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Abstract

In image captioning, multiple captions are of-
ten provided as ground truths, since a valid
caption is not always uniquely determined.
Conventional methods randomly select a sin-
gle caption and treat it as correct, but there
have been few effective training methods that
utilize multiple given captions. In this paper,
we propose two training techniques for making
effective use of multiple reference captions:
1) validity-based caption sampling (VBCS),
which prioritizes the use of captions that are
estimated to be highly valid during training,
and 2) weighted caption smoothing (WCS),
which applies smoothing only to the relevant
words the reference caption to reflect multi-
ple reference captions simultaneously. Exper-
iments show that our proposed methods im-
prove CIDEr by 2.6 points and BLEU4 by 0.9
points from baseline on the MSCOCO dataset.

1 Introduction

Image captioning is a very challenging task that
requires recognizing and understanding the objects
in the image and then verbalizing the recognition
results using natural language. This task is ex-
pected to have a wide range of practical applica-
tions, including use in text-based image retrieval
systems and providing assistance for the visually
impaired (Lin et al., 2014; Gurari et al., 2020).
With the development of the field of deep learn-
ing, research in the area has primarily focused on
the end-to-end method, which consists of an en-
coder that extracts information from images and a
decoder that generates a description from the ex-
tracted information (Karpathy and Fei-Fei, 2015;
Vinyals et al., 2015; Xu et al., 2015; Lu et al., 2017).
For example, some of the recent models use pre-
trained object detection models (Ren et al., 2015;
Liu et al., 2016; Anderson et al., 2018) and self-
attention mechanisms (Huang et al., 2019; Cornia
et al., 2020) for encoders or decoders.

Image captioning is often a multi-reference task
where multiple reference captions are used for train-
ing. MSCOCO (Lin et al., 2014), one of the most
famous datasets of image captions, has about five
reference captions for each image. Some of these
reference captions are subject to uncertainty due
to speculation, and may differ in subject matter
and wording. Such label variance may affect the
training of the model and the evaluation of the gen-
erated captions. In typical training for conventional
models, one caption is randomly selected by uni-
form sampling at each training epoch, which means
the validity and variance of reference captions are
not considered. In addition, reference captions that
were not selected in the training epoch are treated
as incorrect. To address this problem, Yi et al.
(2020) proposed a new metric that correlates well
with human evaluation by taking into account the
variance of captions. However, to the best of our
knowledge, appropriate training methods that con-
sider such variation in captions have not yet been
sufficiently studied.

In this paper, we propose a simple and effec-
tive training method that uses multiple reference
captions to generate appropriate captions. The pro-
posed training method consists of two techniques:
validity-based caption sampling (VBCS), which se-
lects highly valid reference captions, and weighted
caption smoothing (WCS), which reflects multi-
ple reference captions simultaneously in training.
We define that a highly valid caption has common
phrases among reference captions. In VBCS, the
validity score for each reference caption is esti-
mated based on similarities among the reference
captions. When training the model, the training cap-
tions to be used in each epoch are sampled, one per
image, according to this score. In addition, WCS
improves the generality of the model by applying
soft labels only for highly relevant words based
on their validity scores. By effectively utilizing
multiple captions, the proposed method improves
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CIDEr by 2.6 points and BLEU4 by 0.9 points in
the evaluation experiments using the MSCOCO
dataset. Main contributions of this paper include:

• Validity-based caption sampling (VBCS) al-
lows us to prioritize captions that are consid-
ered to be highly valid.

• Weighted caption smoothing (WCS) allows
multiple reference captions to be reflected in
training simultaneously.

• The proposed VBCS and WCS are
architecture-independent and highly versatile
for image captioning and can be applied to
other NLP multi-reference tasks.

2 Related Work

2.1 Selection of Training Data

Preparing highly reliable training data is important,
however open datasets often contain incorrectly
labeled or mislabeled samples. In a typical super-
vised task, one training label is assigned to each
piece of training data. In this common setting,
several methods have been proposed to improve
the performance of the model by selecting suitable
data for training from a large amount of labeled
data (Reed et al., 2014; Northcutt et al., 2021).

In the multi-reference task, on the other hand,
we expect to improve the performance by selecting
appropriate labels from among them in the train-
ing. The choice can be deterministic, choosing the
best one, or probability-based, depending on the
characteristics of the data, such as likelihood (Hast-
ings, 1970; Casella and George, 1992). The latter
can be taken as a sampling problem. The proposed
method prioritizes the sampling of highly valid cap-
tions to reduce the influence of less valid captions
(i.e., noisy samples) and improves the performance.

2.2 Soft Label

Label smoothing (LS) (Pereyra et al., 2017) is a
widely used soft labeling technique that prevents
overfitting by creating soft supervised labels (i.e.,
adding a uniform distribution to each class of train-
ing labels). The introduction of LS has also been re-
ported to improve the performance in language gen-
eration tasks, such as machine translation (Vaswani
et al., 2017) and image captioning (Huang et al.,
2019). Although the LS may contribute to the di-
versity of generated words, it treats all words in
the vocabulary equally without taking into account

their relevance to the image. Our WCS further
improves the performance by constructing a novel
soft label from multiple reference captions given to
the image. Our soft label focuses on only relevant
words among the reference captions based on the
validity score.

3 Methodology

3.1 Validity-Based Caption Sampling
(VBCS)

The proposed VBCS can take into account the
validity and variance of reference captions. We
define that a high validity caption has common
phrases among reference captions, and assign a va-
lidity score to each reference caption. Let R(i) =

{ref(i)1 , ref(i)2 , · · · , ref(i)
K(i)} be the reference caption

set for image I(i)(i = 1, 2, · · · , N). K(i) is the
number of reference captions for image I(i). The
similarity s(i)j of the reference caption ref(i)j to other
captions for image I(i) is calculated as follows:

s
(i)
j =

1

K(i) − 1

∑
k=1···K(i),

k 6=j

fmetric(ref(i)j , ref(i)k ), (1)

where fmetric is a metric of the similarity of
the reference caption. Possible metrics that use
word n-grams or longest match sequence include
BLEU (Papineni et al., 2002), ROUGE-L (Lin et al.,
2014), and CIDEr (Vedantam et al., 2015). Finally,
the sampling probability p(i)j for the j-th reference
caption of image I(i) is calculated as follows:

p
(i)
j =

exp(s
(i)
j )∑K(i)

k=1 exp(s
(i)
k )

. (2)

This probability represents the validity of the refer-
ence caption and is referred to as the validity score
in this paper. This allows us to prioritize training
captions that have a high degree of similarity to
other reference captions and are considered to be
highly valid.

3.2 Weighted Caption Smoothing (WCS)
The proposed WCS solves the problem that unse-
lected captions are treated as incorrect by introduc-
ing a soft label. Our soft label generated by WCS
consists of only the words in each position of mul-
tiple reference captions, weighted by the validity
score obtained by VBCS. This technique can reflect
multiple captions in the training simultaneously.
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Evaluation Metric

B@1 B@4 M R C S

Anderson et al. (2018)† 76.0 ±0.2 34.9 ±0.1 27.3 ±0.1 56.2 ±0.1 111.7 ±0.0 20.5 ±0.1
+ LS 76.1 ±0.1 35.2 ±0.2 27.4 ±0.0 56.3 ±0.1 112.8 ±0.3 20.6 ±0.2

+ VBCS (ours) 76.2 ±0.1 35.2 ±0.1 27.4 ±0.1 56.4 ±0.1 113.1 ±0.5 20.7 ±0.1
+ WCS (ours) 76.9 ±0.3 35.7 ±0.2 27.4 ±0.1 56.6 ±0.1 113.7 ±0.7 20.7 ±0.1
+ VBCS + WCS (ours) 77.2 ±0.1 35.8 ±0.1 27.5 ±0.1 56.7 ±0.1 114.3 ±0.3 20.8 ±0.1

Table 1: Summary of image captioning performance for MSCOCO test data, where B@N, M, R, C, and S are short for BLEU@N,
METEOR, ROUGE-L, CIDEr, and SPICE scores, respectively. For a robust evaluation, we run each method five times with
different seeds. († are not the values given in the original paper, but the result of our best efforts to reimplement them.)

Specifically, our soft label ỹ(i)t used for predict-
ing the t-th word of the image I(i) obtained by
WCS is defined with two terms y(i)j,t and ŷ(i)t :

ỹ
(i)
t = (1− α)y(i)j,t + αŷ

(i)
t , (3)

where y(i)j,t is the one-hot representation for the t-
th word of the j-th reference caption selected by
VBCS and α is hyperparameter that adjusts the
smoothing. ŷ(i)t is the weighted sum of the t-th
word one-hot representation of multiple reference
captions by the validity score and is obtained by:

ŷ
(i)
t =

K(i)∑
k=1

p
(i)
k y

(i)
k,t. (4)

Here, the length of each reference caption is padded
or cropped according to the length of y(i)j .

The main difference between WCS and LS is
the number of words to be smoothed. In our WCS,
smoothing is not done uniformly for all words, but
only for words that are in the same position in the
assigned reference caption, weighted individually
according to their validity score (i.e., words that
are highly relevant).

4 Experiment

4.1 Dataset

We used the MSCOCO 2014 caption dataset (Lin
et al., 2014), which contains 123,287 images la-
beled with five captions each. The “Karpathy” data
split (Karpathy and Fei-Fei, 2015) was used for
performance comparisons, and 5,000 images were
used for validation, 5,000 images for testing, and
the rest for training. As for pre-processing, we
converted all sentences to lower case and dropped
any words that occurred less than five times. To

evaluate caption quality, we used several standard
metrics, such as BLEU (Papineni et al., 2002),
METEOR (Denkowski and Lavie, 2014), ROUGE-
L (Lin, 2004), CIDEr (Vedantam et al., 2015), and
SPICE (Anderson et al., 2016).

4.2 Models

For our evaluation, we used the Up-Down (Ander-
son et al., 2018) model as a baseline, which has a
typical structure in the field of image captioning
and has been reported to be highly accurate. We
compared the following training methods: +LS
with its uniform smoothing for all words; +VBCS,
which prioritizes highly valid reference captions
for training based on the validity score; +WCS
with smoothing for highly relevant words based on
the validity score; and +VBCS+WCS, which is
our proposed method. To ensure robust evaluation,
we ran each method five times with different seeds.

4.3 Implementation Details

In the Up-Down model, we used the Faster-RCNN
model (Ren et al., 2015), which was pre-trained
with ImageNet (Deng et al., 2009) and Visual
Genome (Krishna et al., 2017), as a content vector
generator. We used beam search when generat-
ing captions, and set the beam size to 5. In this
study, we decided to select CIDEr for fmetric, as it
is the most widely used in image captioning and
is capable of focusing on the importance of cap-
tion phrases. In Section 5.2, we will discuss the
effectiveness of other metrics for fmetric. The hyper-
parameter of LS was set to 0.2 according to Huang
et al. (2019). This corresponds to α when ŷt(i) is
regarded as a soft label equal to all words in Eq 3.
In WCS, α was set to 0.2 for comparison.



39

score-1 score-2 score-3 score-4 score-5
sorted caption

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Va
lid

ity
 sc

or
e

Figure 1: Distribution of the sorted validity scores in descend-
ing order.

5 Results and Discussion

5.1 Quantitative Analysis

Table 1 demonstrates the performance of our pro-
posed method with other comparable models. With
the introduction of efficient caption sampling, our
VBCS improved performance in all metrics against
the baseline. In particular, the CIDEr score im-
proved by 1.4 points. This confirmed that sampling
using the validity scores contributes to improving
the score for each metric. Figure 1 shows the dis-
tribution of the validity scores in descending order
using the violin plot. Since the validity of each ref-
erence caption is different, the distribution from the
validity score is very different from the commonly
used uniform distribution.

Our WCS outperformed LS on all metrics and
was 0.5 and 0.9 points higher on BLEU4 and
CIDEr, respectively. Since WCS smooths only a
limited number of relevant words, we believe that it
can learn more efficiently than LS, which smooths
all words uniformly. The proposed techniques (+
VBCS + WCS) scored the highest on all the met-
rics. The improvements in BLEU4, ROUGE-L, and
CIDEr, which are based on n-grams and longest
matching sequence are particularly clear.

5.2 Effect of Hyperparameters

In this section, we investigate the impact of hyper-
parameters in our proposed methods.

Effect of fmetric for Validation Data Table 2
demonstrates the performance with the validation
data, where BLEU4, ROUGE-L, and CIDEr were
applied to fmetric. Regardless of the choice of
fmetric, the proposed method produces results equal
to or better than baseline. These results indicate

Evaluation Metric

fmetric B@1 B@4 M R C S

baseline 75.8 34.7 27.2 56.1 109.4 20.1

BLEU4 77.0 35.8 27.2 56.6 111.4 20.3
ROUGE-L 76.6 35.2 27.2 56.5 110.7 20.4
CIDEr 76.7 35.4 27.4 56.6 112.0 20.5

Table 2: Comparison of scores for validation data under dif-
ferent fmetric choices in VBCS.
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Figure 2: The effect of α, a smoothing hyperparameter of
WCS for validation data. The proposed method achieves
higher performance than LS with any α.

that CIDEr is superior to the others and can capture
more important phrases than other metrics.

Effect of Hyperparameter in WCS Figure 2
demonstrates the effect of the hyperparameter α
on the validation data in WCS. Our proposed
+VBCS+WCS with α = 0.2 performed the best.
Since WCS applies to smooth to a limited number
of words, it results in higher scores than those of
LS with any α.

6 Conclusion and Future Works

In this paper, we proposed two novel techniques
called VBCS and WCS that effectively utilize mul-
tiple references in image captioning tasks, and
demonstrated their advantages. The former deter-
mines a sampling probability (i.e., validity score),
for each caption based on similarities among the
reference captions. The latter simultaneously re-
flects multiple reference captions in the training. In
the future, we would like to consider the grammar
in WCS and, extend the proposed method to be
adaptable to reinforcement learning.
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