
generative model p(x|a). The results are of high
quality because the model is trained to directly
maximize p(x|a), but this comes at the expense of
fixing the control variable upfront and of re-training
the entire model for each new control variable.

To perform style control, we fine-tune the base-
line GPT-2 with the conditional training method.
Specifically, each input in the training set is an-
notated with the variable a that we wish to con-
trol, e.g., the length (short, long) of the input.
The value of the control variable a is then added
to model vocabulary as a special token (e.g.,
[LENGTH_SHORT]) and appended to the mean-
ing representation after the [BOS] special token.
The model then learns an embedding for each value
of a and learns to generate x =

{
x1, · · · , xt

}
con-



232

ditioned on a value of a and the given meaning
representation by optimizing cross-entropy loss.

5.2 Guided Fine-tuning
Unlike conditional training that requires fine-tuning
an entire GPT-2 model per style, guided fine-
turning refers to methods that require only fine-
tuning a smaller set of the parameters while the
majority of the base model stays fixed. In this
paper, we consider the recent Plug-and-Play Lan-
guage Model (PPLM) (Dathathri et al., 2020). In
guided fine-tuning methods, the conditional prob-
ability p(x|a) ∝ p(x)p(a|x) is obtained by fine-
tuning the base language model (LM) using an aux-
iliary discriminator that explicitly models p(a|x).
In our work, we use the semantic style classifiers
described in Section 4 for the discriminator p(a|x)
and the GPT-2 model for the base LM.

The major difficulty of the PPLM method is the
problem of degeneration – output that is ungram-
matical, incoherent, or repetitive. In practice, we
observe that PPLM is prone to generating ungram-
matical outputs or getting stuck in a repetitive loop
if the hyper-parameters are not carefully tuned. We
illustrate the effect of hyper-parameters tuning and
the degeneration problem in Appendix B.

5.3 Guided Decoding
While conditional training and guided fine-tuning
require fine-tuning the base language model,
weighted decoding is applied only at decoding time,
requiring no change to the base language model. To
control the generation, it re-ranks the probability of
words based on a scoring function or discriminator.

Weighted Decoding (WD) In weighted decod-
ing (Ghazvininejad et al., 2017), at time step t, the
distribution of the next token xt+1 is re-weighted
by a semantic style classifier that models p(a|x).
The probability of each possible next word w in
the vocabulary given the control variable a is then
re-computed as

p(w|a) = Softmax
(
p(w) p(a|w)

)
. (1)

Here p(w) is the probability of the word w calcu-
lated by the base language model as the next token
given the generated sequence

{
x1, · · · , xt

}
, and

p(a|w) is the probability of the word w associated
with the control variable a.

Beam search weighted decoding (BSWD) The
weighted decoding method described above takes

the highest scoring item at each time step. While
this approach is effective, it is often non-optimal
and can limit the diversity of the generated text. To
mitigate this limitation, we can increase the search
space at generation time using the beam search
algorithm. Given a fixed beam width parameter
B, the beam search algorithm selects B best alter-
natives with the highest probability for an input
sequence at each time step. Therefore, the origi-
nal weighted decoding approach described above
is a special case of the beam search algorithm with
B = 1.

Finally, we note that in Eq. 1, the style classi-
fier is only conditioned on the next possible token
w but not the entire past sequence, i.e., the next
possible token w plus the text that has been gen-
erated

{
x1, · · · , xt, w

}
. Empirically, in both WD

and BSWD, we observe that maximizing the prob-
ability of the desired style by greedily considering
only the next generated token, rather than the entire
sequence of previously generated tokens, yielded
better performance on the SGD data. When the
entire sequence representation is used, we find that
the re-weighting of the distribution is usually not
strong enough to successfully match the desired
stylistic goal.

6 Experiments

In this section, we show the experimental results
of the methods described in Section 5 for control-
ling the styles described in Section 3 on the SGD
data. The baseline GPT-2 model is fine-tuned on
the training set with no control variables, and the
conditional training model is fine-tuned with con-
trol variable special tokens, e.g., LENGTH_SHORT.
Our evaluation is tested on the test set of 1,137
MRs. We focus on controlling a single style at a
time in this experiment; however, it is also possible
to control for multiple styles – we include details
on multiple-style control experiments in Appendix
C (with sample outputs in Appendix Table 14).

6.1 Automatic Evaluation Metrics
We focus on evaluating three key dimensions: style
accuracy, fluency, and semantic correctness.

Style accuracy To evaluate how effective each
controlled generation method is per style, we use
the style accuracy metric, or the percentage of out-
puts that conform to the required input style. For
lexical styles, this is simply computed using the
conditions in Table 2. For semantic styles, we
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classify the generated text using the correspond-
ing style classifier and check if the predicted style
matches the desired style value. For instance, if
the predicted sentiment for generated text with the
“positive sentiment” control code does not match
the “positive” label, then it is considered incorrect.

Response fluency We use BLEU score (n-gram
precision with brevity penalty) (Papineni et al.,
2002) as a measurement of the response fluency.
We acknowledge that lexical overlap metrics are
poor measures of quality (Novikova et al., 2017);
however, we include BLEU for completeness and
further evaluate quality through human judgments.

Semantic correctness We use slot error rate
(SER) (Luong et al., 2015) to measure the semantic
correctness of the generated response as compared
to the given MR. SER measures the ratio of se-
mantic errors that the model makes by finding the
total number of slot mistakes (deletions, repetitions,
and hallucinations) in the generated text (lower is
better). SER here only considers slots that have ex-
plicit values that must be realized (e.g., $slotN).

6.2 Lexical Style Automatic Evaluation

We evaluate lexical styles with only conditional
training as the rest of the methods include semantic
style classifiers and are thus not applicable. Ta-
ble 3 summarizes the performance of conditional
training for the six lexical styles. The style accu-
racy for most styles is generally high, between 80%
to nearly 100%, especially for styles marked ex-
plicitly by specific words, such as first and second
person pronouns. However, we observe that “de-
scriptive” has a particularly low accuracy. First, the
majority of the references in the training data (95%)
have less than two adjectives, making it difficult for
the model to learn this kind of style effectively.5

Secondly, we observe that conditional training is
particularly effective when the style exhibits a clear
syntactic characteristic (e.g., length) or a particular
set of vocabulary (e.g., pronouns); however, this is
not the case for the “descriptive” style.

The fluency of the generated text with style con-
trol drops slightly as compared to no style control.
Having style control often makes the generated text
different from its matching responses, i.e., adding
extra content or changing linguistic characteristics.
Since BLEU score only considers lexical overlap,

5The full data distribution can be found in Appendix A
Table 10.

this behavior is expected. Finally, we see that there
is not much of a performance drop in semantic
correctness with respect to SER. The experimen-
tal results show that for lexical styles with a clear
syntactic pattern or vocabulary, CT can be quite
effective.

Table 4 illustrates example outputs using CT
when controlling for “short”, “long” and “has rare
word” styles.6 Interestingly, we see that when
asked for a longer response, the model starts to
hallucinate extra content (but not slots) not given
in the MR in order to satisfy the control variable.
This also translates to slightly lower BLEU scores
and a higher SER. Methods to enforce better im-
plicit constraints to increase fluency and semantic
correctness are important points for future work.

Style Style Acc. BLEU ↑ SER ↓

Baseline (no style control) - 0.480 0.010

Short 96.4% 0.205 0.009

Long 80.1% 0.381 0.012

Has Rare Word 89.5% 0.377 0.010

First Person Pronouns 99.9% 0.365 0.011

Second Person Pronouns 99.9% 0.447 0.011

Descriptive 19.6% 0.378 0.012

Table 3: Evaluation of lexical style parameters with
conditional training.

6.3 Semantic Style Automatic Evaluation

Table 5 summarizes the main results for seman-
tic style evaluation using CT, PPLM, and BSWD.
Since CT is trained to directly maximize condi-
tional probability, it frequently has a higher BLEU
score and a lower SER across different styles with
the exception of “formal” BLEU. We note that for-
mality is rather lexically-defined, exhibiting char-
acteristic keywords such as “please”, which are
frequently picked up by the model, resulting in a
particularly high style accuracy for “formal” re-
sponses and a lower BLEU score.

For the three more semantically complex styles,
“positive sentiment”, “negative sentiment” and “em-
pathy”, we see that BSWD achieves a higher style
accuracy than CT (at the cost of a lower BLEU and
slightly higher semantic error). We note, however,
that the drop in BLEU is expected: as the output
is steered towards a certain style, its n-gram over-
lap with the references is more likely to decrease

6Example outputs for other lexical styles are included in
Appendix C Table 12.
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MR: OFFER(restaurant_name=$slot1), OFFER(city=$slot2)

W/o Style Control $slot1 is a nice restaurant in $slot2 that serves curry.
Short $slot1 is a nice restaurant in $slot2.
Long Okay! the restaurant, $slot1 located in $slot2 is a good one and serves Taiwanese dishes.

MR: OFFER(address=$slot1), OFFER(rating=$slot2)

W/o Style Control There is a nice house at $slot1 with a $slot2 rating.
Has Rare Word There is a lovely residence located at $slot1. It has a rating of $slot2.

Table 4: Example outputs for conditional training with lexical styles “short”, “long” and “has rare word” (more
content hallucinations for “long”). Example outputs for other lexical styles are included in Appendix C Table 12.

– thus, we use these automatic metrics as an evalu-
ation guide, but leave a more rigorous evaluation
to human judgment in the next section. Finally,
with careful hyper-parameter tuning, PPLM can
achieve similar performance to BSWD on BLEU
and SER but does worse on style accuracy. In-
creasing the style accuracy for PPLM worsens the
BLEU and SER score significantly and thus we
do not consider it in our human evaluation. In
summary, our automatic evaluation shows that for
semantic styles, BSWD gives us a good trade-off
between consistent style accuracy and semantic
fidelity across styles.

Table 6 illustrates example outputs for the three
semantic styles using BSWD (with additional ex-
amples including combining multiple styles in Ap-
pendix C). In general, styles that encapsulate com-
plex phenomena such as “empathy” are harder to
generate as shown by their lower style accuracy;
nevertheless, we are able to preserve fluency and
semantic correctness in most cases.

Style Model Style Acc. BLEU ↑ SER ↓

Baseline - - 0.480 0.010

Formal
CT 70.0% 0.461 0.009
PPLM 17.5% 0.390 0.016
BSWD 42.5% 0.496 0.021

Negative
CT 7.5% 0.409 0.012
PPLM 2.5% 0.373 0.017
BSWD 25.0% 0.359 0.021

Positive
CT 17.5% 0.442 0.009
PPLM 32.5% 0.371 0.026
BSWD 65.0% 0.369 0.021

Empathy
CT 21.5% 0.449 0.009
PPLM 11.0% 0.368 0.021
BSWD 31.0% 0.394 0.017

Table 5: Evaluation of semantic styles.

6.4 Human Evaluation

We focus on human evaluation for our semantic
styles since they are the most inherently subjec-

tive.7 We pick a subset of our semantic styles to
evaluate, specifically, formal, negative and positive.
We also focus on the evaluation of CT and BSWD
only since they have an overall better performance
in the automatic evaluation and are simpler in na-
ture (e.g., less hyper-parameter tuning). To evaluate
style, we ask three human annotators to rate:

• Style Rating (Sty. Rat.): How closely the
response matches the given style (1 being not
at all, 5 being very closely).

• Fluency (Flu.): The fluency of the generated
response (1 being low, 5 being high).

• Semantic Error: Slot errors in the gener-
ated response using a 0/1 scale. For analysis
purposes, we further break down the items
marked “0” into four error types to under-
stand the strengths and weaknesses of each
method. For each type of error, the output is
only marked “1” if there are no issues.

– Deletion (Del.): Whether the response
drops any slot values from the MR.

– Repetition (Rep.): Whether the re-
sponse repeats any slot values from the
MR.

– Content Hallucination (Cont. Hal.):
Whether the response includes extra con-
tent not given in the MR.

– Incorrect Slot Values (Inc. Slot):
Whether the response includes any slot
values not given in the MR (a specific
type of hallucination).

Table 7 shows the aggregated evaluation (40
samples per style, with three judgments per sam-
ple). The results show that outputs generated by
BSWD have a higher or comparable style rating

7More details on the human evaluation design are in Ap-
pendix D.



235

MR: REQUEST(where_to=none)

W/o style control What city are you staying?
Formal What city are you planning to stay in?

MR: OFFER(address=$slot1), OFFER(rating=$slot2)

W/o style control There is a house at $slot1 with a rating of $slot2.
Positive There is a nice house with a $slot2 rating located at $slot1.

MR: INFORM(rating=$slot1), NOTIFY_FAILURE(null=none)

W/o style control The rating is $slot1. I was unable to make a reservation.
Empathy The rating is $slot1. I’m sorry, but I couldn’t make the reservation.

Table 6: Example outputs of semantic styles using beam search weighted decoding (BSWD).

compared to CT, confirming its ability to control
semantic styles. We also observe that outputs from
BSWD have a higher fluency score across all styles.
This means that even though BSWD showed lower
BLEU scores in automatic evaluation, its outputs
are considered to be more natural and fluent in
human evaluation. Finally, we see an interest-
ing difference in error types when comparing CT
and BSWD. In general, BSWD is more prone to
deleting and hallucinating slots, while CT more
frequently generates incorrect slot values. Since
BSWD requires no change to the base language
model, it is able to obtain a lower incorrect slot
value error rate as compared to CT, which requires
re-training the language model with a control code.
On the other hand, it has a higher deletion and hal-
lucination error rate since during decoding time,
BSWD is free to insert or drop content in order to
achieve the desired style.

Semantic Error

Style Model Sty.
Rat.

Flu. Del. Rep. Cont.
Hal.

Inc.
Slot

Formal CT 3.88 3.83 15% 0% 13% 3.75%

BSWD 3.95 4.30 19% 0% 15% 1.25%

Negative CT 2.78 3.54 20% 0% 12.5% 2.5%

BSWD 2.86 3.93 20% 0% 12.5% 5%

Positive CT 3.48 3.64 22.5% 0% 22.5% 12.5%

BSWD 3.42 3.84 27.5% 0% 30% 7.5%

Table 7: Human evaluation results for selected seman-
tic styles and methods.

7 Conclusion

In this work, we focus on stylistic control and eval-
uation of schema-guided NLG. We discuss three
different types of methods for style controlled text
generation: conditional training (CT), guided fine-
tuning (PPLM), and guided decoding (BSWD). We
present a rich set of evaluations to quantify each

method’s ability to achieve various styles while
preserving language fluency and minimizing slot
errors. Our analysis shows that, in general, styles
that encapsulate abstract ideas are naturally harder
to generate (e.g., empathy), and methods that re-
quire careful hyper-parameters tuning may run into
the problems of instability and degeneration (e.g.,
PPLM) while under-performing in style accuracy.
The automatic and human evaluations suggest that
simultaneously achieving stylistic goals and real-
izing schema information requires methods that
allow us to separate content generation and stylis-
tic variations. We show that CT and BSWD over-
come some of these challenges and are effective at
controlling several styles while maintaining good
fluency and semantic correctness in most cases. CT
is effective for lexical styles with strong syntactic
characteristics or distinctive vocabulary sets, while
BSWD excels at semantic styles that are more com-
plex to characterize.

For future work, we are interested in extending
our analysis to a larger number of styles, and in
exploring techniques for understanding and repre-
senting styles that are more abstract, such as “em-
pathy”, as well as methods for generating those
styles under a task-oriented dialogue framework.
Additionally, since abstract styles may be charac-
terized by multiple features (e.g., a combination of
sentiment and descriptiveness), we are interested
in studying how these underlying features can be
represented and incorporated more accurately to
improve overall semantic and stylistic control.
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Hao Su, David Vandyke, and Steve Young. 2015.
Semantically conditioned LSTM-based natural lan-
guage generation for spoken dialogue systems. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages
1711–1721, Lisbon, Portugal. Association for Com-
putational Linguistics.

Lantao Yu, W. Zhang, J. Wang, and Y. Yu. 2017. Seq-
gan: Sequence generative adversarial nets with pol-
icy gradient. In AAAI.

J. Zhang, Alexander Sax, A. Zamir, L. Guibas, and
J. Malik. 2020. Side-tuning: A baseline for network
adaptation via additive side networks. In ECCV.

Ruqing Zhang, Jiafeng Guo, Yixing Fan, Yanyan Lan,
Jun Xu, and Xueqi Cheng. 2018. Learning to Con-
trol the Specificity in Neural Response Generation.
In Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1108–1117, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Xianda Zhou and William Yang Wang. 2018. MojiTalk:
Generating emotional responses at scale. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers).

Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu,
T. Brown, A. Radford, Dario Amodei, Paul Chris-
tiano, and Geoffrey Irving. 2019. Fine-tuning lan-
guage models from human preferences. ArXiv,
abs/1909.08593.

https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://doi.org/10.18653/v1/2021.naacl-main.124
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://arxiv.org/abs/1909.08349
http://arxiv.org/abs/1909.08349
http://arxiv.org/abs/1909.08349
https://doi.org/10.1109/ISCSLP49672.2021.9362067
https://doi.org/10.1109/ISCSLP49672.2021.9362067
https://doi.org/10.1109/ISCSLP49672.2021.9362067
https://doi.org/10.18653/v1/D15-1199
https://doi.org/10.18653/v1/D15-1199
https://doi.org/10.18653/v1/P18-1102
https://doi.org/10.18653/v1/P18-1102


239

A Statistics of Style Annotation for SGD
Data

Train Dev Test

System Turn 164,982 24,363 42,297
Meaning Representations 1,698 721 1,137
Templates 118,715 19,963 34,598

Table 8: Schema-Guided Dialogue dataset statistics.

Normalized inverse document frequency calcu-
lation For a word w in a template d, the Inverse
Document Frequency (IDF) of w is

IDF(w) = log

(
N

1 +
∣∣{d ∈ D : w ∈ d}

∣∣
)

(2)

where N is the total number of templates in the
training data D, and |{d ∈ D : w ∈ d}| is the
number of those templates d in the training data
that contain w. The Normalized IDF (NIDF) is
obtained via the min-max normalization

NIDF(w) =
IDF(w)− min

w′∈D
(IDF(w′))

max
w′∈D

(IDF(w′))− min
w′∈D

(IDF(w′))

(3)

where max
w′∈D

(IDF(w′)) and min
w′∈D

(IDF(w′)) are the

maximum and minimum IDF value of all the words
in the training data. We use the maximum NIDF
of all the words in a template to determine whether
the template contains rarely used words.

Semantic style parameter annotation details
The formality corpus8 (Pavlick and Tetreault,
2016), which contains sentence-level formality an-
notations, is used for training the formality clas-
sifier. The Stanford sentiment treebank (SST)9

(Socher et al., 2013) is used for training the senti-
ment classifier. The SST data consists of 5 classes
– very negative, negative, neutral, positive, and
very positive. We combine “very negative” and
“negative” into one class and “very positive” and
“positive” into one class. Finally, the empathetic
reactions data10 (Buechel et al., 2018) is used for
training the empathy classifier. We use only the
empathy label from the data.

8http://www.seas.upenn.edu/~nlp/
resources/formality-corpus.tgz

9https://nlp.stanford.edu/sentiment/
10https://github.com/wwbp/empathic_

reactions

Style parameters Dataset

Formal Formality corpus

Positive Stanford sentiment treebank (SST)Negative

Empathy Empathetic reactions

Table 9: Semantic style parameters with their possible
values and associated training datasets.

Category Style Train Dev Test

Lexical styles

Short 31.42% 36.96% 32.23%

Long 26.49% 25.13% 25.44%

Has rare word 35.83% 37.76% 42.04%

First person pron. 28.48% 28.88% 28.75%

Second person pron. 52.89% 52.50% 60.18%

Descriptive 5.00% 5.32% 3.88%

Semantic styles

Formal 30.59% 34.27% 29.76%

Negative 6.55% 4.33% 4.95%

Positive 39.70% 42.43% 37.41%

Empathy 27.72% 30.04% 25.65%

Table 10: Data distribution for all of the style parame-
ters we annotate in SGD.

B Hyper-parameters Tuning for PPLM

There are several hyper-parameters in PPLM mod-
els. We refer the readers to Dathathri et al. (2020)
for the full model details. From Section 5.2, the
PPLM model can be written as an optimization
problem of the form:

min
∆Ht

LCE

(
f
( T∑
t=1

õt/T
))

+ λDKL(õt‖ot) (4)

s.t. õt = LM(xt, H̃t) (5)

H̃t = Ht + ∆Ht (6)

ot = LM(xt, Ht) (7)

where λ is a hyper-parameter that scales the KL
divergence and f(·) is the semantic style classifier
learned to produce p(a|x). We minimize the cross-
entropy loss LCE(·) of the attribute model and the
Kullback-Leibler (KL) divergence DKL(·‖·) of the
language model. For each time step t, the GPT-2
model generates a history of weight matrices Ht

for all hidden layers. To control the generation,
we shift the weight matrices Ht in the direction
that accomplishes two goals: 1) minimize cross-
entropy (CE) of the attribute a under the condi-
tional attribute model p(a|x) and 2) minimize the
KL divergence between itself and the unmodified
language model p(x). Let ∆Ht be the small shift
of Ht such that H̃t = Ht + ∆Ht can shift the last

http://www.seas.upenn.edu/~nlp/resources/formality-corpus.tgz
http://www.seas.upenn.edu/~nlp/resources/formality-corpus.tgz
https://nlp.stanford.edu/sentiment/
https://github.com/wwbp/empathic_reactions
https://github.com/wwbp/empathic_reactions
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MR: OFFER(restaurant_name=$slot1), OFFER(city=$slot2) γgm α λ

$slot1 is a nice restaurant in $slot2. 0.1 0.01 1
$slot1 is a nice restaurant in $slot2. 0.1 0.1 1
$slot1 is a good restaurant in $slot2. 0.1 1 1

$slot1 is a nice restaurant in $slot2 0.3 0.01 0.01
$slot1 is a restaurant in $slot2. 0.3 0.01 0.1
$slot1 is a restaurant in $slot2. 0.3 0.01 1

There’s the $slot4 $slot1 restaurant in $slot2. Do you like the same restaurant. Do you like
this one more?

0.5 0.01 0.01

$slot1 $slot2 I have a restaurant has good rating restaurant has $slot1 0.5 0.01 0.1
$slot1 $slot2 I have a restaurant has good rating restaurant has a restaurant name is 0.5 0.01 1

$slot1 is a nice restaurant in $slot2. Do i suggest you like that one I’ve found? You can have a
nice meal.

0.5 0.1 1

I recommend mathemat, a $slot1 is in $slot2. 0.5 1 1

$slot4 $slot4 $slot4 there is $slot4 there is 0.9 0.01 1

Table 11: Example outputs of PPLM for controlling “positive sentiment” with various hyper-parameters. Increas-
ing γgm and α encourages style control but can lead to ungrammatical outputs or run into degeneration. Increasing
λ encourages sentence fluency and semantic accuracy; however, careful hyper-parameters fine-tuning is required
to ensure reasonable output quality.

layer (logit vector) to achieve the above two goals.
The logit vector ot is obtained by a forward pass of
the LM, i.e. ot = LM(xt, Ht). The next generated
token xt+1 is sampled as xt+1 ∼ softmax(Wot)
where W is a linear transformation that maps ot to
a probability distribution of vocabulary size.

The shift ∆Ht is then updated with gradient
descent as follows:

∆Ht ←∆Ht− (8)

α
(
∇∆HtLCE(·) + λ∇∆HtDKL(·‖·)

)
where α is the step size and the update can be re-
peated until it converges or up to a certain time step
to obtain the shift ∆Ht. At generation time, a post-
norm fusion that samples the next token xt+1 based
on the shifted distribution p̃t+1 and the unmodified
distribution pt+1 is done to increase the language
fluency:

xt+1 ∼
1

β

(
p̃
γgm
t+1 p

1−γgm
t+1

)
(9)

β is a normalizing factor such that it forms a valid
distribution. As γgm → 1 this converges to the
distribution from the shifted LM, and as γgm → 0
it converges to the unmodified unconditional LM
distribution. We observe that the hyper-parameters
λ, α, γgm can be tuned to affect the generation. In
practice, we found that increasing γgm led to non-
sensical results very quickly as the generated text
is no longer conformed to the given meaning repre-
sentation. A larger step size α also led to unstable

and nonsensical results compared to a smaller step
size as it moves Ht further away from its original
position. In practice, a larger λ helps keep the flu-
ency and the semantic of the generated text. Never-
theless, its effect is less influential than α and γgm.
Table 11 illustrates the effect of hyper-parameters
on the model outputs.

C Additional Experimental Results

We include additional example outputs for lexical
styles in Table 12.

Multiple Styles Control In this section, we
demonstrate the possibility of controlling multi-
ple styles with the methods described in Section 5.
To control multiple styles with conditional training,
we condition the CT model on multiple control vari-
ables P (x|a1, · · · , an). The control variables are
concatenated and then added to the input as special
tokens after the [BOS] token. To control multiple
styles with PPLM, we simply add the cross-entropy
loss of each semantic style classifier to the objec-
tive function. Extra hyper-parameters can be in-
troduced to control the significance of each style.
Similarly, for (beam search) weighted decoding,
the distribution is re-weighted by

p(w|a1, · · · , an) = Softmax
(
p(w)

n∏
i=1

λip(ai|w)
)

(10)

where λi are hyper-parameters that allow us to de-
termine the significance of each style ai. Finally,
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MR: OFFER(address=$slot1), OFFER(rating=$slot2)

W/o Style Control There is a nice house at $slot1 with a $slot2 rating.

Short $slot1 is rated $slot2.

Long There is a house at $slot1 with a rating of $slot2. Would you like that one?

Has Rare Word There is a lovely residence located at $slot1. It has a rating of $slot2.

First Person Pron. I found a house at $slot1 with a $slot2 rating.

Second Person Pron. There is a house at $slot1 with a $slot2 rating. Would you like that one?

Descriptive There is a nice house with a $slot2 rating available at $slot1.

MR: OFFER_INTENT(intent=intent)

W/o Style Control Would you like to make a reservation for this house?

Short Do you want to reserve it?

Long Do you want me to go ahead and reserve a room at the hotel?

Has Rare Word Would you like to continue with the hotel reservation?

First Person Pron. Shall I book the rooms in that hotel now?

Second Person Pron. Would you like to make a reservation for this house?

Descriptive Would you like to reserve a room at this hotel?

Table 12: Example outputs using conditional training for the six lexical styles described in Section 3.

conditional training and (beam search) weighted
decoding can be used simultaneously by training
a CT model and then applying WD or BSWD on
the trained CT model during decoding time. Exam-
ple outputs and the style accuracy of multiple style
control using CT and BSWD are shown in Tables
13 and 14.

Lexical
Style

Lexical Sty.
Acc.

Semantic
Style

Semantic Sty.
Acc.

Short 55.4% Formal 2.0%
Long 95.2% Formal 39.1%

Short 69.2% Positive 20.3%
Long 84.4% Positive 44.8%

Table 13: Style accuracy of multiple-style control us-
ing CT and BSWD with beam width B = 2. The pa-
rameter length is controlled by CT and the parameters
formality and sentiment are controlled by the BSWD.

D Human Evaluation Design

The goal of the annotation task is to evaluate the
style of the automatically generated templates that
express specific information to the user. The tem-
plates follow a certain style value such as “formal”.
The annotators are asked to imagine that they are
having a conversation with the system, and that
the template presented to them is an example of
something that the system may say to them. The
template may be in the form of a question, state-
ment, confirmation, etc. Table 15 illustrates two
sample MRs and four generated templates, which
we lexicalize with a map of values (one per slot) to
make the annotation task more intuitive.
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MR: OFFER(restaurant_name=$slot), OFFER(city=$slot2) Lexical Sty. Semantic Sty.

$slot1 in $slot2 is a very popular indian restaurant. W/o Style Control W/o Style Control
$slot1 is a restaurant in $slot2 that serves pizza and pasta.

$slot1 is a restaurant in $slot2. Short W/o Style Control
$slot1 serves italian food in $slot2.

Okay! The $slot1 located in $slot2, as for the tofu, it has a pretty good
rating. Would you like to try for a lunch or dinner reservation? Long W/o Style ControlOkay! The $slot1 located in $slot2, as for the tofu, it has a pretty good
rating. Would you like to try for a meal there?

$slot1 is a nice restaurant located in $slot2. W/o Style Control Positive
$slot1 might interest you, and it is located in $slot2.

$slot1 is a good restaurant in $slot2. Short Positive
$slot1 restaurant is also in $slot2.

Okay! The restaurant $slot1 located right inside $slot2 is a good one and it
has many vegetarian side dishes. Long PositiveOkay! The restaurant $slot1 located right inside $slot2 is a good one. Do
you wish to have your lunch here?

MR: OFFER(address=$slot1), OFFER(rating=$slot2) Lexical Sty. Semantic Sty.

There is a $slot2 rated house at $slot1. W/o Style Control W/o Style ControlThere is a house at $slot1 with a $slot2 rating.

$slot1 has a $slot2 rating Short W/o Style Control
$slot1 with a $slot2 rating

There is a house at $slot1 with a $slot2 rating. would you like to stay here?
Long W/o Style ControlThere is a house at $slot1 that you might be interested in. It has a $slot2

average rating.

There is a lovely house at $slot1 with a rating of $slot2 W/o Style Control PositiveThere is a good house at $slot1 with a rating of $slot2

$slot1 has a rating of $slot2 Short Positive
$slot1 with rating of $slot2

There is a lovely residence located at $slot1 with a rating of $slot2 Long PositiveThere is a nice house located at $slot1 with a rating of $slot2

Table 14: Example outputs by combining CT and BSWD with beam width B = 2. Lexical style is controlled by
CT and semantic style is controlled by the BSWD. Note how the lexical style "long" tends to yield outputs that
include more hallucinated content in an attempt to fulfill the required style goal(s).

Domain Simplified MR Output template

Movies request city none What is the location and type of movie you are interested in?

request movie_name none What movie do you want to see and in what location?

Restaurants confirm restaurant_name [Ala Romana] Please confirm: booking a table at [Ala Romana] on [March 1st].

confirm date [March 1st] Please confirm the following: you want a table at [Ala Romana] on
[March 1st].

Table 15: Example human evaluation worksheet.


