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Abstract

Domain Adaptation is widely used in prac-
tical applications of neural machine transla-
tion, which aims to achieve good performance
on both general domain and in-domain data.
However, the existing methods for domain
adaptation usually suffer from catastrophic for-
getting, large domain divergence, and model
explosion. To address these three problems,
we propose a method of “divide and conquer”
which is based on the importance of neurons
or parameters for the translation model. In
this method, we first prune the model and
only keep the important neurons or parame-
ters, making them responsible for both general-
domain and in-domain translation. Then we
further train the pruned model supervised by
the original whole model with knowledge dis-
tillation. Last we expand the model to the
original size and fine-tune the added param-
eters for the in-domain translation. We con-
ducted experiments on different language pairs
and domains and the results show that our
method can achieve significant improvements
compared with several strong baselines.

1 Introduction

Neural machine translation (NMT) models (Kalch-
brenner and Blunsom, 2013; Cho et al., 2014;
Sutskever et al., 2014; Bahdanau et al., 2015;
Gehring et al., 2017; Vaswani et al., 2017) are data-
driven and hence require large-scale training data to
achieve good performance (Zhang et al., 2019a). In
practical applications, NMT models usually need
to produce translation for some specific domains
with only a small quantity of in-domain data avail-
able, so domain adaptation is applied to address the
problem. A typical domain adaptation scenario as
discussed in Freitag and Al-Onaizan (2016) is that
an NMT model have been trained with large-scale
general-domain data and then is adapted to specific
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domains, hoping the model can fit in-domain data
well meanwhile the performance will not degrade
too much on the general domain.

Towards this end, many researchers have made
their attempts. The fine-tuning method (Luong and
Manning, 2015) performs in-domain training based
on the general-domain model by first training the
model on general-domain data and then continuing
to train on in-domain data. Despite its convenience
for use and high-quality for in-domain translation,
this method suffers from catastrophic forgetting
which leads to poor performance in the previous
domains. Regularization-based methods (Dakwale
and Monz, 2017; Thompson et al., 2019; Barone
et al., 2017; Khayrallah et al., 2018) instead in-
troduce an additional loss to the original objec-
tive so that the translation model can trade off be-
tween general-domain and in-domain. This kind of
methods usually has all the parameters shared by
general-domain and in-domain, with the assump-
tion that the optimal parameter spaces for all the
domains will overlap with each other, and retaining
these overlapped parameters can balance over all
the domains. This assumption is feasible when the
domains are similar, but when the divergence of
the domains is large, it is not reasonable anymore.
In contrast, the methods with domain-specific net-
works (Dakwale and Monz, 2017; Wang et al.,
2019; Bapna and Firat, 2019; Gu et al., 2019) can
be often (but not always) immune to domain diver-
gence as it can capture domain-specific features.
But unfortunately, as the number of domains in-
creases, the parameters of this kind of methods
will surge. Besides, the structure of these networks
needs to be carefully designed and tuned, which
prevents them from being used in many cases.

Given the above, we propose a method of do-
main adaptation that can not only deal with large
domain divergence during domain transferring but
also keep a stable model size even with multiple do-
mains. Inspired by the analysis work on NMT (Bau
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et al., 2019; Voita et al., 2019; Gu and Feng, 2020),
we find that only some important parameters in
a well-trained NMT model play an important role
when generating the translation and unimportant pa-
rameters can be erased without affecting the transla-
tion quality too much. According to these findings,
we can preserve important parameters for general-
domain translation, while tuning unimportant pa-
rameters for in-domain translation. To achieve
this, we first train a model on the general domain
and then shrink the model with neuron pruning
or weight pruning methods, only retaining the im-
portant neurons/parameters. To ensure the model
can still perform well on general-domain data, we
adjust the model on in-domain data with knowl-
edge distillation where the original whole model
is used as the teacher and the pruned model as the
student. Finally, we expand the model to the origi-
nal size and fine-tune the added parameters on the
in-domain data. Experimental results on different
languages and domains show that our method can
avoid catastrophic forgetting on general-domain
data and achieve significant improvements over
strong baselines on multiple in-domain data sets.

Our contributions can be summarized as follows:

• We prove that the parameters that are unimpor-
tant for general-domain data can be utilized
to improve in-domain translation quality.

• Our model can keep superior performance
over baselines even when continually trans-
ferring to multiple domains.

• Our model can fit in the continual learning sce-
nario where the data for the previous domains
cannot be got anymore which is the common
situation in practice.

2 Background

2.1 The Transformer

In our work, we apply our method in the framework
of TRANSFORMER (Vaswani et al., 2017) which
will be briefly introduced here. However, we note
that our method can also be combined with other
NMT architectures. We denote the input sequence
of symbols as x = (x1, . . . , xJ), the ground-truth
sequence as y∗ = (y∗1, . . . , y

∗
K∗) and the transla-

tion as y = (y1, . . . , yK).
The Encoder & Decoder The encoder is com-
posed of N identical layers. Each layer has two
sublayers. The first is a multi-head self-attention

sublayer and the second is a fully connected feed-
forward network. Both of the sublayers are fol-
lowed by a residual connection operation and a
layer normalization operation. The input sequence
x will be first converted to a sequence of vectors
Ex = [Ex[x1]; . . . ;Ex[xJ ]] where Ex[xj ] is the
sum of word embedding and position embedding of
the source word xj . Then, this sequence of vectors
will be fed into the encoder and the output of theN -
th layer will be taken as source hidden states. and
we denote it as H. The decoder is also composed
of N identical layers. In addition to the same kind
of two sublayers in each encoder layer, the cross-
attention sublayer is inserted between them, which
performs multi-head attention over the output of
the encoder. The final output of the N -th layer
gives the target hidden states S = [s1; . . . ; sK∗],
where sk is the hidden states of yk.
The Objective We can get the predicted probability
of the k-th target word over the target vocabulary by
performing a linear transformation and a softmax
operation to the target hidden states:

p(yk|y<k,x) ∝ exp(Wosk + bo), (1)

where Wo ∈ Rdmodel×|Vt| and |Vt| are the size
of target vocabulary. The model is optimized by
minimizing a cross-entropy loss of the ground-truth
sequence with teacher forcing training:

L(θ) = − 1

K

K∑
k=1

log p(y∗k|y<k,x; θ), (2)

where K is the length of the target sentence and θ
denotes the model parameters.

2.2 Knowledge Distillation
Knowledge Distillation (KD) method (Hinton et al.,
2015) is for distilling knowledge from a teacher net-
work to a student network. Normally, the teacher
network is considered to be with higher capabil-
ity. A smaller student network can be trained to
perform comparablely or even better by mimicking
the output distribution of the teacher network on
the same data. This is usually done by minimizing
the cross entropy between the two distributions:

LKD(θ, θT ) = − 1

K

K∑
k=1

q(yk|y<k,x; θT )

× log p(yk|y<k,x; θ),

(3)

where q denotes the output distribution of the
teacher network and θ and θT denote the parame-
ters of the student and teacher network, respectively.
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The parameters of the teacher network usually keep
fixed during the KD process.

3 Method

The main idea of our method is that different neu-
rons or parameters have different importance to
the translation model and hence different roles
in domain adaptation. Based on this, we distin-
guish them into important and unimportant ones
and make important neurons or parameters com-
promise between domains while unimportant ones
focus on in-domain. Specifically, our method in-
volves the following steps shown in Figure 1. First,
we train a model on the general domain and then
evaluate the importance of different neurons or pa-
rameters. Then we erase the unimportant neurons
or parameters and only keep the ones that are re-
lated to the general domain so that our method will
not be subjected to domain divergence. Next, we
further adjust our model under the framework of
knowledge distillation (Hinton et al., 2015) on the
in-domain with the unpruned model as the teacher
and the pruned model as the student. In this way,
the pruned model can regain some of its lost per-
formance because of pruning. Finally, we expand
the pruned model to the original size and fine-tune
the added parameters for the in-domain.

3.1 Model Pruning

Model pruning aims to find a good subset of neu-
rons and parameters of the general-domain model
while maintaining the original performance as
much as possible. Therefore, under the premise of
retaining most of the model’s capability, we want to
remove those unimportant neurons or parameters to
reduce the size of the whole model first. To achieve
this, we adopt two pruning schemes. The first is
neuron pruning, where we evaluate the importance
of neurons directly and then prune unimportant
neurons and relevant parameters. The second is
weight pruning, where we evaluate and prune each
parameter directly.

Neuron Pruning To evaluate the importance of
each neuron, we adopt a criterion based on the
Taylor expansion (Molchanov et al., 2017), where
we directly approximate the change in loss when
removing a particular neuron. Let hi be the output
produced from neuron i and H represents the set
of other neurons. Assuming the independence of
each neuron in the model, the change of loss when

removing a certain neuron can be represented as:

|∆L(hi)| = |L(H,hi = 0)− L(H,hi)|, (4)

whereL(H,hi = 0) is the loss value if the neuron i
is pruned and L(H,hi) is the loss if it is not pruned.
For the function L(H,hi), its Taylor expansion at
point hi = a is:

L(H,hi) =

N∑
n=0

Ln(H, a)

n!
(hi − a)n +RN (hi),

(5)
where Ln(H, a) is the n-th derivative of L(H,hi)
evaluated at point a and RN (hi) is N -th remainder.
Then, approximating L(H,hi = 0) with a first-
order Taylor polynomial where hi equals zero:

L(H,hi = 0) = L(H,hi)−
∂L(H,hi)

∂hi
hi−R1(hi).

(6)
The remainder R1 can be represented in the form
of Lagrange:

R1(hi) =
∂2L(H,hi)

∂2δhi
h2i , (7)

where δ ∈ (0, 1). Considering the use of ReLU
activation function in the model, the first derivative
of loss function tends to be constant, so the second
order term tends to be zero in the end of training.
Thus, we can ignore the remainder and get the
importance evaluation function as follows:

ΘTE(hi) = |∆L(hi)| =
∣∣∣∣∂L(H,hi)

∂hi
hi

∣∣∣∣ . (8)

In practice, we need to accumulate the product of
the activation and the gradient of the objective func-
tion w.r.t to the activation, which is easily computed
during back-propagation. Finally, the evaluation
function is shown as:

ΘTE(hli) =
1

T

∑
t

∣∣∣∣δL(H,hli)

δhli
hli

∣∣∣∣ , (9)

where hli is the activation value of the i-th neu-
ron of l-th layer and T is the number of the train-
ing examples. The criterion is computed on the
general-domain data and averaged over T . Finally,
we prune a certain percentage of neurons and rele-
vant parameters in each target layer based on this
criterion.

Weight Pruning We adopt the magnitude-based
weight pruning scheme (See et al., 2016), where
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Figure 1: The whole training process of the proposed method.

the absolute value of each parameter in the target
matrix is treated as the importance:

ΘAV(wmn) = |wmn|,wmn ∈W, (10)

where wmn denotes the m-th row and n-th column
parameter of the weight matrix W. The weight
matrix W represents different parts of the model,
e.g., embedding layer, attention layer, output layer,
etc. Finally, a certain percentage of parameters in
each target parameter matrix are pruned.

3.2 Knowledge Distillation
Though only limited degradation will be brought in
performance after removing the unimportant neu-
rons or parameters, we want to further reduce this
loss. To achieve this, we minimize the difference in
the output distribution of the unpruned and pruned
model. In this work, the general-domain model (pa-
rameters denoted as θ∗G) acts as the teacher model
and the pruned model (parameters denoted as θG)
acts as the student model. So, the objective in this
training phase is:

LKD(θG, θ
∗
G) = − 1

K

K∑
k=1

q(yk|y<k,x; θ∗G)

× log p(yk|y<k,x; θG).

(11)

Considering that the general-domain data is not
always available in some scenarios when adapting
the model to new domains, e.g., continual learn-
ing, we adopt the word-level knowledge distillation
method using the in-domain data. Because the
teacher model is trained on general-domain, it can

still transfer the general-domain knowledge to the
student model even with the in-domain data. We
can fine-tune the pruned model on general-domain
if the data is available which can simplify the train-
ing procedure. We have also tried the sentence-
level knowledge distillation method, but the results
are much worse. The parameters of the teacher
model keep fixed during this training phase and the
parameters of the pruned model are updated with
this KD loss. After convergence, the parameters of
the pruned model (θG) will be solely responsible
for the general-domain and will also participate
in the translation of in-domain data. These pa-
rameters will be kept fixed during the following
training phase, so our model won’t suffer catas-
trophic forgetting on the general-domain during
the fine-tuning process.

3.3 Model Expansion

After getting the well-trained pruned model, we
add new parameters (denoted as θI ) to it, which
expands the model to its original size. Then we
fine-tune these newly added parameters with in-
domain data, which is supervised by the ground
truth sequences. As we have indicated above, the
parameters of the pruned model (denoted as θG),
which are responsible for generating the general-
domain translation, keep fixed during this training
phase. The objective function is:

L(θG, θI) = − 1

K

K∑
k=1

log p(y∗k|y<k,x; θG, θI).

(12)
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After convergence, the parameters of the pruned
model (θG) and new parameters (θI ) are combined
together for generating the in-domain translation.

4 Experiments

4.1 Data Preparation
Chinese→English. For this task, the general-
domain data is from WMT 2017 Zh-En transla-
tion task that contains 23.97M sentence pairs. The
data is mainly related to the News domain. The
newsdev2017 and newstest2017 are chosen as the
development and test set, respectively. We choose
the parallel sentences with the domain label Thesis
from the UM-Corpus (Tian et al., 2014) as our in-
domain data. This portion covers 15 journal topics
in the research area. We filter out the duplicate
sentences and then choose 75K, 1K, and 1K sen-
tences randomly as our training, development, and
test data, respectively. We tokenize and truecase
the English sentences with Moses scripts.1 For the
Chinese data, we perform word segmentation by
using Stanford Segmenter.2

English→French. For this task, the general-
domain data is from the UN corpus of the WMT
2014 En-Fr translation task that contains 12.78M
sentence pairs, which are mainly related to the
News domain. We choose newstest2013 and new-
stest2014 as our development and test set, respec-
tively. The in-domain data with 53K sentence pairs
are from WMT 2019 biomedical translation task,
and it is mainly related to the Biomedical domain.
We choose 1K and 1K sentences randomly from
the corpora as our development and test data, re-
spectively. We tokenize and truecase the corpora.

English→German. For this task, general-
domain data is from the WMT16 En-De translation
task which is mainly News texts. It contains about
4.5M sentence pairs. We choose the newstest2013
for validation and newstest2014 for test. For the in-
domain data, we use the parallel training data from
the IWSLT 2015 which is mainly from the Spoken
domain. It contains about 194K sentences. We
choose the 2014test for validation and the 2015test
for test. We tokenize and truecase the corpora.

Besides, integrating operations of 32K, 32K, and
30K are performed to learn BPE (Sennrich et al.,
2016) on the general-domain data and then applied
to both the general-domain and in-domain data.
Then we filter out the sentences which are longer

1http://www.statmt.org/moses/
2https://nlp.stanford.edu/

than 128 sub-words. For the Zh-En translation task,
44K size of the Chinese dictionary and 33K size
of the English dictionary are built based on the
general-domain data. For the En-Fr and En-De
tasks, 32K size of the dictionaries for the source
and target languages are also built on the corre-
sponding general-domain data.

4.2 Systems
We use the open-source toolkit called Fairseq-
py (Ott et al., 2019) released by Facebook as our
Transformer system. The contrast methods can be
divided into two categories. The models of the
first category are capacity-fixed while the second
category are capacity-increased. The first category
includes the following systems:
• General This baseline system is trained only with
the general-domain training data.
• In This baseline system is trained only with the
in-domain training data.
• Fine-tuning (Luong and Manning, 2015) This
method just continues to train the general-domain
model with the in-domain data.
• SeqKD (Kim and Rush, 2016) The in-domain
source sentences are first translated by the general-
domain model. Then the model is further trained
with the combined pseudo and real data.
• Multi-objective Learning (MOL) (Dakwale and
Monz, 2017) This method is based on the Fine-
tuning method. Besides minimizing the loss be-
tween the ground truth words and the output distri-
bution of the network, this method also minimizes
the cross-entropy between the output distribution
of the general-domain model and the network. The
final objective is:

LMOL(θ) = L(θ) + αLKD(θ) (13)

where α is the hyper-parameter which controls the
contribution of the two parts. The bigger the value,
the less degradation on the general-domain.
• Elastic Weight Consolidation (EWC) (Thomp-
son et al., 2019) This method models the impor-
tance of the parameters with Fisher information
matrix and puts more constrains on the important
parameters to let them stay close to the original
values during the fine-tuning process. The training
objective is:

LEWC(θ) = L(θ) + α
∑
i

Fi(θi − θGi )2 (14)

where i represents the i-th parameter and Fi is the
modeled importance for the i-th parameter.
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ID System
Chinese-English English-French English-German

#Para. Gen. In. Avg. #Para. Gen. In. Avg. #Para. Gen. In. Avg.
0 General

100.5M

23.26 9.97 16.62

93.3M

33.05 25.25 29.15

94.4M

26.22 29.53 27.88
1 In 0.87 3.64 2.26−14.36 3.88 7.87 5.88−23.27 12.63 24.77 18.70−9.18

2 Fine-tuning 13.78 17.05 15.42−1.20 14.03 33.24 23.64−5.51 23.37 32.63 28.00+0.12

3 SeqKD 14.02 13.45 13.74−2.88 20.37 27.93 24.15−5.00 24.50 30.20 27.35−0.53

4 MOL 18.44 13.86 16.15−0.47 26.58 28.05 27.32−1.83 25.42 32.09 28.76+0.88

5 EWC 17.45 15.72 16.59−0.03 25.29 32.24 28.77−0.38 25.62 32.17 28.90+1.02

6 Full Bias 100.6M 23.26 11.55 17.41+0.79 93.4M 33.05 26.47 9.76+0.61 94.5M 26.22 30.00 28.11+0.23

7 Adapter 101.3M 23.26 15.82 19.54+2.92 94.1M 33.05 29.61 31.33+2.18 95.3M 26.22 31.54 28.88+1.00

8 MLL 117.4M 23.30 16.04 19.67+3.05 109.7M 32.70 30.78 31.74+2.59 111.2M 26.08 32.07 29.08+1.20

9

PTE

0+NP 81.1M 18.35 9.70 14.03−2.45 76.3M 29.27 24.86 27.07−2.60 77.2M 24.99 26.23 25.61−2.27

10 9+KD 81.1M 22.62 9.99 16.31−0.17 76.3M 32.77 25.83 29.30−0.37 77.2M 26.04 27.71 26.88−1.00

11 10+FT 100.5M 22.62 15.94 19.28+2.81 93.3M 32.77 30.69 31.73+2.07 94.4M 26.04 32.57* 29.31+1.43

12 0+WP 70.4M 20.74 9.54 15.14−1.48 65.3M 29.65 25.03 27.34−1.81 66.1M 25.02 26.66 25.84−2.04

13 12+KD 70.4M 23.50 9.77 16.64+0.02 65.3M 32.64 25.98 29.31+0.16 66.1M 26.38 26.74 26.56−1.32

14 13+FT 100.5M 23.50 16.98** 20.24+3.62 93.3M 32.64 33.16** 32.90+3.75 94.4M 26.38 33.02** 29.70+1.82

Table 1: BLEU scores on three translation tasks. ’#Para.’ denotes the number of parameters of the whole model,
’Gen.’ and ’In.’ denote the BLEU on general-domain and in-domain, and ’Avg.’ denotes the average BLEU of the
two test sets. ’NP’, ’WP’, ’KD’, and ’FT’ represent neuron pruning, weight pruning, knowledge distillation, and
fine-tuning, respectively. The numbers on the right of ’PTE’ denote that this training phase is based on the previous
corresponding models. After knowledge distillation, the parameters in the pruned model (system 10, 13) are fixed,
so the general-domain BLEU is unchanged after fine-tuning (system 11, 14). * and ** mean the improvements
over the MLL method is statistically significant (ρ < 0.05 and ρ < 0.01, respectively). (Collins et al., 2005)

The second category indcludes the following
three systems:
• Full Bias (Michel and Neubig, 2018) This method
adds domain-specific bias term to the output soft-
max layer and only updates the term as other parts
of the general-domain model keep fixed.
• Adapter (Bapna and Firat, 2019) This methods
injects domain-specific adapter modules into each
layer of the general-domain model. Each adapter
contains a normalization layer and two linear pro-
jection layers. The adapter size is set to 64.
• Multiple-output Layer Learning (MLL) (Dak-
wale and Monz, 2017) The method modifies the
general-domain model by adding domain-specific
output layer for the in-domain and learning these
domain specific parameters with respective learn-
ing objective. The training objective is:

LMLL(θS , θG, θI) = L(θS , θI) + αLKD(θS , θG)
(15)

where θS is the domain-shared parameters, θG and
θI denote the domain specific parameters for the
general-domain and in-domain, respectively.
• Our Method - Pruning Then Expanding
(PTE) Our model is trained just as the Method
section describes. For the neuron pruning scheme,
we prune the last 10% unimportant neurons; for
the weight pruning scheme, we prune the last 30%
unimportant parameters. To better show the abil-
ity of our method, we report the general- and in-
domain performance after each training phase.
Implementation Details All the systems are

implemented as the base model configuration
in Vaswani et al. (2017) strictly. We set the hyper-
parameter α to 1 for MOL, EWC, and MLL and we
will do more analysis on the impact of this hyper-
parameter in the next section. We set the learning
rate during fine-tuning process to 7.5×10−5 for all
the systems after having tried different values from
1.5× 10−6 to 1.5× 10−3. In both of our methods,
we don’t prune the layer-normalization layers in
the encoder and decoder, which can make training
faster and more stable. For the neuron pruning
method, we also don’t prune the first layer of the
encoder and the last layer of the decoder. Just like
the work of Dakwale and Monz (2017), the domain
of the test data is known in our experiments. Be-
sides, we use beam search with a beam size of 4
during the decoding process.

4.3 Main Results

The final translation is detokenized and then the
quality is evaluated using the 4-gram case-sensitive
BLEU (Papineni et al., 2002) with the SacreBLEU
tool (Post, 2018).3 The results are given in Table 1.
In all the datasets, our weight pruning method out-
performs all the baselines. Furthermore, we get the
following conclusions:

First, the contrast capacity-fixed methods can’t
handle large domain divergence and still suffer
catastrophic forgetting. They perform well in the

3BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a
+version.1.3.6
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(a) Zh→En (b) En→Fr (c) En→De

Figure 2: The performance trade-off with different hyper-parameters. the x-axis is general-domain BLEU and the
y-axis is in-domain BLEU. The closer the point is to the upper right corner, the better the performance.

En-De translation task, where the data distribu-
tions are similar. They can significantly improve
the in-domain translation quality without excessive
damage to the general-domain translation quality.
However, they perform worse in the En-Fr and
Zh-En translation tasks with more different data
distributions. The in-domain data contains many
low-frequency or out-of-vocabulary tokens of the
general-domain data. In this situation, these meth-
ods either bring limited in-domain improvements
or degrade the general-domain performance too
much. In contrast, our method is superior to them
in all tasks, especially on the more different do-
mains. This also validates our motivation.

Second, the capacity-increased methods can bet-
ter deal with domain divergence. Compared with
them, our method can achieve larger improvements
on in-domain since we actually allocate more pa-
rameters for in-domain than the capacity-increased
methods. Besides, our methods are also more con-
venient to use in practice because we don’t need
to specialize the model architecture. The pruning
ratio is the only hyper-parameter needed tuning.

Lastly, both of our methods are immune to large
domain divergence. Moreover, the knowledge dis-
tillation can bring modest improvements on the
general domain. Compared with the neuron prun-
ing method, the weight pruning method is more
effective since it can prune and reutilize more pa-
rameters with smaller performance degradation.

5 Analysis

5.1 Adapting to Multi-Domain
We conduct experiments under the multi-domain
scenario, which lets the model adapt to several
different domains. Except for the training data
used in the main experiments of the Zh-En task,
which are related to the News and Thesis domain,

System #Para. Gen. T S E
Fine-tuning 100.5M 12.58 16.99 18.64 19.43

Adapter 102.9M 23.26 15.82 17.83 18.68
MLL 151.2M 22.60 16.24 18.27 18.39

PTE(WP) 100.5M 23.78** 16.85* 18.69 19.55**

Table 2: BLEU of different domains on the Zh-En task.
’T’, ’S’, and ’E’ denote the in-domain of Thesis, Spo-
ken, and Education, respectively. ’PTE(WP)’ denotes
our weight-pruning based method.

we add two datasets from other domains, namely,
Spoken and Education. Both of them are cho-
sen randomly from the UM-corpus. Each of them
contains about 75K, 1K, and 1K sentence pairs in
the training, development, and test set. We test
our weight-pruning based method and still prune
last 30% unimportant parameters. We compare our
method with the basic fine-tuning system and more
effective capacity-increased method. The results
are shown in Table 2. It shows that our method can
get significant improvements on all the domains.

5.2 Effects of Different Hyper-parameters
For the MOL, EWC, and MLL methods, the hyper-
parameter α controls the trade-off between the
general- and in-domain performance. As for our
method, the proportion of model parameters to
be pruned has a similar effect. To better show
the full general- and in-domain performance trade-
off, we conduct experiments with different hyper-
parameters. We compare our method with the
best capacity-fixed method EWC and best capacity-
increased method MLL. For the EWC and MLL
method, we vary α from 0.25 to 2.5. We vary
the pruning proportion from 5% to 30% for our
neuron-pruning method and from 10% to 50% for
our weight-pruning method. The results are shown
in Figure 2. It shows that our method outperforms
EWC at all the operating points significantly. Be-
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ID System Gen. In. Avg.
0 General 23.26 9.97 16.62
12

PTE
0+WP 20.74 9.54 15.14−1.48

13 12+KD 23.50 9.77 16.64+0.02

14 13+FT 23.50 16.98 20.24+3.62

15
Random

0+WP 12.47 5.18 8.83−7.79

16 15+KD 14.69 5.48 10.09−6.53

17 16+FT 14.69 16.03 15.36−1.26

18 Selective FT 0+FT 13.74 16.58 15.16−1.46

Table 3: Results of the ablation study. ’Random’ de-
notes the parameters are randomly pruned. ’Selective
FT’ denotes only the unimportant parameters are fine-
tuned. Other denotations are the same as in Table 1.

sides, our neuron-pruning method can achieve com-
parable results as MLL and our weight-pruning
method can surpass it with fewer parameters.

5.3 Ablation Study

To further understand the impact of each step of our
method, we perform further studies by removing
or replacing certain steps of our method. We first
investigate the necessity of parameter importance
evaluation. We train another three models follow-
ing our method but with the parameters randomly
pruned. The results are given in Table 3. It shows
that random pruning will give excessive damage
to general-domain. Besides, we also train another
model that skips the model pruning and knowl-
edge distillation steps and directly fine-tune the
unimportant parameters. At last, we perform trans-
lation with the whole model on both the general-
and in-domain. The results show that the change
of unimportant parameters will also lead to catas-
trophic forgetting on general-domain, which shows
the necessity of “divide and conquer”.

5.4 Effects of Data Distribution Divergence

To further prove that our method is better at dealing
with large domain divergence, we conduct experi-
ments on the En-Fr translation task. Following the
method in Moore and Lewis (2010), we score and
rank each in-domain sentence pair by calculating
the per-word cross-entropy difference between the
general- and in-domain language model:

Score = (HG(s)−HI(s)) + (HG(t)−HI(t))
(16)

where H denotes the language model which is
trained with Srilm (Stolcke, 2002), s and t denote
the source and target sentence. Then, we split the
in-domain data into four parts with equal size and

Figure 3: The average BLEU with different domain di-
vergences on the En→Fr translation task. The x-axis
represents the divergence of the data distribution and
the larger the value is, the general- and in-domain data
are more different.

train new models with them separately. We com-
pare our weight pruning based method with the
EWC and MLL methods. The results are shown in
Figure 3. It shows that we can get larger improve-
ments as the data divergence gets larger.

6 Related Work

Domain Adaptation Recent work on DA can be
divided into two categories according to the use
of training data. The first category, which is also
referred to as multi-domain adaptation, needs the
training data from all of the domains. Chu et al.
(2017) fine-tunes the model with the mix of the
general-domain data and over-sampled in-domain
data. Kobus et al. (2017) adds domain-specific
tags to each sentence. Zhang et al. (2019b) ap-
plies curriculum learning to the DA problem. Britz
et al. (2017) adds a discriminator to extract com-
mon features across domains. There are also some
work (Zeng et al., 2018, 2019; Gu et al., 2019) that
adds domain-specific modules to the model to pre-
serve the domain-specific features. Currey et al.
(2020) distills multiple expert models into a single
student model. The work of Liang et al. (2020)
has a similar motivation with ours which also fix
the important parameters and prune the unimpor-
tant parameters. Compared with their method, our
method doesn’t need to store the general-domain
training data and our method has less degradation
on general-domain because we adopt the knowl-
edge distillation method.

The second category, which is also referred to
as continual learning, only needs the data from the



3950

new domain and the model in use. The biggest
challenge for this kind of work is the catastrophic
forgetting. Luong and Manning (2015) fine-tunes
the general-domain model with the in-domain
data. Freitag and Al-Onaizan (2016) ensembles the
general-domain model and the fine-tuned model
for generating. Saunders et al. (2019) investi-
gates adaptive ensemble weighting for inference.
Khayrallah et al. (2018) and Thompson et al. (2019)
add regularization terms to let the model parame-
ters stay close to their original values. Dakwale
and Monz (2017) minimizes the cross-entropy be-
tween the output distribution of the general-domain
model and the fine-tuned model. Michel and Neu-
big (2018) adds domain-specific softmax bias term
to the output layer. Bapna and Firat (2019) in-
jects domain-specific adapter modules into each
layer of the general-domain model. Wuebker et al.
(2018) only saves the domain-specific offset based
on the general-domain model. Wang et al. (2020b)
achieves efficient lifelong learning by establishing
complementary learning systems. Sato et al. (2020)
adapts the vocabulary of a pre-trained NMT model
to the target domain.

Overall, our work is related to the second type
of approach, which is more flexible and convenient
in practice. The work of Thompson et al. (2019)
and Dakwale and Monz (2017) are most related to
our work. Compared with Thompson et al. (2019),
our work is better at dealing with large domain di-
vergence, since we add domain-specific parts to the
model. In contrast to Dakwale and Monz (2017),
our model divides each layer of the model into
domain-shared and domain-specific parts, which
increases the depth of the in-domain model, intu-
itively. Besides, our method doesn’t need to add
parameters, but it can be easily extended when nec-
essary.

Model Pruning Model pruning usually aims to
reduce the model size or improve the inference effi-
ciency. See et al. (2016) examines three magnitude-
based pruning schemes. Zhu and Gupta (2018)
demonstrates that large-sparse models outperform
comparably-sized small-dense models. Wang et al.
(2020a) improves the utilization efficiency of pa-
rameters by introducing a rejuvenation approach.
Lan et al. (2020) presents two parameter reduc-
tion techniques to lower memory consumption and
increase the training speed of BERT.

7 Conclusion

In this work, we propose a domain adaptation
method based on the importance of neurons and
parameters of the NMT model. We make the im-
portant ones compromise between domains while
unimportant ones focus on in-domain. Based on
this, our method consists of several steps, namely,
model pruning, knowledge distillation, model ex-
pansion, and fine-tuning. The experimental results
on different languages and domains prove that our
method can achieve significant improvements with
model capacity fixed. Further experiments prove
that our method can also improve the overall per-
formance under the multi-domain scenario.
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