
Proceedings of NAACL-HLT 2021: Demonstrations, pages 125–132
June 6–11, 2021. ©2021 Association for Computational Linguistics

125

Alexa Conversations: An Extensible Data-driven Approach for Building
Task-oriented Dialogue Systems

Anish Acharya∗, Suranjit Adhikari, Sanchit Agarwal, Vincent Auvray, Nehal Belgamwar,
Arijit Biswas, Shubhra Chandra, Tagyoung Chung, Maryam Fazel-Zarandi, Raefer Gabriel,

Shuyang Gao, Rahul Goel∗, Dilek Hakkani-Tur, Jan Jezabek, Abhay Jha, Jiun-Yu Kao,
Prakash Krishnan, Peter Ku, Anuj Goyal, Chien-Wei Lin, Qing Liu, Arindam Mandal,
Angeliki Metallinou, Vishal Naik, Yi Pan, Shachi Paul∗, Vittorio Perera, Abhishek Sethi∗,

Minmin Shen, Nikko Strom and Eddie Wang
Amazon Alexa AI, Sunnyvale, California, USA†

Abstract

Traditional goal-oriented dialogue systems
rely on various components such as natural
language understanding, dialogue state track-
ing, policy learning and response generation.
Training each component requires annotations
which are hard to obtain for every new domain,
limiting scalability of such systems. Similarly,
rule-based dialogue systems require extensive
writing and maintenance of rules and do not
scale either. End-to-End dialogue systems, on
the other hand, do not require module-specific
annotations but need a large amount of data for
training. To overcome these problems, in this
demo, we present Alexa Conversations1, a new
approach for building goal-oriented dialogue
systems that is scalable, extensible as well as
data efficient. The components of this system
are trained in a data-driven manner, but instead
of collecting annotated conversations for train-
ing, we generate them using a novel dialogue
simulator based on a few seed dialogues and
specifications of APIs and entities provided
by the developer. Our approach provides out-
of-the-box support for natural conversational
phenomena like entity sharing across turns or
users changing their mind during conversation
without requiring developers to provide any
such dialogue flows. We exemplify our ap-
proach using a simple pizza ordering task and
showcase its value in reducing the developer
burden for creating a robust experience. Fi-
nally, we evaluate our system using a typical
movie ticket booking task and show that the
dialogue simulator is an essential component
of the system that leads to over 50% improve-
ment in turn-level action signature prediction
accuracy.

1 Introduction

Goal-oriented dialogue systems enable users to
complete specific goals such as making restau-

∗Work done while at Amazon
†Authors are ordered alphabetically

1https://tinyurl.com/y3lowd34

rant reservations and buying train tickets. User
goals may be complex and may require multiple
turns to achieve. Moreover, users can refer to
contextual values anaphorically, can correct pre-
viously informed preferences and provide addi-
tional or fewer entities (over-cooperative or under-
cooperative user) than requested by the agent. This
presents challenges for building robust dialogue
agents that need to understand different kinds of
user behavior, gather user requirements split over
multiple turns and complete user goals with min-
imal friction. There is also limited availability of
dialogue datasets and they span only a handful of
application domains. Designing suitable data col-
lection for dialogue systems is itself a research
area.

Traditional dialogue systems follow a pipelined
approach that ties together machine learning com-
ponents for natural language understanding (NLU),
dialogue state (belief) tracking, optimal action pre-
diction (policy learning), and natural language gen-
eration (Young, 2000). Advances in deep learning
techniques have led to the development of more
end-to-end neural dialogue systems that combine
some or all of the components of the traditional
pipeline reducing the need for component-wise
annotations and allowing for intermediate repre-
sentations to be learned and optimized end-to-end
(Wen et al., 2017; Liu et al., 2017). On the data side,
notable data collection approaches for dialogue sys-
tems include the Wizard-of-Oz (WOZ) framework
(Asri et al., 2017), rule-based or data-driven user
simulators (Pietquin, 2005; Cuayáhuitl et al., 2005;
Pietquin and Dutoit, 2006; Schatzmann et al., 2007;
Fazel-Zarandi et al., 2017; Gur et al., 2018), and the
recently-proposed Machines-Talking-To-Machines
(M2M) framework (Shah et al., 2018) where user
and system simulators interact with each other to
generate dialogue outlines.

In this demo, we present Alexa Conversations,
a novel system that enables developers to build ro-

https://tinyurl.com/y3lowd34

126

bust goal-oriented dialogue experiences with min-
imal effort. Our approach is example-driven as it
learns from a small number of developer-provided
seed dialogues and does not require encoding di-
alogue flows as rigid rules. Our system contains
two core components: a dialogue simulator that
generalizes input examples provided by the devel-
oper and a neural dialogue system that directly
predicts the next optimal action given the conver-
sation history. The dialogue simulator component
extends the M2M framework (Shah et al., 2018)
in two main directions. First, instead of gener-
ating user goals randomly, we use various goal
sampling techniques biased towards the goals ob-
served in the seed dialogues in order to support
variations of those dialogues robustly. Second, in
M2M, the system agent is geared towards database
querying applications where the user browses a cat-
alogue, selects an item and completes a transaction.
In contrast, our formulation does not require any
knowledge of the purpose of the APIs provided by
the developer. Moreover, our system can generate
a richer set of dialogue patterns including com-
plex goals, proactive recommendations and users
correcting earlier provided entities. The proposed
neural dialogue model component follows an end-
to-end systems approach and bears some similari-
ties with Hybrid Code Networks (HCN) (Williams
et al., 2017). However, compared to HCN, our
system is more generic in the sense that it directly
predicts the full API signature that contains the
API name, values of the required API arguments,
relevant optional API arguments and their values.
The model chooses the API argument values to fill
from user mentioned, agent mentioned and API re-
turned entities present in the full dialogue context
that includes the current user utterance.

We showcase the significance of our approach
in reducing developer burden using the example of
a pizza ordering skill. Compared to a rule-based
system where a developer would have to code hun-
dreds of dialogue paths to build a robust experience
even for such a simple skill, Alexa Conversations
requires only a handful of seed dialogues. To eval-
uate our approach, we build a movie ticket booking
experience. On a test set collected via Wizard-
of-Oz (WOZ) framework (Asri et al., 2017), we
quantify the impact of our novel dialogue simula-
tion approach showing that it leads to over 50%
improvement in action signature prediction accu-
racy.

A: nlg: welcome()
U: “how long is [la la land | Movie→ mt1]”
A: call: GetDuration(movieTitle=$mt1)→ d1
A: nlg: inform_movie_duration(

duration=$d1, movieTitle=$mt1)
U: “who stars in it” //anaphoric reference
A: call: GetCast(movieTitle=$mt1)→ gcr1
A: nlg: inform_movie_cast(

cast=$gcr1, movieTitle=$mt)
...

U: “exit”
A: nlg: stop()

Table 1: A seed dialogue with DML annotations. Note
that variables are carried over to resolve anaphoric ref-
erences.

Template Name Template Text

inform_movie_duration “$movieTitle is $duration long”
inform_movie_cast “$cast.name was in $movieTitle”
offer_recommend_movie “Would you like a $genre movie?”

Table 2: Developer-provided system NLG responses

2 System Overview

In Alexa Conversations, we follow a data-driven
approach where the developer provides seed dia-
logues covering the main use cases they want to
support, and annotates them in a Dialogue Markup
Language (DML). Table 1 shows an example of an
annotated conversation. Developers are required
to provide their domain-specific APIs and custom
Natural Language Generation (NLG) responses for
interacting with the user, e.g., for informing an API
output response or for requesting an API input argu-
ment as shown in Table 2. These APIs and system
NLG responses, with their input arguments and
output values, define the domain-specific schema
of entities and actions that the dialogue system will
predict. Developers also provide example user-
utterances (as templates with entity-value place-
holders) which the users may use to invoke certain
APIs or to inform slot values.

To handle the wide variation of conversations a
user can have with the dialogue system, Alexa Con-
versations augments the developer provided seed
dialogues through a simulator. This component
takes the annotated seed dialogues as input, and
simulates different dialogue flows that achieve the
same user goals but also include common patterns
such as when a user confirms, changes, or repeats
an entity or action. Optionally, it uses crowdsourc-
ing through Amazon Mechanical Turk (MTurk) to
enrich the natural language variations of user ut-
terances provided by the developer. Overall, the

127

Figure 1: High-level overview of an input utterance’s
path

developer provides on the order of 10 seed dia-
logues and the simulator generates on the order
of 10K training dialogues with flow and language
variations.

Alexa Conversations consists of three main
domain-specific modeling components: 1) a
Named-Entity Recognition (NER) model that tags
entities in the user utterance (e.g., “La La Land”
as a MovieTitle), 2) an Action Prediction (AP)
model that predicts which API or NLG response
should be executed next (e.g., GetDuration or in-
form_movie_duration), and 3) an Argument Fill-
ing (AF) model that fills required (and possibly
optional) action arguments with entities (e.g., Get-
Duration(MovieTitle=“La La Land”)). We use the
entire dialogue history, i.e., user utterances, system
actions and responses, and API return values, as
input for all modeling components. In this sense,
this dialogue history is used as a generalized state
representation from which models can retrieve rel-
evant information. An overview of the runtime
flow of a dialogue is illustrated in Figure 1. Each
user utterance initiates a turn and is followed by
NER, after which one or more actions are predicted.
These actions could be either an API or NLG call,
or a special action indicating the end of a turn or
the end of dialogue. Every new action prediction
updates the dialogue history and therefore influ-
ences future action predictions. For each API/NLG
call the AF model is called to fill in the required ar-
guments. When <end of turn> is predicted,
the system waits for new user input. When <end
of dialogue> is predicted, the system ends
the interaction.

3 Dialogue Simulation

We propose a novel component called simulator to
generate diverse but consistent dialogues, which
can be used to train robust goal-oriented neural di-
alogue systems. We presented the simulator details

Goal Sampler API Simulator

User Agent System Agent

User NLG System NLG

user goal API
value

API +
arguments

dialog acts utterance utterancetemplate
id

dialog acts +
utterance

actions +
utterance

Figure 2: Simulator Architecture

in (Lin et al., 2020) and briefly provide an overview
of the overall system here. A high-level simulator
architecture is illustrated in Figure 2.

The simulator is structured in two distinct agents
that interact turn-by-turn: the user and the system.
The user samples a fixed goal at the beginning of
the conversation. We propose novel goal-sampling
techniques (Lin et al., 2020) to simulate variation
in dialogue flows. The agents communicate at the
semantic level through dialogue acts. Having the
exact information associated with each turn allows
us to define a simple heuristic system policy, whose
output can be used as supervised training labels to
bootstrap models. We note that the user policy
is also heuristic-based. In each conversation, the
user agent gradually reveals its goal and the system
agent fulfills it by calling APIs. The system agent
simulates each API call by randomly sampling a
return value without actually calling the API and
chooses an appropriate response action. Depending
on the returned API value, the chosen response is
associated with dialogue acts. The system agent
gradually constructs an estimate of the user goal
and makes proactive offers based on this estimated
goal. The dialogue acts generated through self-play
are also used to interface between agents and their
template-based NLG model. After sampling the
dialogue acts from their policy, each agent samples
the surface-form from available templates corre-
sponding to the dialogue acts. In addition to en-
riching the dialogue flows; we use crowd-sourcing
through MTurk to enrich the natural language vari-
ations of the user utterance templates. Goal sam-
pling and the self-play loop provide dialogue flow
variations while crowd-sourcing enriches language
variations, both of which are essential for training
robust conversational models.

We introduce additional variations to dialogues
during simulation for more natural conversation

128

Figure 3: An example of a dialogue context encoder.
Different downstream models use slightly different sub-
sets of these features as input.

generation. In goal-oriented conversations, users
often change their mind during the course of the
conversation. For example, while booking a movie
ticket a user may decide to purchase three adult
tickets but could eventually change their mind to
book only two tickets. We used additional heuris-
tics to introduce such variations to conversations
without any additional input requirements from
the developer. Another important non-task-specific
conversational behavior is the system’s ability to
suggest an appropriate next action based on the
conversation history, without requiring invocation
by a specific user utterance. We introduce proactive
offers in the system policy of the simulator to facil-
itate exploration of the available API functionality
in a manner consistent with human conversation.

4 Models

For each domain, we have three separate models:
NER, Action Prediction (AP) and Argument Fill-
ing (AF), all of which depend on features extracted
from conversation history and encoded using Dia-
logue Context Encoders.

4.1 Dialogue Context Encoders
Given a dialogue, we first apply fea-
ture extractors to extract both turn-level,
e.g. current_user_utterance and
current_entities (recognized by the
NER model), and dialogue-level features, e.g.
past_user_utterances, past_actions
and past_entities. We pass these extracted
features through feature-specific encoders and
concatenate the feature representations to obtain
the final representation for dialogue context. For
encoding turn-level features and dialogue-level
features, we use single LSTM and hierarchical

LSTM architectures, respectively. For example, for
encoding past_user_utterances, we use a
hierarchical LSTM, where we encode the sequence
of words with an inner LSTM and the sequence of
turns with an outer LSTM. For past_actions,
a single LSTM is sufficient. Figure 3 shows an
example of our dialogue context encoders. We
augment the context encoders with word and
sentence embedding vectors from pre-trained
language models (Peters et al., 2018; Devlin et al.,
2018).

4.2 NER
The NER model is used to extract domain-specific
entities from user utterances, which are then con-
sumed by downstream models. Our NER model
is based on bi-LSTM-CRF (Ma and Hovy, 2016)
model. To incorporate dialogue history, we con-
catenate the encoded dialogue context to the word
embedding of each token and use it as the input to
our model. To improve NER performance on en-
tities with large and dynamic possible values (e.g.
movie titles, restaurant names), we also incorporate
catalogue-based features based on domain-specific
catalogues of entity values provided by the devel-
oper and values returned by APIs. Specifically,
catalogue features are computed by scanning the ut-
terance with consecutive windows of size n tokens
and detecting any exact matches of the current win-
dow with the catalogue entries. For a domain with
K domain-specific catalogues, the binary feature
will be of dimension K, where value 1 indicates
an exact match in the catalogue. This approach
is inspired by (Williams, 2019), which proposed a
generic NER approach but not specific to conversa-
tional systems.

4.3 Action Prediction (AP)
The goal of the Action Prediction model is to pre-
dict the next action the agent should take, given
the dialogue history. As illustrated in Figure 1,
an action could be an API name (e.g. GetDu-
ration), a system NLG response name (e.g. in-
form_movie_duration) or a general system action
(e.g. <end of turn>). The model takes the
dialogue context encoding, as described in Sec-
tion 4.1 and passes it through linear and soft-
max layers to output a distribution over all ac-
tions within the domain. Our system selects n-
best action hypotheses using a simple binning strat-
egy. We reject actions in the low confidence bins
and if there is no actions available in the high-

129

Figure 4: Argument filling model architecture

confidence bin, we randomly sample an action from
the medium-confidence bin.

4.4 Argument Filling (AF)

The role of the Argument Filling model is to fill
the arguments given a particular action and the di-
alogue history. We formulate the argument filling
task as a variation of neural reading comprehen-
sion (Chen, 2018) where we treat the dialogue his-
tory as a passage to comprehend and ask machine
the question "what is the argument value of a par-
ticular action?". Specifically, for each argument
of an action and each entity mention detected by
NER, our model predicts whether to use that entity
mention to fill that argument. We do this by encod-
ing all the entities in the dialogue history and use
a pointer mechanism to point to the entity position
given a particular action and argument combina-
tion. The overall architecture for argument filling
is shown in Figure 4. Note that a similar method to
dialogue state tracking has been proposed by (Gao
et al., 2019). We impose constraints to only fill ar-
guments with entities of the correct type according
to the action schema provided by the developer. For
example, we only consider Time entity mentions to
fill arguments that accept Time type. Finally, we
combine the argument filling result with the action
prediction result to execute the next system action.
API arguments can also be optional. For these
type of arguments, we create special optional
token and insert in the dialogue context and train
the model to point to that token when an optional
API argument should not be filled.

5 Case Study 1: Pizzabot

To showcase how Alexa Conversations improves
the skill-building experience of a typical developer,
we discuss Pizzabot, a pizza ordering skill. Pizz-
abot is provided as one of the template Alexa Con-

versations skills to help bootstrap a new developer.
It allows a user to order a pizza of various sizes,
with different kinds of crusts and their choice of any
number of toppings. The skill has just one main
API OrderPizza with four slots types: toppingsList,
crust, cheese and size. Even with this simple skill,
ordering a two topping pizza with a choice of say
10 toppings, 5 crusts and 5 cheese in 4 different
sizes results in over hundreds of different possible
dialogue paths. With a typical rule-based dialogue
manager, a developer would need to code most, if
not all, of these flows for building a robust experi-
ence. On the other hand, with Alexa Conversations,
a Pizzabot developer needs to provide just 7 exam-
ple dialogues to support a total of 3 APIs and 6
entity types. The different variations are automati-
cally generated by the proposed simulator and are
consumed by the models, resulting in a robust skill
with significantly lower developer effort. Alexa
Conversations also provides out-of-the-box support
for features like context carryover, entity confirma-
tion, user correction, over/under-cooperative user,
and multi-value slots without requiring the devel-
oper to write custom rules or logic, making the skill
more robust to real user interactions. See Table 3
for an example interaction with Pizzabot.

U: I want to order a large pizza
A: You wanted a large pizza, is that correct?
(entity confirmation)
U: actually make it small (user correction)
A: You wanted a small pizza, is that correct?
U: yes
A: What would you like on your pizza?
U: olives tomatoes and green peppers with thin
crust and extra cheese (multi-value slots, over-
cooperative user)
A: So far I have a small olives, tomatoes, green
peppers pizza on thin crust with extra cheese. Is
that correct? (context carryover)
U: yes
A: Great! I placed your order for a total of $5.99.

Table 3: A seed conversation with Pizzabot

6 Case Study 2: Ticketbot

To showcase the end-customer impact of Alexa
Conversations, we built a movie ticket-booking ex-
perience which we call Ticketbot. Ticketbot allows
a user to browse and book movie tickets. Users can
browse currently playing movies by various search

130

criteria like date, time, location, theater and movie
title. They can specify one or more search crite-
ria either within a single turn or across multiple
turns. After finding their choice of movie and the-
ater, users can select a particular showtime, provide
booking details like number of tickets and finally
confirm booking. The experience was built based
on the information provided by the developer. This
is a complex experience with 10 APIs, 28 entity
types, 10 NLG responses and 35 seed dialogues all
provided as an input to the system. This experi-
ence was implemented using live APIs that were
provided by the developers and thus the users were
able to actually achieve their goals and complete
ticket-booking transactions.

6.1 Evaluation

To evaluate our models, we collected data using a
Wizard-of-Oz (WOZ) framework (Asri et al., 2017).
These collected dialogues were then annotated by a
team of professional annotators using the Dialogue
Markup Language. Annotators tagged entities, API
and NLG calls and unsupported requests. This is a
challenging task and we adopted various methods
like inter-annotator agreement and random vetting
to ensure high data annotation quality. The test set
contained 50 dialogues with an average length of
5.74 turns.

We measure the F1 scores for spans of entities
to evaluate NER performance. We also measure
the accuracy for action prediction (AP) and full
action signature prediction (ASP). The latter met-
ric reflects the performance of both the AP and AF
models combined: an action signature is counted as
correct when both the action and all the correspond-
ing arguments are predicted correctly. We compute
these metrics per turn given fixed dialogue context
from previous turns, where a turn can contain one
user action and multiple agent actions (multiple api
calls, nlg call, wait for user action). Turn-level ASP
accuracy most closely reflects the user experience
when interacting with the skill. Overall, the system
has reasonably high turn-level action signature pre-
diction accuracy, with relatively few failures. We
discuss some common failure patterns in 6.2.

We evaluate the proposed dialogue simulation
method to establish the impact of this novel compo-
nent. To do so, we train models with data generated
using different simulation approaches and compare
their performance on the test set. The baseline
approach, Base sampler from (Lin et al., 2020),

NER Span AP Relative ASP Relative
Relative F1 Accuracy Accuracy

+18.50% +20.92% +52.80%

Table 4: Relative NER span F1-score, AP accuracy and
ASP accuracy on Ticket Booking (TB) test set, aver-
aged over 5 runs.

simply resamples dialogues that are identical in
logical structure to the seed dialogues. It gener-
ates no new dialogue flows but does add language
variations via sampling from developer-provided
catalogs and user utterance templates. We observe
that models trained on data generated with Sec. 3
significantly outperform the models trained on data
generated with baseline as shown in Table 4.

6.2 Error Analysis

We conduct an error analysis of our models on the
TicketBot test set to investigate performance across
different tasks. We showcase a few common error
patterns in this section.

6.2.1 NER
We notice that NER model struggles to make cor-
rect predictions when the slot value is out of the
catalogue vocabulary. As we use fixed slot cata-
logues during dialogue simulation, it is a difficult
task for NER to generalize when real API calls
return unseen values. We see that using dynamic
catalogue feature significantly improves NER per-
formance, particularly for Movie slot. Dynamic
catalogues store entities mentioned in system’s re-
sponses and thus dynamic catalogue feature pro-
vides a strong signal to NER when the user later
mentions one of those entities. In addition to exact
match, the feature also fires for fuzzy matches lead-
ing to higher recall without significant drop in pre-
cision. Note that, NER model is not run on system
utterances; the entities are tagged by the developer
in the response NLG templates. Table 5 shows one
example in which “A Star Is Born” is not recog-
nized as Movie without this feature. Overall, by
adding dynamic catalogue feature, NER improves
by +11.26% on the Movie slot.

6.2.2 ASP
We find that Argument Filling Model makes mis-
takes when deciding whether or not to carryover a
particular argument. In most such failures, either
behavior (carryover or not carryover) is logically
correct. However, the user might have a specific be-

131

U: give me [sunday | Date] showtimes
A: I found [A Star Is Born | Movie] playing at
. . . (mentioned movie)
U: is [captain marvel | Movie] playing [sunday |
Date]
A: I found showtimes for [Captain Marvel |
Movie] at ...
U: is it playing anywhere else
A: Sorry, I could not find any matching show-
times
U: huh ok what are the showtimes for a star is
born again
...

Table 5: A partial dialogue from Ticketbot test set
showing NER mistake

havior in mind, while the model chooses the other
path. For example, in Table 6, AF model carryovers
theater and date information, while the particular
user wanted to know showtimes at all nearby the-
aters. As evident, this case is ambiguous as both
carrying over and not carrying over the theater and
date arguments is reasonable. To define the correct
carryover behavior, we advise application devel-
opers to provide a few examples demonstrating
the carryover behavior for each of their use cases.
These examples then bias the dialogue simulator to
generate data with the desired carryover behavior.

U: What is playing at Century Cinemas tomor-
row?
A: call: FindMovies(theater="Century Cine-
mas", date="tomorrow") -> show0
A: Cold Pursuit is playing at Century Cinemas
16 at 8 PM tomorrow
U: What are the showtimes for Joker?
A: call: FindMovies(movie="Joker", the-
ater="Century Cinemas", date="tomorrow") ->
show1
...

Table 6: A partial dialogue from Ticketbot test set
showing argument carryover mistake

7 Conclusions

We presented Alexa Conversations, a novel data-
driven and data-efficient approach for building
goal-oriented conversational experiences. Our pro-
posed system significantly reduces developer bur-

den while still allowing them to build robust expe-
riences. We envision that this system will be used
by a wide variety of developers who only need to
provide seed dialogues and action schema to build
conversational experiences1.

We expect our system to mature in the follow-
ing directions in future. We aim to reduce devel-
oper requirements for providing NLG responses
by introducing a statistical NLG system. We will
also develop robust mechanisms for incorporating
developer feedback through supervised and semi-
supervised methods to improve the performance of
our simulator and modeling components.

References
Layla El Asri, Hannes Schulz, Shikhar Sharma,

Jeremie Zumer, Justin Harris, Emery Fine, Rahul
Mehrotra, and Kaheer Suleman. 2017. Frames: A
corpus for adding memory to goal-oriented dialogue
systems. arXiv preprint arXiv:1704.00057.

Danqi Chen. 2018. Neural Reading Comprehension
and Beyond. Ph.D. thesis, Stanford University.

Heriberto Cuayáhuitl, Steve Renals, Oliver Lemon, and
Hiroshi Shimodaira. 2005. Human-computer dia-
logue simulation using hidden markov models. In
IEEE Workshop on Automatic Speech Recognition
and Understanding, 2005., pages 290–295. IEEE.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Maryam Fazel-Zarandi, Shang-Wen Li, Jin Cao, Jared
Casale, Peter Henderson, David Whitney, and Al-
borz Geramifard. 2017. Learning robust dialog poli-
cies in noisy environments. 1st Workshop on Con-
versational AI at NIPS.

Shuyang Gao, Abhishek Sethi, Sanchit Aggarwal,
Tagyoung Chung, and Dilek Hakkani-Tur. 2019. Di-
alog state tracking: A neural reading comprehension
approach. Proceedings of the 20th Annual SIGdial
Meeting on Discourse and Dialogue (SIGDIAL).

Izzeddin Gur, Dilek Zeynep Hakkani, Gökhan Tür, and
Pararth Shah. 2018. User modeling for task oriented
dialogues. 2018 IEEE Spoken Language Technology
Workshop (SLT), pages 900–906.

Chien-Wei Lin, Vincent Auvray, Daniel Elkind, Arijit
Biswas, Maryam Fazel-Zarandi, Nehal Belgamwar,
Shubhra Chandra, Matt Zhao, Angeliki Metallinou,

1iRobot (https://tinyurl.com/y5pjp3xn),
BigSky (https://tinyurl.com/y2ejvd3z) and Art
Museum (https://tinyurl.com/y3umpqo2) are
some of the external skills that have already been built using
Alexa Conversations

https://tinyurl.com/y5pjp3xn
https://tinyurl.com/y2ejvd3z
https://tinyurl.com/y3umpqo2

132

Tagyoung Chung, et al. 2020. Dialog simulation
with realistic variations for training goal-oriented
conversational systems. 1st Workshop on Human in
the Loop Dialogue Systems at Neurips.

Bing Liu, Gokhan Tur, Dilek Hakkani-Tur, Pararth
Shah, and Larry Heck. 2017. End-to-end optimiza-
tion of task-oriented dialogue model with deep rein-
forcement learning. arXiv:1711.10712.

X. Ma and E. Hovy. 2016. End-to-end sequence label-
ing via bi-directional lstm-cnns-crf. In Proc. of the
54th Annual Meeting of the ACL (ACL) 2016.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. arXiv preprint arXiv:1802.05365.

Olivier Pietquin. 2005. A framework for unsupervised
learning of dialogue strategies. Presses univ. de
Louvain.

Olivier Pietquin and Thierry Dutoit. 2006. A prob-
abilistic framework for dialog simulation and opti-
mal strategy learning. IEEE Transactions on Audio,
Speech, and Language Processing, 14(2):589–599.

Jost Schatzmann, Blaise Thomson, Karl Weilhammer,
Hui Ye, and Steve Young. 2007. Agenda-based user
simulation for bootstrapping a pomdp dialogue sys-
tem. In Human Language Technologies 2007: The
Conference of the North American Chapter of the As-
sociation for Computational Linguistics; Compan-
ion Volume, Short Papers, pages 149–152. Associ-
ation for Computational Linguistics.

Pararth Shah, Dilek Hakkani-Tür, Gokhan Tür, Ab-
hinav Rastogi, Ankur Bapna, Neha Nayak, and
Larry Heck. 2018. Building a Conversational Agent
Overnight with Dialogue Self-Play. (i).

Tsung Hsien Wen, David Vandyke, Nikola Mrkšíc, Mil-
ica Gašíc, Lina M. Rojas-Barahona, Pei Hao Su, Ste-
fan Ultes, and Steve Young. 2017. A network-based
end-to-end trainable task-oriented dialogue system.
15th Conference of the European Chapter of the
Association for Computational Linguistics, EACL
2017 - Proceedings of Conference, 1:438–449.

Jason D Williams, Kavosh Asadi, and Geoffrey
Zweig. 2017. Hybrid code networks: practical
and efficient end-to-end dialog control with super-
vised and reinforcement learning. arXiv preprint
arXiv:1702.03274.

Kyle Williams. 2019. Neural lexicons for slot tagging
in spoken language understanding. In 2019 Annual
Conference of the North American Chapter of the
Association for Computational Linguistics (NAACL
’19).

Steve J Young. 2000. Probabilistic methods in
spoken–dialogue systems. Philosophical Transac-
tions of the Royal Society of London. Series A:
Mathematical, Physical and Engineering Sciences,
358(1769):1389–1402.

http://arxiv.org/abs/1801.04871
http://arxiv.org/abs/1801.04871
http://arxiv.org/abs/arXiv:1604.04562v3
http://arxiv.org/abs/arXiv:1604.04562v3

