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Abstract

This paper describes NAIST’s system for
the English-to-Japanese Simultaneous Text-to-
text Translation Task in IWSLT 2021 Eval-
uation Campaign. Our primary submission
is based on wait-k neural machine translation
with sequence-level knowledge distillation to
encourage literal translation.

1 Introduction

Automatic simultaneous translation is an attractive
research field that aims to translate an input before
observing its end for real-time translation similar to
human simultaneous interpretation. Starting from
early attempts using rule-based machine translation
(Matsubara and Inagaki, 1997; Ryu et al., 2006)
and statistical methods using statistical machine
translation (Bangalore et al., 2012; Fujita et al.,
2013), recent studies successfully applied neural
machine translation (NMT) into this task (Gu et al.,
2017; Ma et al., 2019; Arivazhagan et al., 2019).

The simultaneous translation shared task in the
IWSLT evaluation campaign started on 2020 with
English-to-German (Ansari et al., 2020) speech-
to-text and text-to-text tasks, and a new language
pair of English-to-Japanese has been included on
2021 only in text-to-text task. English-to-Japanese
is much more challenging than English-to-German
due to the large language difference in addition to
data scarsity.

We developed an automatic text-to-text simulta-
neous translation system for this shared task. We
applied some extensions to a standard wait-k NMT
in the training time: sequence-level knowledge dis-
tillation and target-side chunk shuffling. However,
these techniques showed mixed results in different
latency regimes on the IWSLT21 development set,
so we configured the system differently for each
latency regime. This paper describes the details of
the system and the results on the development sets.

We also describe our another attempt to include
incremental constitutent label prediction that was
not included in the primary system.

2 Simultaneous Neural Machine
Translation with wait-k

Let X = x1, x2, . . . , x|X| be an input sequence in
a source language and Y = y1, y2, . . . , y|Y | be an
output sequence in a target language. Here, the in-
put can be speech or text, but we assume the input
is text because this paper discusses the text-to-text
task. The task of simultaneous translation is to
translate X to Y incrementally. In other words,
each output prediction of Y is made upon partial
input observations of X . Suppose an output pre-
fix subsequence Y j

1 = y1, y2, ..., yj has already
been predicted from prefix observations of the in-
put Xi

1 = x1, x2, ..., xi. When we predict the next

output subsequence Y j
′

j+1 = yj+1, ..., yj′ after fur-

ther partial observations Xi
′

i+1 = xi+1, ..., xi′ , the
prediction is made based on the following formula:

Y j
′

j+1 = argmax
Ŷ

P (Ŷ |Xi
1, X

i
′

i+1, Y
j
1 ) (1)

where Ŷ is a possible prediction of the subsequence.
In a usual consecutive machine translation, we can
use the whole input sequence X anytime in the
prediction of Y . The limitation of available in-
put information is a key challenge of simultaneous
translation.

Wait-k delays the decoding process in k input
tokens (Ma et al., 2019). The wait-k model trans-
lates a token sequence of the source language X
into that of the target language Y as follows.

Hi = Encoder(x1, . . . , xi+k−1), (2)

ŷi = Decoder(Hi, ŷ1, . . . , ŷi−1).

The decoder has to predict an output token based on
the attention over an observed portion of the input
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tokens. k is a hyperparameter for the fixed delay
in this model; setting k larger causes longer de-
lays, while smaller k would result in worse output
predictions due to the poor context information.

3 Knowledge Distillation

Knowledge Distillation (KD) (Hinton et al., 2015)
is a method that uses the distilled knowledge
learned by a stronger teacher model in the learning
of a weaker student model. When teacher distribu-
tion is q(y|x; θT ), we minimize the cross-entropy
with the teacher’s probability distribution instead
of reference data, as follows:

LKD(θ; θT ) = −
|V|∑
k=1

q(y = k|x; θT )×

log p(y = k|x; θ) (3)

where θT parameterizes the teacher distribution.
Sequence-level Knowledge Distillation (SKD),

which gives the student model the output of the
teacher model as knowledge, propagates a wide
range of knowledge to the student model and trains
it to mimic its knowledge (Kim and Rush, 2016).
The teacher distribution q(Y |X) is approximated
by its mode q(Y |X) ≈ 1{Y = argmax

X∈T
q(Y |X)},

and the loss objectives as follows:

LSKD = −Ex∼data
∑
Y ∈T

q(Y |X) log p(Y |X)

≈ −E
X∼data,Ŷ=argmax

Y ∈T

q(Y |X)
[log p(y = Ŷ |X)] (4)

where p(Y |X) is the sequence-level distribution,
and Y ∈ T is the space of possible target sentences.
SKD can be implemented simply by training the
student model using (X, Ŷ ), where Ŷ is derived
from the teacher model outputs for the source lan-
guage portion of the training corpus.

We use SKD for reduction of colloquial expres-
sions in the spoken language corpus. Such col-
loquial expressions are highly dependent on lan-
guages and difficult to translate by NMT, which
usually generates literal translations. Here, we
firstly train a teacher, Transformer-based offline
NMT model using the training corpus and use it to
obtain pseudo-reference translations in the target
language. Then, we train a student, Transformer-
based simultaneous NMT model using the pseudo-
parallel corpus with the original source language
sentences and the corresponding translation re-
sults by the teacher model. The pseudo-references

should consist of more literal and NMT-friendly
translations, therefore the training of the student
model becomes easier than that using the original
parallel corpus. Since we have to train simultane-
ous translation using less context information than
an offline translation model, the SKD would be
helpful. This is motivated by the recent success
of non-autoregressive NMT using SKD (Gu et al.,
2018).

4 Target-side chunk shuffling

Chunk shuffling is a kind of data augmentation that
reorders Japanese chunks (called bunsetsu). Our
motivation for this one is to encourage monotonic
IMT utilizing a characteristic of Japanese as an
agglutinative language, in which the order of bun-
setsu chunks is not so strict. When we have a target
language sequence T = t1, . . . , t|T | in the training
set, we apply greedy left-to-right chunking to it; T
is divided as a chunk sequence T̄ = C1, . . . , CQ,
in which each chunk consists of k (i.e., delay hy-
perparameter in wait-k) tokens Cq = tq1 , . . . , tqk .
Note that the last chunk CQ may be shorter than k
according to the length of T . Then, we choose to
shuffle or keep the chunks in T̄ with a probability
pr, defined as a hyperparameter. We tried only the
random shuffling with the fixed chunk size of k
in this time; More linguistically-motivated chunk
reordering would be worth trying as future work.

5 Primary system

5.1 Implementation
Our system implementation was based on the of-
ficial baseline1 using fairseq (Ott et al., 2019) and
SimulEval (Ma et al., 2020).

5.2 Setup
Data All of the models were based on Trans-
former, trained using 17.9 million English-
Japanese parallel sentences from WMT20 news
task and fine-tuned using 223 thousand parallel
sentences from IWSLT 2017. During fine-tuning,
we examined the effectiveness of knowledge distil-
lation and chunk shuffling with several hyperparam-
eter settings and reported the results by the models
that resulted in the higher BLEU on IWSLT 2021
development set. The text was preprocessed by
Byte Pair Encoding (BPE) (Sennrich et al., 2016)

1https://github.com/pytorch/fairseq/
blob/master/examples/simultaneous_
translation/docs/enja-waitk.md

https://github.com/pytorch/fairseq/blob/master/examples/simultaneous_translation/docs/enja-waitk.md
https://github.com/pytorch/fairseq/blob/master/examples/simultaneous_translation/docs/enja-waitk.md
https://github.com/pytorch/fairseq/blob/master/examples/simultaneous_translation/docs/enja-waitk.md
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System BLEU AL
offline 16.8 -
Baseline
wait-10 11.8 7.27
wait-20 14.69 11.47
wait-30high 15.57 13.7
Proposed
wait-10 + CShuflow 13.77 7.29
wait-10 + SKD 13.5 7.28
wait-20 + SKDmedium 15.22 11.48
wait-30 + SKD 15.21 13.71

Table 1: In-house results of our systems on IWSLT
2021 En-Ja development set. Superscripts low, medium

and high represent the systems submitted for low-,
medium-, and high-latency regimes, respectively.

for subword segmentation. The vocabulary was
shared over English and Japanese, and its size was
16,000.

Model The hyperparameters of the model almost
followed the Transformer Base settings (Vaswani
et al., 2017). The encoder and decoder were com-
posed of 6 layers. We set the word embedding
dimensions, hidden state dimensions, feed-forward
dimensions to 512, 512, and 2,048, respectively.
We performed the sub-layer’s dropout with a prob-
ability of 0.1. The number of attention heads was
eight for both the encoder and decoder. The model
was optimized using Adam with an initial learning
rate of 0.0007, β1 = 0.9, and β2 = 0.98, following
Vaswani et al. (2017).

Evaluation To evaluate the performance, we cal-
culated BLEU and Average lagging (AL) (Ma et al.,
2019) with SimulEval on IWSLT 2021 develop-
ment set.

5.3 Results on the development set
Table 1 shows the excerpt of system results for
the full-sentence topline (offline), wait-k baselines
(wait-k), and our extensions: SKD (+ SKD) and
chunk shuffling (+ CShuf).

We tried some different latency hyperparameter
values k = {10, 12, 14, . . . , 32} for comparison.
Figure 1 plots our BLEU-AL results for wait-k
and wait-k+SKD. It shows that the use of SKD
gave some improvements in low-latency settings
with k = {10, 12, 14}, however, the results with
larger k were mixed. These results support our
assumption on the difficulty of the translation into
colloquial expressions discussed in Section 3.
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Figure 1: Translation quality against latency for wait-k
and SKD-based wait-k on IWSLT 2021 En-Ja develop-
ment set. The broken line shows the score of the offline
model.

System pr BLEU lenhyp lenref

Baseline 0 11.80 34,376 27,891
+ CShuf 0.01 10.57 38,257 27,891

0.02 13.77 29,369 27,891
0.03 9.87 42,296 27,891

Table 2: Target-side chunk shuffling result in pr =
{0, 0.01, 0.02, 0.03}

We also tried chunk shuffling with different hy-
perparameter values2 pr = {0, 0.01, 0.02, 0.03}.
Table 2 shows the result using the target-side chunk
shuffling. Here, the chunk shuffling results are only
shown for wait-10. The use of larger latency hyper-
parameter k did not show remarkable differences
from the baseline. Chunk shuffling with pr = 0.02
resulted in the best BLEU and outperformed the
baseline, but the other values 0.01, 0.03 did not
work. These differences should be due to the out-
put length shown in lenhyp column in Table 2; the
output length became much shorter than the base-
line using the chunk shuffling with pr = 0.02. In
contrast, pr = 0.01 and pr = 0.03 increased the
output length.

Table 3 shows translation examples by the base-
line and chunk-shuffling (pr = 0.02). Here,
the baseline translation results do not have end-
of-sentence expressions like です (desu), ます
(masu),ですよね (desuyone). These differences
were not straightforward with the chunk shuffling,
but a certain value of pr = 0.02 worked in our
experiment.

The results above suggest that the target-side
2Higher values of pr resulted in much worse results and

are not included in this paper.
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En-input I see other companies that say, “I’ll win the next innovation cycle, whatever it takes.”
Baseline 他の会社が「次 のイノベーションサイクルに <unk>」と言うのはどんなものであれ
CShuf 他の会社が「次 のイノベーションサイクルに勝てる」と言うのを見ます

Ja-ref 私の経験でも沢山の企業が同じように「何がなんでも次のイノベーションサイクルを制覇する」と

言い続けてます

En-input She’s a musical instrument maker, and she does a lot of wood carving for a living.
Baseline 彼女は楽器の製造者で木彫りをして生きている間に

CShuf 彼女は楽器の製作者で木彫りをしています

Ja-ref 彼女は楽器の制作技師です木を削ることで生計を立てています

En-input Humans are very good at considering what might go wrong if we try something new, say, ask for a raise.
Baseline 人間は何がうまくいけば何がうまくいけば何がうまくいけば何がうまくいけば何が

うまくいけば何がうまくいけば何がうまくいけば何がうまくいけば何がうまくいけば何が

うまくいけば何がうまくいけば何がうまくいけば何がうまくいけば何が起きても何が起きても

何が起きても何が起きても何が起きても何が起きても何が起きて

CShuf 人間は何が間違っているのかを考えるのが得意です新しいことを試してみてもいいですよね

Ja-ref 昇給を求めるというような何か新しいことを試みようというとき人はどうまずいことになり得るか

考えることに長けています

Table 3: Translation examples by wait-k baseline and wait-k with chunk shuffling (pr = 0.02).

System BLEU AL
wait-10 + CShuflow 14.41 7.21
wait-20 + SKDmedium 16.20 11.54
wait-30high 16.19 13.83

Table 4: Official results of our submissions on IWSLT
2021 En-Ja test set.

chunk shuffling may work as a perturbation, and
we need further investigation.

5.4 Official results on the test set

Table 4 shows BLEU and AL results on the test
set. The system with the medium latency regime
(wait-20 + SKD) worked relatively well; it achived
a comparable BLEU result with wait-30. However,
the results were worse than those of the other teams
by around two points in BLEU in all the latency
regimes.

6 Another attempt: Incremental Next
Constituent Label Prediction

We tried another technique described below in the
shared task, but it was not included in our primary
submission because it did not outperform the base-
line. Here, we also describe this for further investi-
gation in future.

For simultaneous machine translation, deciding
how long to wait for input before translation is
important. Predicting what kind of phrase comes
next is a part of useful information in determining
the timing. In this study, we tried incremental Next
Constituent Label Prediction (NCLP).

In SMT-based simultaneous translation, Oda
et al. (2015) proposed a method to predict unseen
syntactic constituents to determine when to start

train dev eval
2,762,408 27,903 21,941

Table 5: Number of NCLP instances.

translation for partially-observed input, using a
multi-label classifier based on linear SVMs (Fan
et al., 2008). Motivated by this study, we used a
neural network-based classifier using BERT (De-
vlin et al., 2019) for NCLP. The problem of NCLP
is defined as the label prediction of a syntactic con-
stituent coming next to a given word subsequence
in the pre-order tree traversal. In this work, we
used 1-lookahead prediction, so the problem was
relaxed into the prediction of a label of a syntactic
constituent given its preceding words and the first
word composing it. A predicted constituent label
was inserted at the corresponding position in the in-
put word sequence, immediately after its preceding
word. That doubled the length of input sequences.
For subword-based NMT, we applied BPE only
onto words in the input sequences and put dummy
labels after subwords other than end-of-word ones,
to order the input in an alternating way.

We used Huggingface transformers (Wolf et al.,
2020) for our implementation of NCLP with
bert-base-uncased. We used Penn Treebank
3 (Marcus et al., 1993) for the NCLP training and
development sets, and NAIST-NTT TED Talk Tree-
bank (Neubig et al., 2014) for the NCLP evaluation
set. Table 5 shows the number of training, develop-
ment, and evaluation instances extracted from the
datasets. Note that we can extract many instances
from a single parse tree.

Table 6 shows the results of the 5 most frequent
labels in the NCLP training data. NP and VP are
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Figure 2: Translation quality against latency for wait-
k and NCLP-based wait-k on IWSLT21 En-Ja dev set.
The broken line shows the score of the offline model.

Label Precision Recall F1
NP 0.90 0.94 0.92
VP 0.89 0.97 0.93
NN 0.95 0.97 0.96
, 0.98 1.00 0.99
PP 0.85 0.93 0.89

Table 6: NCLP results on the evaluation set.

important clues of the sentence structure, and their
F1 scores were over 90% on the NCLP evaluation
data.

However, the results by wait-k using NCLP re-
sults as its input did not outperform the baseline
wait-k, as shown in Figure 2. We can observe
NCLP-based wait-k gave smaller ALs with the
same latency hyperparameter k. One possible prob-
lem of current NCLP-based wait-k is that the length
of an input length is doubled by the additional
constitutent labels. Since we ran wait-k-based si-
multaneous NMT for such an augmented input se-
quence, the decoder using NCLP-augmented input
has roughly half of the information compared to the
decoder using original input if we use the same k.
This forces the decoder to perform very aggressive
anticipation with limited information from an input
prefix.

Table 7 shows the translation input and output
examples of baseline and NCLP. Input sentences in-
clude constituents labels. The first example shows
that NCLP could translate “publication” before a
verb “work” following the Japanese sentence order.
Second example shows NCLP output is constructed
naturally in terms of grammar, while the baseline
has repetitive and unnatural phrases. We observed
NCLP sentences are tend to be shorter and more

natural than baseline like these examples. However,
many sentences are not informative and missing
details compared to the baseline. We’ll investigate
a more effective way to use NCLP in our future
work.

7 Conclusion

In this paper, we described our English-to-Japanese
text-to-text simultaneous translation system. We ex-
tended the baseline wait-k with the knowledge dis-
tillation to encourage literal translation and target-
side chunk shuffling to relax the output order in
Japanese. They achieved some improvements on
IWSLT 2021 development set in certain latency
regimes.
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Ja-ref 「あなたの出版物や組織が多様性を受け入れるまではご一緒に仕事はできません」と言うこと
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できます更に多くの者がガラスの天井をぬ@@け名ばかりの女性参@@画ではなくなるまでは
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