
Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 3678–3691

June 6–11, 2021. ©2021 Association for Computational Linguistics

3678

Adaptable and Interpretable Neural Memory
Over Symbolic Knowledge

Pat Verga*, Haitian Sun*, Livio Baldini Soares, William W. Cohen
Google Research

{patverga, haitiansun, liviobs, wcohen}@google.com

Abstract

Past research has demonstrated that large neu-
ral language models (LMs) encode surpris-
ing amounts of factual information: how-
ever, augmenting or modifying this informa-
tion requires modifying a corpus and retrain-
ing, which is computationally expensive. To
address this problem, we develop a neural LM
that includes an interpretable neuro-symbolic
KB in the form of a “fact memory”. Each
element of the fact memory is formed from
a triple of vectors, where each vector corre-
sponds to a KB entity or relation. Our LM im-
proves performance on knowledge-intensive
question-answering tasks, sometimes dramat-
ically, including a 27 point increase in one set-
ting of WebQuestionsSP over a state-of-the-art
open-book model, despite using 5% of the pa-
rameters. Most interestingly, we demonstrate
that the model can be modified, without any
re-training, by updating the fact memory.

1 Introduction

Neural language models (LMs) (Peters et al., 2018;
Devlin et al., 2019; Raffel et al., 2019) that have
been pre-trained by self-supervision on large cor-
pora contain rich knowledge about the syntax and
semantics of natural language (Tenney et al., 2019),
and are the basis of much recent work in NLP. Pre-
trained LMs also contain large amounts of factual
knowledge about the world (Petroni et al., 2019;
Roberts et al., 2020; Brown et al., 2020). However,
while large LMs can be coerced to answer factual
queries, they still lack many of the properties that
knowledge bases (KBs) typically have. In particu-
lar, it is difficult to distinguish answers produced by
memorizing factual statements in the pre-training
corpus from lower-precision answers produced by
linguistic generalization (Poerner et al., 2019). It
is also difficult to add or remove factual informa-
tion without retraining the LM, an expensive pro-

cess1. The difficulty of updating knowledge in
neural LMs contrasts with symbolic KBs, where
it is very easy to add or modify triples, and is a
major disadvantage of using a LM “as a KB”—as
in many domains (news, product reviews, scientific
publications, etc) the set of known facts changes
frequently. Symbolic KBs thus remain practically
important (Google, 2012; Dong, 2017), especially
for NLP applications where text is hard to automat-
ically process (e.g., scientific, technical, or legal)
or tasks rich in information that exists only in struc-
tured form (e.g., technical specifications of a new
product, where no product page or review text dis-
cussing it yet exists).

Motivated by this, past work has sought to com-
bine the benefits of neural LMs with the large,
broad-coverage KBs that now exist (Bollacker
et al., 2008; Auer et al., 2007; Vrandečić and
Krötzsch, 2014). This paper continues this re-
search program with a new knowledge-augmented
LM called Fact Injected Language Model (FILM).
FILM is a masked LM, where masks can be filled
either from the token vocabulary or an entity vo-
cabulary. The vector representation of each entity
in a KB is jointly learned alongside other parame-
ters of a Transformer LM, and stored in a separate
entity memory. FILM also includes a fact memory
where each element is derived from a triple of vec-
tors, representing a KB entity or relation. Since
these triples are defined compositionally from (rep-
resentations of) entities and relations, they have
an interpretable symbolic meaning: e.g., if emtv is
the vector representation of KB entity “Mountain
View, CA” and egoogle and rhq similarly correspond
to “Google Inc” and the relation “headquartered
in”, these vectors can be used to construct a mem-
ory element f(egoogle, rhq, emtv) for the KB asser-
tion “Google, Inc is headquartered in Mountain

1Models large enough to achieve good factual coverage
require extreme amounts of compute, and the largest neural
LMs now cost millions of dollars to train (Brown et al., 2020).

3679

Figure 1: Fact Injected Language Model architecture. The model takes a piece of text (a question during fine-
tuning or arbitrary text during pre-training) and first contextually encodes it with an entity enriched transformer.
FILM uses the contextually encoded MASK token as a query to the fact memory. In this case, the contextual query
chooses the fact key (Charles Darwin, born_in) which returns the set of values {United Kingdom} (The value set
can be multiple entity objects such as the case from calling the key [United Kingdom, has_city]) . The returned
object representation is incorporated back into the context in order to make the final prediction. Note that the entity
representations in the facts (both in keys and values) are shared with the entity memory. The portion within the
dashed line follows the procedure from Févry et al. (2020).

View, CA”. This means that the fact memory can
be easily extended with new facts.

In analysis on four benchmark question answer-
ing datasets we show that FILM improves signif-
icantly, and sometimes dramatically, over several
strong baselines (e.g. BART (Lewis et al., 2019)
and T5 (Raffel et al., 2019)) and this improvement
is even larger when removing train-test overlap. In
one setting of WebQuestionsSP, we outperform the
next best performing model (RAG (Lewis et al.,
2020a)) by 27 points despite using only 5% of the
number of parameters.

Most interestingly, we demonstrate that FILM
models can be updated without any re-training, by
modifying the fact memory. Specifically, in §4.1,
we show we can inject new fact memories at in-
ference time, enabling FILM to correctly answer
questions about pairs of entities that were never
observed in the training (either during pre-training
or fine-tuning). In §4.2 we also evaluate updating
the model by inserting contra-positive facts that
contradict facts mentioned in the pretraining data,
and we show that FILM can correctly answer novel
questions in this scenario as well. To summarize,
this paper’s contributions are:

1. We propose a neural LM for knowledge-
intensive question-answering tasks that incor-

porates a symbolic fact memory.

2. We outperform most baselines on several
benchmark open-domain QA datasets, and
dramatically if test-train overlap in the
datasets are removed.

3. We show FILM can easily adapt to newly in-
jected and modified facts without retraining.

2 Fact Injected Language Model Model

The Fact Injected Language Model (FILM) model
(see Figure 1) extends the Transformer (Vaswani
et al., 2017) architecture of BERT (Devlin et al.,
2019) with additional entity and facts memories.
These memories store semantic information which
can later be retrieved and incorporated into the
representations of the transformer. Similar to the
approach in Févry et al. (2020), entity embeddings
will (ideally) store information about the textual
contexts in which that entity appears, and by in-
ference, the entity’s semantic properties. The fact
memory encodes triples from a symbolic KB, con-
structed compositionally from the learned embed-
dings of the entities that comprise it and imple-
mented as a key-value memory which is used to
retrieve entities given their KB properties. This
combination results in a neural LM which learns to

3680

access information from a symbolic KB.

2.1 Definitions

We represent a Knowledge BaseK as a set of triples
(s, r, o) where s, o ∈ E are the subject and object
entities and r ∈ R is the relation, where E and
R are pre-defined vocabularies of entities and rela-
tions. A text corpus C is a collection of paragraphs2

{p1, . . . , p|C|}. Let M be the set of entity men-
tions in the corpus C. A mention mi is encoded
as (em, s

p
m, t

p
m), indicating entity em is mentioned

in paragraph p starting at token position spm and
ending at tpm. We will usually drop the superscript
p and use sm and tm for brevity.

2.2 Input

The input to our model is a piece of text; either a
question during fine tuning (see §A.2.2) or a para-
graph in pre-training (see §A.2.1). Pretraining is
formulated as a cloze-type Question Answering
(QA) task: given a paragraph p = {w1, . . . , w|p|}
with mentions {m1, . . . ,mn}, we sample a single
mention mi to act as the cloze answer and replace
all tokens of mi with [MASK] tokens. The entity
in E named by the masked entity is the answer
to the cloze question q (’United Kingdon’ in the
example input of Figure 1). Mentions in the para-
graph other than m are referred to below as context
mentions. In the following sections we describe
how our model learns to jointly link context entities
(§2.3) and predict answer entities (§2.5).

2.3 Entity Memory

Our entity memory E ∈ R|E|×de is a matrix contain-
ing a vector for each entity in E and trained as an
entity-masked LM. The model input is a text span
containing unlinked entity mentions with known
boundaries3. Mentions are masked with some prob-
ability. Our entity memory follows Entity as Ex-
perts (EaE) (Févry et al., 2020) which interleaves
standard Transformer (Vaswani et al., 2017) layers
with layers that accesss the entity memory4.

Given a piece of text q = {w1, . . . , w|q|} the

contextual embedding h(l)
i is the output at the i’th

2Although we use the term paragraph here, in our exper-
iments we use spans of 128 tokens, which need not follow
paragraph boundaries.

3Févry et al. (2020) also showed the model is capable of
learning to predict these boundaries. For simplicity, in this
work we assume they are given.

4We follow the implementation of Févry et al. (2020) and
have a single entity memory access between the fourth and
fifth transformer layers.

token of the l’th intermediate transformer layer.
These contextual embeddings are used to compute
query vectors that interface with the entity memory.

For each context mention mi = (emi , smi , tmi)
in q, we form a query vector to access the Entity
memory by concatenating the context embeddings
for the mentionmi’s start and end tokens, h(l)

smi
and

h(l)
tmi

and projecting them into the entity embed-
ding space. We use this query to compute attention
weights over the full entity vocabulary and produce
an attention-weighted sum of entity embeddings
ul
mi

. The result is then projected back to the dimen-
sion of the j-indexed contextual token embeddings,
and added to what would have been the input to the
next layer of the Transformer:

h(l)
mi

= WT
e [h

(l)
smi

;h(l)
tmi

] (1)

u(l)
mi

= softmax(h(l)
mi
,E)× E (2)

h̃(l+1)
j = h(l)

j + WT
2 u(l)

mi
, smi < j < tmi (3)

After the final transformer layer T , h(T)
mi is used

to predict the context entities ˆemi and produce a
loss with Iemi

, the one-hot label of entity emi . Fol-
lowing Févry et al. (2020), we supervise the entity
access for the intermediate query vector in Eq. 1.

êmi = argmaxei∈E(c
T
mi

ei)
lossctx = cross_entropy(softmax(cmi ,E), Iemi

)

lossent = cross_entropy(softmax(h(l)
mi
,E), Iemi

)

2.4 Fact Memory
FILM contains a second fact memory, populated
by triples from the knowledge base K, as shown on
the right side of Figure 15. The fact memory shares
its on entity representations with the entity memory
embeddings in E, but each element of the fact mem-
ory corresponds to a symbolic substructure, namely
a key-value pair ((s, r), {o1, . . . , on}). The key
(s, r) is a (subject entity, relation) pair, and the cor-
responding value {o1, . . . , on} is the list of object
entities associated with s and r, i.e. (s, r, oi) ∈ K
for i = {1, . . . , n}. Conceptually, KB triples with
the same subject entity and relation are grouped
into a single element. We call the subject and rela-
tion pair aj = (s, r) ∈ A a head pair and the list
of objects bj = {o1, . . . , on} ∈ B a tail set6.

5In our experiments we use a single fact memory access
after the final (12th) transformer layer.

6The size of the tail set bj can be large for a popular head
pair (s, r). In such cases, we randomly select a few tails and
drop the rest of them. The maximum size of the tail set is 32
in the experiments in this paper.

3681

In more detail, we encode a head pair aj =
(s, r) ∈ A by concatenating embeddings for the
subject entity and relation, and then projecting
them linearly to a new head-pair embedding space.
More precisely, let E ∈ R|E|×de be the entity em-
beddings trained in §2.3, and R ∈ R|R|×dr be
embeddings of relationsR in the knowledge base
K. We encode a head pair a as:

aj = WT
a [s; r] ∈ Rda

where s ∈ E and r ∈ R are the embeddings of
subject s and relation r, and Wa is a learned linear
transformation matrix. We let A ∈ R|A|×da denote
the embedding matrix of all head pairs.

Let the answer for q be denoted eans, and its
masked mention mans = (eans, sans, tans). For a
masked mention mans, define a query vector to
access the fact memory as:

vmans = WT
f [h(T)

sans
;h(T)

tans
] (4)

where h(T)
sans and h(T)

tans
are the contextual embeddings

for the start and end tokens of the mention mans,
and Wf is the linear transformation matrix into the
embedding space of head pairs A.

Head pairs in A are scored by the query vector
vmans and the top k head pairs with the largest inner
product are retrieved. This retrieval process on the
fact memory is distantly supervised. We define a
head pair to be a distantly supervised positive exam-
ple ads = (s, r) for a passage if its subject entity s
is named by a context mention mi and the masked
entity eans is an element of the corresponding tail
set, i.e. eans ∈ bds. When no distantly supervised
positive example exists for a passage, it is trained to
retrieve a special “null” fact comprised of the snull
head entity and rnull relation: i.e. ads = (snull, rnull)
and its tail set is empty. This distant supervision is
encoded by a loss function:

TOPk(vmans ,A) = argmaxk,j∈{1,...,|A|}a
T
j vmans

lossfact = cross_entropy(softmax(vmans ,A), Iads)

The result of this query is that the tail sets as-
sociated with the top k scored head pairs, i.e.
{bj |j ∈ TOPk(v,A)}, are retrieved from the fact
memory.

2.5 Integrating Knowledge and Context
Next, tail sets retrieved from the fact memory are
aggregated. Recall that a tail set bj returned from
the fact memory is the set of entities {o1, . . . , on}

s.t. (s, r, oi) ∈ K for i ∈ {1, . . . , n} with the asso-
ciated aj = (s, r). Let oi ∈ E be the embedding
of entity oi. We encode the returned tail set bj as a
weighted centroid of the embeddings of entities in
the tail set bj .

bj =
∑
oi∈bj

αioi ∈ Rde

where αi is a context-dependent weight of the ob-
ject entity oi. To compute the weights αi, we use
a process similar to Eq. 4: we compute a second
query vector zmans to score the entities inside the
tail set bj , and the weights αi are the softmax of
the inner products between the query vector zmans

and the embeddings of entities in the tail set bj .

zmans = WT
b [h

(T)
sans

;h(T)
tans

] (5)

αi =
exp (oTi zmans)∑

ol∈bj exp (o
T
l zmans)

(6)

where Wb is a transformation matrix distinct from
We in Eq. 1 and Wf in Eq. 4. The top k tail sets bj

are further aggregated using weights βj , which are
the softmax of the retrieval (inner product) scores
of the top k head pairs aj . This leads to a single
vector fmans that we call the knowledge embedding
for the masked mention mans.

fmans =
∑

j∈TOPk(vmans ,A)

βjbj (7)

βj =
exp (aTj vmans)∑

t∈TOPk(vmans ,A) exp (aTt vmans)
(8)

Intuitively fmans is the result of retrieving a set of
entities from the fact memory. The last step is to
integrate this retrieved set into the Transformer’s
contextual embeddings. Of course, KBs are often
incomplete, and especially during pre-training, it
might be necessary for the model to ignore the
result of retrieval, if no suitable triple appears in the
KB. To model this, the final step in the integration
process is to construct an integrated query qmans

with a learnable mixing weight λ. Algorithmically,
λ is computed as the probability of retrieving a
special “null” head anull from the fact memory, i.e.
whether an oracle head pair exists in the knowledge
base. qmans

is used to predict the masked entity.

qmans
= λ · cmans + (1− λ) · fmans , λ = P (anull)

êans = argmaxei∈E(q
T
mans

ei)
lossans = cross_entropy(softmax(qmans

,E), Ieans)

3682

Model P@1

K-Adapter † 29.1
BERT-Large † 33.9
BERT-KNN ‡ 38.7
EaE 38.6
FILM 44.2

Table 1: LAMA TREx
Precision@1. † copied
from Wang et al.
(2020a), ‡ copied from
Kassner and Schütze
(2020)

The final loss is the sum of the individual losses
(See §A.2.1 and §A.2.2 for additional details.)

lossfinal = lossent + lossctx + lossfact + lossans

3 Experiments

The primary focus of this work is investigating
the incorporating of new symbolic knowledge by
injecting new facts without retraining (§4.1) and
updating stale facts (§4.2). However, we first val-
idate the efficacy of our model on standard splits
of widely used knowledge-intensive benchmarks
against many state-of-the-art systems (§3.3), as
well as two subsets of these benchmarks restricted
to examples answerable with wikidata (§3.4) and
examples filtered for train/test overlap (§3.5).

3.1 Data
We evaluate on four knowledge intensive tasks7.
WebQuestionsSP is an Open-domain Question
Answering dataset containing 4737 natural lan-
guage questions linked to corresponding Freebase
entities and relations (Yih et al., 2015) derived from
WebQuestions(Berant et al., 2013).
LAMA TREx is a set of fact-related cloze ques-
tions. Since we are interested in entity prediction
models, we restrict our LAMA investigations to
TREx, which has answers linked to Wikidata.
TriviaQA (open) contains questions scraped from
quiz-league websites (Joshi et al., 2017). We use
the open splits following Lee et al. (2019).
FreebaseQA is an Open-domain QA dataset de-
rived from TriviaQA and other trivia resources (See
Jiang et al. (2019) for full details). Every answer
can be resolved to at least one Freebase entity and
each question contains at least one entity.

3.2 Baselines
T5 (Raffel et al., 2019) and BART (Lewis et al.,
2019) are large text-to-text transformers.
Dense Passage Retrieval (DPR) (Karpukhin et al.,
2020) is a two stage retrieve and read model.
Retrieval Augmented Generation (RAG) (Lewis
et al., 2020a) and Fusion in Decoder (FID) (Izac-
ard and Grave, 2020) use DPR retrieval, followed

7All data is English. See A.1 for additional details.

by generative decoders based on BART and T5 re-
spectively. FID is the current state-of-the-art on the
open domain setting of TriviaQA.
K-Adapter (Wang et al., 2020a) and Bert-KNN
(Kassner and Schütze, 2020) are recent BERT ex-
tensions that perform at or near state-of-the-art on
the LAMA benchmark.
Entities-as-Experts (EaE) (Févry et al., 2020) is
discussed in §2.3. Our EaE models are trained
using the same hyperparameters and optimization
settings as FILM.

3.2.1 Open vs Closed Book models
Generally, open book models refer to ’retrieve and
read’ pipelines (Chen et al., 2017) which, given a
query, 1) retrieve relevant passages from a corpus,
2) separately re-encode the passages conditioned
on the question and then 3) produce an answer.
Conversely, closed book models answer questions
directly from their parameters without additional
processing of source materials. We consider FILM
and EaE closed-book models as they do not retrieve
and re-encode any source text, and instead attend
to parameterized query-independent memories.

3.3 Results in Convention Settings

LAMA TREx. In Table 1, we can see that FILM
outperforms several recently proposed models on
the LAMA TREx task. FILM outperforms the next
best performing model, BERT-KNN by 5.5 points.
Question-Answering. In Table 2, we compare
FILM to five close-book and three open-book QA
models on WebQuestionsSP and TriviaQA. The
columns denoted Full Dataset-Total show results
for the standard evaluation. For WebQuestionsSP,
despite using far fewer parameters (see Table 3 and
A.3 for details), FILM outperforms all other mod-
els - including the top open-book model RAG. On
TriviaQA, FILM outperforms all other closed-book
models—though the open-book models are sub-
stantially more accurate on this task, likely because
of the enormous size of the models and their access
to all of Wikipedia, which contains all (or nearly
all) of the answers in TriviaQA.

3.4 Results on KB-Answerable Questions

WebQuestionsSP (and similarly FreebaseQA dis-
cussed in §4) was constructed such that all ques-
tions are answerable using the FreeBase KB, which
was last updated in 2016. Because our pretraining
corpus is derived from larger and more recent ver-
sions of Wikipedia, we elected to use a KB con-

3683

WebQuestionsSP TriviaQA
Model Full Dataset Wikidata Answer Full Dataset Wikidata Answer

Total No Overlap Total No Overlap Total No Overlap Total No Overlap

Closed-book

FILM 54.7 36.4 78.1 72.2 29.1 15.6 37.3 28.4
EaE 47.4 25.1 62.4 42.9 19.0 9.1 24.4 17.1
T5-11B 49.7 31.8 61.0 48.5 – – – –
BART-Large 30.4 5.6 36.7 8.3 26.7 0.8 30.6 1.0

Open-Book
RAG 50.1 30.7 62.5 45.1 56.8 29.2 64.9 45.2
DPR 48.6 34.1 56.9 45.1 57.9 31.6 66.3 48.8
FID – – – – 67.6 42.8 76.5 64.5

EmQL† 75.5 - 74.6 - - - - -

Table 2: Open Domain QA Results. Columns denoted Full Dataset-Total are conventional splits discussed in
§3.3, Wikidata Answer are answerable using Wikidata (§3.4), and No Overlap removes train-test overlap (§3.5).
Highest closed-book and open-book numbers are bolded. Other than FILM and EaE, all results are derived from
the prediction files used in Lewis et al. (2020b) including the nearest neighbor (NN) baselines. †is a dataset specific
graph reasoning model and the state-of-the-art WebQuestionSP.

Model B M T

FILM 0.11 0.72 0.83
EaE 0.11 0.26 0.37
BERT-L 0.35 0 0.35
BART-L 0.39 0 0.39
T5-11B 11 0 11

DPR 0.11 16 16.11
RAG 0.39 16 16.39
FID 0.77 16 16.77

Table 3: Model
Parameters Ap-
proximate billions
of parameters
for each model’s
(B)ase, (M)emories
and (T)otal. Ex-
cludes token
embeddings.

structed from Wikidata. Many entities in Freebase
are unmappable to the more recent Wikidata KB
which means that some questions are no longer an-
swerable using the KB. Because of this, we created
reduced versions of these datasets which are Wiki-
data answerable—i.e., containing only questions
answerable by triples from our Wikidata-based KB.
The model should learn to rely on the KB to answer
the questions. We do the same for TriviaQA.8

As seen in Table 2 in the column Wikidata
answer-Total, FILM does much better on Wikidata
answerable questions on WebQuestionsSP. EmQL
(Sun et al., 2020), the state-of-the-art dataset spe-
cific model, gets 75.5% accuracy on the full dataset.
Not surprisingly, this is because EmQL operates
over the Freebase knowledge base, giving it full
upperbound recall. However, when we restrict to
Wikidata answerable questions, thus giving both
EmQL and FILM potential for full recall, FILM
outperforms EmQL by 3.5 points and the next best
model (RAG) by over 15 points.

8TriviaQA does not have linked entities in its questions
so for those results we relax this restriction to include all
examples where the answer resolves to a Wikidata entity.

3.5 Train-Test Overlap

We are interested in the ability of models to use ex-
ternal knowledge to answer questions, rather than
learning to recognize paraphrases of semantically
identical questions. Unfortunately, analysis showed
that many of the test answers also appear as an-
swers to some training-set question: this is the case
for 57.5% of the answers in WebQuestionsSP and
75.0% for FreebaseQA. This raises the possibility
that some of the performance can be attributed to
simply memorizing specific question/answer pairs,
perhaps in addition to recognizing paraphrases of
the question from its pretraining data.

Overlap in fine-tuning train/test splits was con-
currently observed by Lewis et al. (2020b), who
created human verified filtered splits for TriviaQA
and WebQuestions. We evaluate our models on
those splits and report results in Table 2 in the “No
Overlap” columns. We see that the gap between
FILMand the next best performing model RAG in-
creasses from 4.6 to 5.7 points on WebQuestionSP.
On TriviaQA, FILMis still able to answer many
questions correctly after overlap is removed. In
contrast, the majority of closed book models such
as BART get less than 1% of answers correct.

3.6 Filtering to Avoid Pretrain, Finetune, and
Test Overlap

The filtering procedure from Lewis et al. (2020b)
addresses finetuning train/test overlap but does not
account for overlap with the pretraining data. To
investigate this further, we looked at FreebaseQA
and WebQuestionsSP which both contain entity
linked questions and answers. We first perform
a similar procedure to Lewis et al. (2020b) and

3684

discard questions in the fine-tuning training data
that contain answers which overlap with answers
to questions in the dev and test data. We end up
with 9144/2308/3996 data (train/dev/test) in Free-
baseQA and 1348/151/1639 data in WebQuestion-
sSP. This setting is referred to as Fine-tune column
in Table 4 which shows the effects of different fil-
terings of the data.

Next we want to ensure that the model will be
unable to simply memorize paraphrases of question
answer pairs that it observed in the text by remov-
ing all overlap between the pretraining data and
finetuning test data. For every question answer en-
tity pair in our finetuning dataset (coming from any
split), we filter every example from our Wikipedia
pretraining corpus where those pair of entities co-
occur. Additionally, we filter every fact from our
fact memory containing any of these entity pairs.
Results for this setting are in the column labeled
Pretrain. The All column combines both pretrain
and fine tune filtering. We see that the models per-
form substantially worse when these filterings are
applied and they are forced to reason across mul-
tiple examples, and in the case of FILM, the fact
memory. Finally, the column denoted None has no
filtering and is the same as the Full Dataset.

4 Modifying the Knowledge Base

Because our model defines facts symbolically, it
can in principle reason over new facts injected into
its memory, without retraining any parameters of
the model. Since existing datasets do not directly
test this capability, we elected to construct variants
of FreebaseQA and WebQuestionsSP where we
could simulate asking questions that are answerable
only from newly injected KB facts.

The approach we used was to (1) identify pairs
of entities that occur in both a question and answer
of some test example; (2) filter out such pairs from
the KB as well as all pre-training and fine-tuning
data; and (3) test the system trained on this filtered
data, and then manually updated by injecting facts
about those entity pairs. This filtering procedure
is reminiscent of that used by Lewis et al. (2020b),
but also addresses pretraining / test-set overlap.

4.1 Injecting New Facts to Update Memory

We evaluate EaE and FILM given full knowledge
(the original setting); given filtered knowledge;
and given filtered knowledge followed by injecting
test-question-related facts into the KB. The gap be-

tween the filtered knowledge setting and injected
knowledge setting will indicate how well the model
incorporates newly introduced facts.

In more detail, we first perform a similar proce-
dure to Lewis et al. (2020b) and discard questions
in the fine-tuning training data that contain answers
which overlap with answers to questions in the dev
and test data. We end up with 9144/2308/3996 data
(train/dev/test) in FreebaseQA and 1348/151/1639
data in WebQuestionsSP. Next, to ensure that the
model will be unable to memorize paraphrases of
question-answer pairs that it observed in the pre-
training text, we remove all overlap between the
pretraining data and fine-tuning test data: specifi-
cally, for every question-answer entity pair in our
fine-tuning dataset (from any split), we filter every
example from our Wikipedia pretraining corpus in
which that pair of entities co-occur. Additionally,
we filter every fact from our fact memory contain-
ing any of these entity pairs.

In these sections we compare against EaE for
two reasons: 1) we are specifically looking at
closed-book open domain entity based QA and
EaE is shown to be at or near state-of-the-art for
that task (Févry et al., 2020), 2) most importantly,
we want to be able to precisely control for memo-
rization in the training corpus and therefore did not
consider existing unconstrained pre-trained models
like T5 (Raffel et al., 2019). For reference, the
previous state-of-the-art FOFE (Jiang et al., 2019)
on FreebaseQA had a score of 37.0% using the
original train-test split, while FILM is at 63.3%.

The results are shown in Table 5. In the “Full”
column, we pretrain and finetune the FILM model
with the full knowledge base and corpus. In the
“Filter” setting, facts about the finetuning data are
hidden from the model at both pretraining and fine-
tuning time. In this case, the model must fall back
to the language model to predict the answer, and as
shown in Table 5, the accuracies of FILM and EaE
are similar. In the “Inject Facts” setting, Facts are
hidden at pretraining time, but are injected at test
time. The results show that FILM can effectively
use the newly injected facts to make prediction, ob-
taining an absolute improvement of 9.3% compared
to the “Filter” setting. EaE does not have a natural
mechanism for integrating this new information9.

9There are various heuristics one could apply for finetuning
a standard language model on this type of data by applying
one or a small number of gradient steps on textualized facts.
We leave this exploration for future research.

3685

FreebaseQA WebQuestionsSP

Filter Type None Pretrain Fine-tune All None Pretrain Fine-tune All

EaE 53.4 45.2 45.8 28.6 48.1 45.4 30.9 29.4
FILM 63.3 57.5 56.5 48.0 56.1 55.4 40.7 39.2

Table 4: Effects of Different Data Filtering. The column denoted None has no filtering. Pretrain removes all
entity pair overlap between the eval datasets (all splits) and the pretraining text and kb. The Fine-tune column
removes all entity pair overlap between the eval train and test splits. The All column combines both pretrain and
fine tune filtering.

FreebaseQA WebQuestionsSP
Full Filter Inject Full Filter Inject

EaE 45.8 28.6 - 30.9 29.4 -
FILM 56.5 38.7 48.0 40.7 32.3 39.2

Table 5: Injecting New Facts. In the Filter setting, the
models have access to no direct knowledge about ques-
tion answer entity pairs from either the pretraining cor-
pus or KB. In the Inject setting, the pretraining corpus
and training KB are still Filtered, but at inference time,
new facts are injected into the models memory allow-
ing it to recover most of the drop from the Full setting.
In the Full setting the model is exposed to full knowl-
edge. In all cases, we remove the overlap between the
finetune train and eval sets.

4.2 Updating Stale Memories

One of the main motivations for our model is to
provide knowledge representations that can be in-
crementally updated as the world changes, avoiding
stale data. In order to accomplish this, the model
must learn to utilize the fact memory even in the
case where those facts have changed such that they
may no longer be consistent with the data the model
was initially trained on. Further, it needs to accom-
plish that without any additional training.

To probe this ability, we simulate an extreme
version of stale facts where all answers to QA pairs
in the FreebaseQA test set are ‘updated’ with plau-
sible alternatives. For each QA pair, we replace the
original answer entity eoriginal with another entity,
enew, from our vocabulary that has: 1) been used
as an object in at least one of the same relation
types in which eoriginal was used as an object, and
2) shares at least three Wikipedia categories with
eoriginal.

We use the same pretrained models from our
earlier experiments and fine-tune on the filtered
FreebaseQA train set for 10,000 steps. We then
modify the memory of this model without applying
any additional training on the new memory. In
addition to adding new memories which correspond

to our newly created facts, we also must remove
the original stale facts that we are updating. We
look at two methods for filtering those ‘stale facts’
from the fact memory.

Basic Filter deletes every modified fact equestion,
r, eoriginal and replaces it with a new fact equestion,
r, enew. This would be a low recall filter as it does
not account for all possible related facts. The Strict
Filter is a high recall filter that more aggressively
removes information that may conflict with the
newly added fact, additionally removing all facts
that contain equestion or eoriginal. This is important
for cases such as when a question contains multiple
entities, or the linking relation is one-to-many, lead-
ing to multiple plausible answers. Together these
two settings define rough bounds on the model’s
ability to perform this task. In Table 6, we see that
FILM is able to utilize the modified KB to make
the correct prediction for 54.5% of questions in the
Basic Filter setting and 70.3% in the Strict Filter
setting.

Model Basic Filter Strict Filter

FILM 0.0 0.0
+Update Memory 54.5 70.3

Table 6: Updating Stale Memories. Basic filter re-
moves only facts connecting the original question en-
tity to the answer entity. Strict filter removes all facts
containing the original question or answer (not just
facts connecting them).

5 Related Work

Symbolic KBs have been a core component of AI
since the beginning of the field (Newell and Si-
mon, 1956; Newell et al., 1959), and widely avail-
able public KBs have been invaluable in research
and industry (Bollacker et al., 2008; Auer et al.,
2007; Google, 2012; Dong, 2017; Vrandečić and
Krötzsch, 2014). In machine learning, a well stud-
ied problem is learning KB embeddings (Bordes
et al., 2013; Lin et al., 2015; Trouillon et al., 2017;

3686

Dettmers et al., 2018) which enable generalization
from known KB triples to novel triples that are plau-
sibly true. KB embeddings can often be improved
by incorporating raw text and symbolic KGs into a
shared embedding space (Riedel et al., 2013; Verga
et al., 2016, 2017), to be jointly reasoned over (Sun
et al., 2018, 2019). Many prior neural-symbolic
methods have attempted to unify symbolic KBs and
neural methods (Pinkas, 1991; de Penning et al.,
2011; Laird et al., 2017; Besold et al., 2017). Re-
cently, researchers have explored query languages
for embedded KBs that are similar to symbolic
KB query languages (Cohen et al., 2017; Hamilton
et al., 2018; Ren et al., 2020; Cohen et al., 2020).

Our fact memory builds on this prior work, and is
most closely related to the memory used in EmQL
(Sun et al., 2020), one KB embedding model that
supports compositional query language. EmQL im-
plements “projection” using neural retrieval over
vectorized KB triples. Unlike this work, however,
EmQL did not embed its fact memory into a LM,
which could be finetuned for many NLP tasks: in-
stead requiring the implementation of a “neural
module” into some task-specific architecture. At a
more abstract level, the fact memory is a key-value
memory (Weston et al., 2014; Miller et al., 2016),
a construct used in many neural models in the past.

It has been shown that sufficiently large LMs
trained through self supervision (Peters et al., 2018;
Devlin et al., 2019; Raffel et al., 2019; Brown et al.,
2020) also encode factual information, motivating
work on the extent to which a LM can serve as
a KB (Roberts et al., 2020; Petroni et al., 2019;
Poerner et al., 2019). Other work has explored
techniques to improve the performance of large
LMs in answering factual probes, by adding ad-
ditional supervision in pre-training (Xiong et al.,
2019; Wang et al., 2020b) or by adding entity em-
beddings into an extended LM (Peters et al., 2019;
Zhang et al., 2019; Févry et al., 2020).

Our entity memory extends the Entities-as-
Experts (EaE) model (Févry et al., 2020). It is
both the current state-of-the-art for a number of
tasks and simpler to use than most prior models
because it does not require external components
for entity linking or entity encoding (like (Peters
et al., 2019; Zhang et al., 2019; Logan et al., 2019))
and is not restricted to lexical KBs like WordNet
and ConceptNet (like (Weissenborn et al., 2017;
Chen et al., 2018; Mihaylov and Frank, 2018)).

Our model’s use of memory also scales to KBs

with millions of entities, whereas prior systems
that make use of KB triples have been with only a
few hundreds of triples in the model at any point,
necessitating a separate heuristic process to retrieve
candidate KB triples (Ahn et al., 2016; Henaff et al.,
2016; Weissenborn et al., 2017; Chen et al., 2018;
Mihaylov and Frank, 2018; Logan et al., 2019).

There have been a few exploratory experiments
on modifying the predictions of retrieval aug-
mented language models by changing the under-
lying text corpus (Guu et al., 2020; Lewis et al.,
2020a). However, text passages are not easily in-
terpretable resulting in them being less inspectible
and modifiable than a symbolic fact based memory.

6 Conclusion

We presented FILM, a neural LM with an inter-
pretable symbolically bound fact memory. We
demonstrated the effectiveness of this method by
outperforming many state-of-the-art methods on
four benchmark knowledge intensive datasets. We
used the model’s symbolic interface to change
the output of the LM by modifying only the non-
parametric memories, without any additional train-
ing. We showed FILM could incorporate newly
injected facts unseen during training. Addition-
ally, we can modify facts, such that they contradict
the initial pre training text, and our model is still
largely able to answer these questions correctly.

7 Ethics and Broader Impacts

All language models learn to exploit correlations in
the data they were trained on. As such, they inherit
all of the underlying biases within that data (Zhao
et al., 2019; Bender et al., 2021). These models re-
quire vast amounts of data to train on and therefore
tend to rely on internet corpora which have skewed
representations of particular groups, cultures, and
languages, as well as variable levels of factuality.
Our hope is that research into endowing these mod-
els with interpretable and modifiable memories will
allow us to more readily identify and remedy some
of these failures.

Acknowledgments

We thank the anonymous reviewers for their helpful
feedback and Patrick Lewis for providing predic-
tion files. We also thank Thibault Févry, Nicholas
FitzGerald, Eunsol Choi, Tom Kwiatkowski and
other members of Google Research for discussions
and feedback.

3687

References
Sungjin Ahn, Heeyoul Choi, Tanel Pärnamaa, and

Yoshua Bengio. 2016. A neural knowledge language
model. arXiv preprint arXiv:1608.00318.

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens
Lehmann, Richard Cyganiak, and Zachary Ives.
2007. Dbpedia: A nucleus for a web of open data.
In The semantic web, pages 722–735. Springer.

Emily M Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language mod-
els be too big?. In Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Trans-
parency, pages 610–623.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on Freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1533–1544, Seattle, Wash-
ington, USA. Association for Computational Lin-
guistics.

Tarek R Besold, Artur d’Avila Garcez, Sebastian Bader,
Howard Bowman, Pedro Domingos, Pascal Hitzler,
Kai-Uwe Kühnberger, Luis C Lamb, Daniel Lowd,
Priscila Machado Vieira Lima, et al. 2017. Neural-
symbolic learning and reasoning: A survey and in-
terpretation. arXiv preprint arXiv:1711.03902.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a collab-
oratively created graph database for structuring hu-
man knowledge. In Proceedings of the 2008 ACM
SIGMOD international conference on Management
of data, pages 1247–1250.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in neural information
processing systems, pages 2787–2795.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading wikipedia to answer open-
domain questions. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1870–
1879.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Diana
Inkpen, and Si Wei. 2018. Neural natural language
inference models enhanced with external knowledge.
In Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2406–2417.

William W Cohen, Haitian Sun, R Alex Hofer, and
Matthew Siegler. 2020. Scalable neural methods for
reasoning with a symbolic knowledge base. Interna-
tional Conference on Learning Representations.

William W Cohen, Fan Yang, and Kathryn Rivard
Mazaitis. 2017. Tensorlog: Deep learning meets
probabilistic dbs. arXiv preprint arXiv:1707.05390.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp,
and Sebastian Riedel. 2018. Convolutional 2d
knowledge graph embeddings. In Thirty-Second
AAAI Conference on Artificial Intelligence.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Luna Dong. 2017. Amazon product graph.

Thibault Févry, Livio Baldini Soares, Nicholas FitzGer-
ald, Eunsol Choi, and Tom Kwiatkowski. 2020. En-
tities as experts: Sparse memory access with entity
supervision. Conference on Empirical Methods in
Natural Language Processing.

Google. 2012. Introducing the knowledge graph:
things, not strings.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. Realm: Retrieval-
augmented language model pre-training. arXiv
preprint arXiv:2002.08909.

Will Hamilton, Payal Bajaj, Marinka Zitnik, Dan Juraf-
sky, and Jure Leskovec. 2018. Embedding logical
queries on knowledge graphs. In Advances in Neu-
ral Information Processing Systems, pages 2026–
2037.

Mikael Henaff, Jason Weston, Arthur Szlam, Antoine
Bordes, and Yann LeCun. 2016. Tracking the world
state with recurrent entity networks. arXiv preprint
arXiv:1612.03969.

Gautier Izacard and Edouard Grave. 2020. Lever-
aging passage retrieval with generative models for
open domain question answering. arXiv preprint
arXiv:2007.01282.

Kelvin Jiang, Dekun Wu, and Hui Jiang. 2019. Free-
baseqa: A new factoid qa data set matching trivia-
style question-answer pairs with freebase. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pages 318–323.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke
Zettlemoyer. 2017. Triviaqa: A large scale distantly

https://www.aclweb.org/anthology/D13-1160
https://www.aclweb.org/anthology/D13-1160
http://lunadong.com/talks/PG.pdf
https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html
https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html

3688

supervised challenge dataset for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics, Van-
couver, Canada. Association for Computational Lin-
guistics.

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Ledell
Wu, Sergey Edunov, Danqi Chen, and Wen-
tau Yih. 2020. Dense passage retrieval for
open-domain question answering. arXiv preprint
arXiv:2004.04906.

Nora Kassner and Hinrich Schütze. 2020. Bert-
knn: Adding a knn search component to pretrained
language models for better qa. arXiv preprint
arXiv:2005.00766.

John E Laird, Christian Lebiere, and Paul S Rosen-
bloom. 2017. A standard model of the mind: To-
ward a common computational framework across ar-
tificial intelligence, cognitive science, neuroscience,
and robotics. Ai Magazine, 38(4):13–26.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.
2019. Latent retrieval for weakly supervised open
domain question answering. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 6086–6096.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019.
Bart: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and
comprehension. arXiv preprint arXiv:1910.13461.

Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020a. Retrieval-augmented gen-
eration for knowledge-intensive nlp tasks. arXiv
preprint arXiv:2005.11401.

Patrick Lewis, Pontus Stenetorp, and Sebastian Riedel.
2020b. Question and answer test-train overlap in
open-domain question answering datasets. arXiv
preprint arXiv:2008.02637.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu,
and Xuan Zhu. 2015. Learning entity and relation
embeddings for knowledge graph completion. In
Twenty-ninth AAAI conference on artificial intelli-
gence.

Robert Logan, Nelson F. Liu, Matthew E. Peters, Matt
Gardner, and Sameer Singh. 2019. Barack’s wife
hillary: Using knowledge graphs for fact-aware lan-
guage modeling. Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics.

Todor Mihaylov and Anette Frank. 2018. Knowledge-
able reader: Enhancing cloze-style reading compre-
hension with external commonsense knowledge. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:

Long Papers), pages 821–832, Melbourne, Australia.
Association for Computational Linguistics.

Alexander Miller, Adam Fisch, Jesse Dodge, Amir-
Hossein Karimi, Antoine Bordes, and Jason Weston.
2016. Key-value memory networks for directly read-
ing documents. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1400–1409.

Allen Newell, J. C. Shaw, and Herbert A. Simon. 1959.
Report on a general problem-solving program. In
Proceedings of the International Conference on In-
formation Processing.

Allen Newell and Herbert Simon. 1956. The logic
theory machine–a complex information processing
system. IRE Transactions on information theory,
2(3):61–79.

H Leo H de Penning, Artur S d’Avila Garcez, Luís C
Lamb, and John-Jules C Meyer. 2011. A neural-
symbolic cognitive agent for online learning and rea-
soning. In Twenty-Second International Joint Con-
ference on Artificial Intelligence.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 2227–
2237.

Matthew E. Peters, Mark Neumann, Robert Logan, Roy
Schwartz, Vidur Joshi, Sameer Singh, and Noah A.
Smith. 2019. Knowledge enhanced contextual word
representations. Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP).

Fabio Petroni, Tim Rocktäschel, Patrick Lewis, Anton
Bakhtin, Yuxiang Wu, Alexander H Miller, and Se-
bastian Riedel. 2019. Language models as knowl-
edge bases? arXiv preprint arXiv:1909.01066.

Gadi Pinkas. 1991. Symmetric neural networks and
propositional logic satisfiability. Neural Computa-
tion, 3(2):282–291.

Nina Poerner, Ulli Waltinger, and Hinrich Schütze.
2019. Bert is not a knowledge base (yet): Fac-
tual knowledge vs. name-based reasoning in unsu-
pervised qa. arXiv preprint arXiv:1911.03681.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

https://doi.org/10.18653/v1/p19-1598
https://doi.org/10.18653/v1/p19-1598
https://doi.org/10.18653/v1/p19-1598
https://doi.org/10.18653/v1/P18-1076
https://doi.org/10.18653/v1/P18-1076
https://doi.org/10.18653/v1/P18-1076
https://doi.org/10.18653/v1/d19-1005
https://doi.org/10.18653/v1/d19-1005

3689

Hongyu Ren, Weihua Hu, and Jure Leskovec. 2020.
Query2box: Reasoning over knowledge graphs in
vector space using box embeddings. International
Conference on Learning Representations.

Sebastian Riedel, Limin Yao, Andrew McCallum, and
Benjamin M Marlin. 2013. Relation extraction with
matrix factorization and universal schemas. In Pro-
ceedings of the 2013 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
74–84.

Adam Roberts, Colin Raffel, and Noam Shazeer. 2020.
How much knowledge can you pack into the pa-
rameters of a language model? arXiv preprint
arXiv:2002.08910.

Haitian Sun, Andrew O Arnold, Tania Bedrax-Weiss,
Fernando Pereira, and William W Cohen. 2020.
Guessing what’s plausible but remembering what’s
true: Accurate neural reasoning for question-
answering. Advances in neural information process-
ing systems.

Haitian Sun, Tania Bedrax-Weiss, and William Cohen.
2019. Pullnet: Open domain question answering
with iterative retrieval on knowledge bases and text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2380–
2390.

Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn
Mazaitis, Ruslan Salakhutdinov, and William Cohen.
2018. Open domain question answering using early
fusion of knowledge bases and text. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 4231–4242.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
Bert rediscovers the classical nlp pipeline. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4593–
4601.

Théo Trouillon, Christopher R Dance, Éric Gaussier,
Johannes Welbl, Sebastian Riedel, and Guillaume
Bouchard. 2017. Knowledge graph completion via
complex tensor factorization. The Journal of Ma-
chine Learning Research, 18(1):4735–4772.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Patrick Verga, David Belanger, Emma Strubell, Ben-
jamin Roth, and Andrew McCallum. 2016. Multilin-
gual relation extraction using compositional univer-
sal schema. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 886–896.

Patrick Verga, Arvind Neelakantan, and Andrew Mc-
Callum. 2017. Generalizing to unseen entities and
entity pairs with row-less universal schema. In Pro-
ceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 1, Long Papers, pages 613–622.

Denny Vrandečić and Markus Krötzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Commu-
nications of the ACM, 57(10):78–85.

Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei,
Xuanjing Huang, Cuihong Cao, Daxin Jiang, Ming
Zhou, et al. 2020a. K-adapter: Infusing knowl-
edge into pre-trained models with adapters. arXiv
preprint arXiv:2002.01808.

Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei, Xu-
anjing Huang, Jianshu ji, Guihong Cao, Daxin Jiang,
and Ming Zhou. 2020b. K-adapter: Infusing knowl-
edge into pre-trained models with adapters.

Dirk Weissenborn, Tomáš Kočiskỳ, and Chris Dyer.
2017. Dynamic integration of background knowl-
edge in neural nlu systems.

Jason Weston, Sumit Chopra, and Antoine Bor-
des. 2014. Memory networks. arXiv preprint
arXiv:1410.3916.

Wenhan Xiong, Jingfei Du, William Yang Wang, and
Veselin Stoyanov. 2019. Pretrained encyclopedia:
Weakly supervised knowledge-pretrained language
model. arXiv preprint arXiv:1912.09637.

Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and
Jianfeng Gao. 2015. Semantic parsing via staged
query graph generation: Question answering with
knowledge base. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 1321–1331, Beijing, China. Associa-
tion for Computational Linguistics.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,
Maosong Sun, and Qun Liu. 2019. Ernie: En-
hanced language representation with informative en-
tities. Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Ryan Cot-
terell, Vicente Ordonez, and Kai-Wei Chang. 2019.
Gender bias in contextualized word embeddings. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 629–634,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

http://arxiv.org/abs/2002.01808
http://arxiv.org/abs/2002.01808
http://www.aclweb.org/anthology/P15-1128
http://www.aclweb.org/anthology/P15-1128
http://www.aclweb.org/anthology/P15-1128
https://doi.org/10.18653/v1/p19-1139
https://doi.org/10.18653/v1/p19-1139
https://doi.org/10.18653/v1/p19-1139
https://doi.org/10.18653/v1/N19-1064

3690

A Appendix

A.1 Data

A.1.1 Evaluation Data Statistics
For WebQuestionsSP, we mapped question entities
and answer entities to their Wikidata ids. 87.9%
of the questions are answerable by at least one an-
swer entity that is mappable to Wikidata. For all
questions in FreebaseQA there exists at least one
relational path in Freebase between the question en-
tity ei and the answer eans. The path must be either
a one-hop path, or a two-hop path passing through
a mediator (CVT) node, and is verified by human
raters. 72% of the question entities and 80% of
the answer entities are mappable to Wikidata, and
91.7% of the questions are answerable by at least
one answer entity that is mappable to Wikidata.

Full Wikidata
Dataset Answerable

Train 20358 12535
FreebaseQA Dev 3994 2464

Test 3996 2440

Train 2798 1388
WebQuestionsSP Dev 300 153

Test 1639 841

Table 7: Dataset stats. Number of examples in train,
dev, and test splits for our three different experimental
setups. Full are the original unaltered datasets. Wiki-
data Answerable keeps only examples where at least
one question entity and answer entity are mappable to
Wikidata and there is at least one fact between them in
our set of facts.

A.1.2 Pretraining Data Details
FILM is pretrained on Wikipedia and Wikidata us-
ing the same data from Févry et al. (2020). Text
in Wikipedia is chunked into 128 token pieces. To
compute the entity-linking loss lossent, we use as
training data entities linked to the 1 million most
frequently linked-to Wikidata entities. Text pieces
without such entities are dropped. This results in
30.58 million text pieces from Wikipedia. As de-
scribed in §2.1, we generate n training examples
from a piece of text containing n entity mentions,
where each mention serves as the masked target for
its corresponding example, and other entity men-
tions in the example are treated as context enti-
ties10. This conversion results in 85.58 million

10We mask context entities randomly with probability .15

pre-training examples. The knowledge base K is a
subset of Wikidata that contains all facts with sub-
ject and object entity pairs that co-occur at least 10
times on Wikipedia pages.11 This results in a KB
containing 1.54 million KB triples from Wikidata
(or 3.08 million if reverse triples are included). Be-
low, this is called the full setting of pretraining—we
will also train on subsets of this example set, as de-
scribed below. We pretrain the model for 500,000
steps with the batch size 2048, and we set k = 112

in the TOPk operation for fact memory access.

A.2 Training Details

A.2.1 Pretraining
FILM is jointly trained to predict context entities
and the masked entity. Context entities are pre-
dicted using the contextual embeddings described
in §2.3; intermediate supervision with oracle en-
tity linking labels is provided in the entity memory
access step for context entities; the masked entity
is predicted using the knowledge-enhanced con-
textual embeddings (§2.5); and distant supervised
fact labels are also provided at training time. The
final training loss is the unweighted sum of the four
losses:

losspretrain = lossent + lossctx + lossfact + lossans

A.2.2 Finetuning on Question Answering
In the Open-domain Question Answering task,
questions are posed in natural language, e.g.
“Where was Charles Darwin born?”, and answered
by a sequence of tokens, e.g. “United Kingdom”.
In this paper, we focus on a subset of open-domain
questions that are answerable using entities from a
knowledge base. In the example above, the answer
“United Kingdom” is an entity in Wikidata whose
identity is Q145.

We convert an open-domain question to an input
of FILM by appending the special [MASK] token
to the end of the question, e.g. {‘Where’, ‘was’,
‘Charles’, ‘Darwin’, ‘born’, ‘?’, [MASK]}. The
task is to predict the entity named by mask. Here,
“Charles Darwin” is a context entity, which is also
referred to as question entity in the finetuning QA
task.

At finetuning time, entity embeddings E and re-
lation embeddings R are fixed, and we finetune

11This leads to more KB triples than entity pairs, since a
pair of entities can be connected by more than one relation.

12We experimented with other values of k during fine tuning
and evaluation but did not observe significant differences.

3691

all transformer layers and the four transformation
matrices: Wa, Wb, We, Wf . Parameters are tuned
to optimize unweighted sum of the the fact memory
retrieval loss lossfact and the final answer predic-
tion loss lossans. If multiple answers are available,
the training label Ieans becomes a k-hot vector uni-
formly normalized across the answers.

lossfinetune = lossfact + lossans

A.3 Model Parameters
The number of Base parameters includes the en-
coder and (where applicable) decoder transformer
parameters derived from the original papers. We
exclude token embeddings in this count following
prior work. The Memory parameter count for DPR,
RAG, and FID includes the number of parameters
required to cache and index the full 26 million pas-
sage wikipedia corpus with dimension 768 used by
those models. For EaE, the Memory is for the entity
embedding matrix. For FILM it is both the entity
embedding matrix and the cached fact embedding
matrix comprised of the 1.7 million precomputed
triple embeddings.

