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Preface

Welcome to the 17th International Conference on Parsing Technologies (IWPT 2021), which this year
(for only the second time since 2007) is co-located with the Annual Meeting of the Association for
Computational Linguistics and of the Asian Federation of Natural Language Processing (ACL-IJCNLP).
The IWPT meeting series, hosted by the ACL Special Interest Group in Natural Language Parsing
(SIGPARSE), has been held biennualy since its inaugual meeting in 1989 in Pittsburgh, PA (USA).

For 2021, the SIGPARSE steering group decided to continue an experiment started last year, co-location
with the main ACL meeting in the form of a reduced one-day IWPT programme. The main motivation
for this move was to reduce fragmentation (and travel) and to increase IWPT visibility in the broader
ACL community. We believe that both these goals have been attained in 2020 and hope to see this
development continue this year. At the same time, IWPT has launched its own series of parsing shared
tasks since 2020, which strengthens the experimental and applied perspective on parsing technologies in
the conference programme.

The IWPT 2021 shared task focuses on the parsing of Enhanced Universal Dependencies (EUD) over
17 languages, continuing on from a successful EUD parsing shared task in 2020. This is the second
time that graph-based representations of syntactic structures are evaluated on such a large scale, and we
believe it will pave the way for research on richer models and representations. The shared task attracted
system submissions from nine teams from around the world and, thus, establishes a highly relevant point
of comparison for this line of syntactic analysis. We are very grateful to everyone who contributed to
this shared task, starting with the data providers who worked hard to meet our deadline. Thanks to
the participant teams who worked tirelessly in a short time period to provide such a set of great and
interesting systems!

Owing to the ongoing pandemic, the meeting will regrettably once again be held entirely virtual, where
for IWPT we have adopted a mostly-asynchronous format: Accepted papers (of four different types, long,
short, shared task, and findings) will be presented through pre-recorded talks, which become available
on-line for individual viewing before the actual conference day. On the day of the conference, August
6, there will be a four-hour live session, scheduled so that the timing should be convenient (all things
considered) for participants around the world: 13:00–17:00 UTC+0, which translates, for example, into
a starting time at 6:00 in the morning at the US West Coast and wrapping up at 1:00 in the morning in
Melbourne, Australia. The live sessions will be devoted exclusively to questions and answers, organized
into six thematic sessions. Authors of papers associated with each session will be available to answer
questions and discuss their work (possibly also among themselves).

There has been (and to some degree still is) much uncertainty about the format of ACL-IJCNLP and
IWPT this year, and in a sense we were positively surprised to receive a number of submissions
comparable to recent IWPT instances. Out of 24 regular paper submissions, the programme committee
accepted 13 for presentation at the conference. The IWPT 2021 programme is complemented by one
invited talk, by Emily Pitler of Google Research (to whom we are immensely grateful for honoring her
commitment despite the mostly-asynchronous, virtual format), by four papers adopted from the Findings
of ACL-IJCNLP 2021, and by an overview paper and nine system descriptions from the IWPT 2021
shared task. We further gratefully acknowledge the work, flexibility, and collegiality of authors and
reviewers, as well as of the ACL-IJCNLP workshop and publication chairs, who had to shepherd our
community through a difficult logistics process.

Davis, Groningen, Oslo, Paris, Prague, and Tel Aviv

Gosse Bouma, Stephan Oepen, Kenji Sagae,
Djamé Seddah, Reut Tsarfaty, and Dan Zeman
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Abstract

When learned without exploration, local mod-
els for structured prediction tasks are subject
to exposure bias and cannot be trained without
detailed guidance. Active Imitation Learning
(AIL), also known in NLP as Dynamic Ora-
cle Learning, is a general technique for work-
ing around these issues by allowing the explo-
ration of different outputs at training time.

AIL requires oracle feedback: an oracle is any
algorithm which can, given a partial candidate
solution and gold annotation, find the correct
(minimum loss) next output to produce.

This paper describes a general finite state tech-
nique for deriving oracles. The technique de-
scribed is also efficient and will greatly expand
the tasks for which AIL can be used.

1 Introduction

Structured Prediction tasks, e.g., POS tagging, ma-
chine translation or syntactic parsing, are central
to NLP and are commonly solved with machine
learning based models. There are two main ways
of approaching these problems: in one, a model
scores fragments of possible outputs and an effi-
cient decoding algorithm finds the highest scoring
solution, e.g., using conditional random fields and
the forward-backward algorithm. In the second
approach a model produces an output through a se-
quence of decisions, each extending a partial output
produced by the previous steps, e.g., picking one
word after the other in a sequence to sequence trans-
lation system or repeatedly splitting a sentence into
constituents. Modern neural models use complex
hidden states to express the interdependence be-
tween outputs, making efficient decoding difficult
and the latter approach ever more important.

When training models to make sequential deci-
sions it is necessary to provide guidance on which
actions to take to achieve minimum loss against a

gold output. Sometimes there is a clear sequence of
correct actions, e.g., when learning to translate or
tag, there is the option of simply training the model
to follow the gold annotation, which corresponds
1-1 to possible model outputs.

1.1 The Problems Dynamic Oracles Solve

Not all tasks have straightforward gold sequences.
Consider the problem of simplifying a sentence by
tagging words either to be deleted or replaced with
more common, semantically similar words. There
may be multiple ways to simplify that generate the
same end result. If only a gold simplification is
annotated, and no gold sequence of actions (i.e.
deletion or replacement), then it is not clear which
sequence of actions to train for. For another ex-
ample, consider multiple annotations coming from
multiple annotators, where it is necessary to inter-
polate between them.

Furthermore, when only following gold se-
quences, the model will never learn to recover from
incorrect choices, as they are not encountered dur-
ing training - the so called exposure bias. Consider
the following example: assume that we want to
map a sentence to a parse tree as in Fig. 1. For a
simple sequence to sequence model, a parse tree is
produced by outputting opening and closing brack-
ets as well as words and mapping the result to a tree.
If the model incorrectly added an NP( bracket right
before “hit”, then a gold sequence based training
would never expose the model to a similar situation.
The model would have no knowledge of how to re-
cover from the error with minimal loss, and how
to best represent a sequence with a questionable
bracket.

Both exposure bias and the absence of clear gold
training sequences can be tackled with active imi-
tation learning (AIL). AIL uses a source of ground
truth to determine the optimal action to take at each
step. These sources of ground truth are called dy-
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Input Output

“John hit the ball” S

John VP

hit NP

the ball

Action Sequence S( John VP( hit NP( the ball ) ) )

Figure 1: Example structured prediction task for active imitation learning.

namic oracles in the NLP literature, or experts in
AIL focused works. Dynamic oracles determine
what to do for any partially complete solution to
minimize the loss relative to a gold annotation and
they contrast with static oracles, which only pro-
vide a gold output sequence.1 This paper is con-
cerned with a generic way to build dynamic oracles
for NLP problems. In our example of an incorrectly
placed NP(, AIL would enable us to create training
examples that contain similar errors and show how
to recover from them.

1.2 Contribution

Dynamic oracles have been developed for dif-
ferent parsing tasks (Goldberg and Nivre, 2012;
Goldberg et al., 2014; Coavoux and Crabbé,
2016; Fernández-González and Gómez-Rodrı́guez,
2018b; Coavoux and Cohen, 2019; Gómez-
Rodrı́guez and Fernández-González, 2015) and
have been shown to improve parsing performance
(Ballesteros et al., 2016; Goldberg and Nivre, 2012;
Coavoux and Crabbé, 2016; Fernández-González
and Gómez-Rodrı́guez, 2018b). These oracles
work for specific output types and losses. It is
sometimes possible to use an oracle derived for
one problem in a different context, but this trans-
fer is limited. Here we instead give a completely
generic technique for deriving dynamic oracles.

We focus on problems that involve mapping an
input sequence to an output sequence in left to right
order, which also generalizes the task of tagging
the sequence. Our approach is general enough to
subsume others, e.g., parsers based on transition
systems can be encoded through tagging (Gómez-
Rodrı́guez et al., 2020). Our technique is based on
encoding possible outputs in a finite state automa-
ton. By incorporating the loss via a transducer, we

1We occasionally drop the “dynamic” part, as dynamic
oracles are a strict generalization of static ones.

are able to formulate oracles as a minimum weight
problem on regular languages. We also investigate
the complexity of repeatedly solving these mini-
mum weight problems.

2 Formal background

Before we describe our approach, we will recap
some of the theory of AIL and finite state machines.
Through a detailed discussion of both topics in
a shared vocabulary, the connection will become
clearer. We use the task of mapping sentences to
parse trees as our running example.

General Notation We start with generic nota-
tions that will be used throughout the paper: we
denote by [k, n] the set of natural numbers between
k (included) and n (included). For any set Σ we
let ℘(Σ) denote the powerset (set of all subsets)
of Σ, and Σ∗ denote the set of sequences of el-
ements of Σ. For such a sequence α ∈ Σ∗, |α|
denotes the length of the sequence, for an index
i ∈ [1, |α|], αi denotes the ist element in the se-
quence α. We also refer to sequences by extension-
ally listing their elements within angle brackets,
as in α = 〈x1, . . . , xn〉.2 ε denotes an empty se-
quence, as does 〈αk, . . . , αn〉 whenever n < k.
For two sequences α, β, α ≤ β holds iff α is a pre-
fix of β. Accordingly α < β holds iff α ≤ β
and α 6= β. α • β denotes the concatenation
of the two sequences α and β (〈α1, . . . , αn〉 •
〈β1, . . . , βm〉 = 〈α1, . . . , αn, β1, . . . βm〉). Finally
we adopt the convention that minx∈∅ f(x) = +∞
for any real-valued function f of one variable, and
arg minx∈E f(x) denotes the set {x ∈ E | f(x) =
minx′∈E f(x′)}.

2In this case, |α| = n.
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2.1 Active Imitation Learning

Imitation learning is concerned with using super-
vised feedback in order to learn models which can
make sequential decisions. Example NLP prob-
lems for which imitation learning can be used are
Named-Entity Recognition tagging (Brantley et al.,
2020) and shift-reduce dependency parsing (Gold-
berg and Nivre, 2012). We focus on problems in
which the model chooses from a fixed set of ac-
tions O at every step (also referred to as the output
lexicon) and define an imitation learning input as
follows:

Definition 1 (Imitation Learning Input). An im-
itation learning input3 x consists of a sequence
w = 〈w1, . . . , wn〉, a successor function s :
O∗ → ℘(O), and a stopping criterion t : O∗ →
{true, false}.

Intuitively, the successor function s restricts the
actions that the model can choose to the set s(α) ⊆
O, depending on the sequence of previously taken
actions α. Such a restriction is generally needed
to ensure that only meaningful output (e.g. well-
formed trees) are produced for a given input.

For our example of generating a sequence cor-
responding to a parse tree, the input sequence con-
sists of word tokens. Our output lexicon consists of
all possible word tokens that occur in the input, as
well as opening brackets labeled with all possible
nonterminals in the set N , e.g., NP( or S(, and the
closing bracket ). The stopping criterion is true
once all tokens in the input have been generated in
the output and there are no unmatched open brack-
ets. For ease of presentation we will only consider
context free parses without unary productions, i.e.
we do not allow trees of the form X(t) where t is
any complete parse tree. This means the succes-
sor function allows generation of ) whenever there
is at least one more unmatched open bracket, the
previous output is either a word token or another
) and closing the bracket would not create a unary
bracketing. s will allow opening brackets as long
as there are more word tokens left to be produced
than there are words left to produce and the last
output was not a word token. Finally the s function
allows wi after an opening bracket or another word,
if wi−1 has been produced.

We obtain a solution α1, . . . , αk for a given in-
put with a model m by repeatedly choosing the
next action αk among the admissible actions in

3We simplify to just input whenever the meaning is clear.

s(α1, . . . , αk−1), according to the scores assigned
by m. Whenever t(α1, . . . , αk) becomes true, the
model will have to score the option of stopping
against all possible outputs. This is relevant to prob-
lems such as machine translation, where it is possi-
ble to continue even after a potential stopping point.
Our definition of an input restricts admissible can-
didate solutions to the set τx = {α ∈ O∗ | ∀k ∈
[1, |α|]αk ∈ s(α1, . . . , αk−1) ∧ t(α) = true}.

We assume that every imitation learning problem
comes with a set Y of possible results, and that
every (admissible) action sequence α for an input
x can be interpreted as an element JαK ∈ Y . In
our parsing example, the interpretation function
simply takes a valid bracketing and maps it to the
corresponding tree with Y being the set of parse
trees for the sentence. Another example would
be outputting the tokens of an SQL command and
mapping them to their evaluation result relative to
a database.

Note that J·K is not necessarily an injective map-
ping. For the SQL example, different commands
evaluate to the same results. In some settings the
interpretation of an action sequences can depend
on the words of the input sequence w, e.g., if our
outputs were actions in classical shift-reduce pars-
ing. For this reason, we assume a collection of
interpretation functions indexed by the input rather
than a unique, input-independent one. Finally, in
order to unify the treatment of the training and test
setting, we generally assume that there is a gold
output g ∈ Y . This leads to this definition of an
imitation learning problem:

Definition 2 (Imitation Learning Problem). An im-
itation learning problem P is a set of instances,
each being a triple 〈x, g, J·K〉 where x is an input,
g ∈ Y is a gold annotation. and J·K : τx 7→ Y is a
function interpreting any admissible output action
sequence as an outcome in Y .

A model’s performance is measured by a loss
function. A loss function is a functionL : Y ×Y 7→
R+. The arguments fed to the loss function typi-
cally are the interpretation of an action sequence
and the gold annotation. For constituency parsing
the loss function for training and testing is 1 minus
the F1 score - for a loss function, smaller values
should indicate better results. To give another ex-
ample, for machine translation, a loss would be
1 minus the BLEU score computed between gold
translations and the output translation. Because
we measure the loss of an (admissible) output ac-
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tion sequence α on a problem instance 〈x, g, J·K〉
through the quantity L(JαK, g), it is not necessary
that the output action sequence and the gold anno-
tation are of the same “type”. The comparison is
mediated by the interpretation function and train-
ing will aim to learn to produce action sequences
that interpret to low loss targets.

2.2 Learning Set-Up
How does one learn in this setting? One option
is to use reinforcement learning to obtain a model
through trial and error feedback coming from the
loss function (Sutton and Barto, 2018). This is gen-
erally not the most efficient way to use the informa-
tion available. If it is possible to derive a sequence
of outputs 〈α1, . . . , αm〉 with minimum loss, then
this can be used as the basis of standard imitation
learning, without any exploration (Hussein et al.,
2017). This is known as static oracle learning in
NLP. In the parsing example this means obtaining
the action sequence that is given in Fig. 1, as it
corresponds to the “correct” parse tree, and train-
ing a classifier to produce S( as a first step given
the input, then produce NP ( given the input and
S( and so on. We can further exploit the knowl-
edge implicit in the loss function through active
imitation learning(Hussein et al., 2017; Ross et al.,
2011), also known as dynamic oracle learning in
NLP (Goldberg and Nivre, 2012). In this setting
the learning is active because it obtains feedback
for which action is optimal for a given instance and
partial action output α = 〈α1, . . . , αk〉, where we
will call α a prefix. This makes it possible to learn
to adjust for errors that a model is likely to make,
and to explore different sequences of actions, in
order to find one that is easy to learn.

When teaching a robot how to move, or learning
to automatically drive, human intervention might
be required in order to give the optimal action for
every situation. We are focused on deriving optimal
actions directly from gold outputs so that no further
annotator intervention is necessary. We define a
dynamic oracle as follows:

Definition 3 (Dynamic Oracle). A dynamic oracle
π for an imitation learning instance 〈x, g, J·K〉 and
loss L is a function such that:

∀α ∈ O∗ : π(α) ∈ arg min
o∈s(α)

min
β∈τx,α•o≤β

L(JβK, g)

To put the definition of π in words: an oracle
gives, for every prefix, an action that is the next

• Inputs

– interpolation schedule ι0 ∈ (0, 1), . . .

– instances 〈x1, g1, J·K〉, . . . , 〈xn, gn, J·K〉
– dynamic oracle πj for each 〈x1, g1, J·K〉
– starting model φ0

• Data = ∅

• Steps for i = 0 to max steps:

1. for j = 1 to n:
(a) go to example in = 〈xj , gj , J·K〉 and set

α← ε
(b) iterate:

i. with probability ιi set pred = φi(in, α)
otherwise set pred = πj(α)

ii. add 〈in, α, πj(α)〉 to Data
iii. if pred is to stop, end iterate
iv. set α← α • pred

2. train φi+1 from Data

Figure 2: Pseudocode for Dagger.

step in a sequence that has the minimum loss pos-
sible for this prefix. Dynamic oracles enable the
implementation of special learning algorithms with
strong guarantees on test time performance and no
exposure bias. One such algorithm is Dagger (Ross
et al., 2011), which comes with attractive guaran-
tees on model convergence. For clarity we provide
the pseudo-code for Dagger, adjusted for our fram-
ing of the problem, in Figure 2, where we denote
the prediction of a model φ for a given instance
in = 〈x, g, J·K〉 and action sequence α as φ(α, in).

The Dagger algorithm alternates between pursu-
ing an optimal action and pursuing one chosen by
the current model with probability ιi. ι0 is usually
set to 0, to train a first model on optimal action se-
quences. By adding pairs of prefixes that a model
visited and the dynamic oracle actions for these pre-
fixes to the training data, models are able to learn
what to do for prefixes they are likely to encounter.
The last model trained is usually the one used at
test time.

We presented dynamic oracles as the solution to
an optimization problem over sequences. With this
in mind, we will build on concepts from finite state
automata in order to make these problems clearer
and to solve them efficiently.

2.3 Finite State Machines

Given any finite set Q, called states, and finite set
Σ, called alphabet, we call δ a transition function
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if δ assigns a weight w ∈ R∪{+∞}4 to any triple
〈q, o, q′〉 ∈ Q × Σ × Q. Given such a transition
function, we write δ∗ for the (weighted) transitive
closure of δ. δ∗ extends δ to words in Σ∗ and is
defined inductively:

δ∗(q, ε, q) = 0

δ∗(q, α · o, q′) = min
q′′

δ∗(q, α, q′′) + δ(q′′, o, q′).

Where q, q′, q′′ range over Q, o over Σ and α over
Σ∗, and all free variables are implicitly universally
quantified.

In order to later discuss transducers, we will also
use the classic extension of transition functions to
a pair of a left-hand side alphabet and a right-hand-
side alphabet 〈Σ,Λ〉. Such an (extended) transi-
tion function δ assigns a weight to any quadruple
〈q, o1, o2, q′〉 ∈ Q×(Σ∪{ε})×(Λ∪{ε})×Q.5 In
this extended case, the definition of the (weighted)
transitive closure of δ is amended to:

δ∗(q, ε, ε, q) = 0

δ∗(q, α, β, q′) = min
γ,λ,o1,o2∈H(α,β)

min
q′′

δ∗(q, γ, λ, q′′) + δ(q′′, o1, o2, q′).

Where the first minimum is taken over the set
H(α, β) = {〈γ, λ, o1, o2〉 ∈ Σ∗×Λ∗×(Σ∪{ε})×
(Λ∪ {ε}) | 〈o1, o2〉 6= 〈ε, ε〉 and 〈γ • o1, λ • o2〉 =
〈α, β〉}

This paper uses automata exclusively for mini-
mum weight problems. This means that we only
focus on tropical weighted finite state automata and
transducers (Mohri, 2009), which use the addition
and minimum operations. We drop both “tropical”
and “weighted” where appropriate.

Definition 4 (Weighted Finite State Automaton).
A tropical weighted finite state automaton (automa-
ton) A is a tuple 〈q0, Q,Σ, δ, ρ〉 where q0 ∈ Q is
the start state, Q and Σ are the states and the al-
phabet, δ is a transition function and ρ : Q → R
is the final weight function. A defines a function
A(α) = minq∈Q δ∗(q0, α, q)+ρ(q). The weighted
language L(A) of A is the set {〈α,w〉 | A(α) =
w}.

We say that a (non weighted) language L ⊆ Σ∗

is regular, iff there exists an automaton AL such
that, for any α ∈ Σ∗, AL(α) = 0 if α ∈ L and

4As we will be reasoning about minimum weight paths,
∞ corresponds to an absent transition.

5Note the addition of the empty sequence ε to the left-hand-
side and right-hand-side alphabets.

AL(α) = +∞ otherwise. Such an automaton is
said to recognize L.

Definition 5. A tropical transducer T is a tuple
〈q0, Q,Σ,Λ, δ, ρ〉, where Σ and Λ are two alpha-
bets, and δ is an extended transition function
over theses two alphabets. All other members
of T are exactly as in definition 4. T defines a
weight function (of two arguments) T (α, β) =
minq∈Q δ∗(q0, α, β, q) + ρ(q). The weighted rela-
tion L(T ) of T is the set {〈〈σ, σ′〉, w〉 | T (σ, σ′) =
w}

The size |A| (resp. |T |) of an automaton A
(resp. a transducer T ) is defined as |Q|+ |δ|, where
|δ| is the number of finite-weight transitions. If
A and A′ are both weighted automata, we write
L(A) ∩ L(A′) to denote the weighted language
{〈α,w〉 | w = A(α) + A′(α)}. This is the inter-
section ofA andA′. If T is a transducer andA is an
automaton, we write L(T )◦L(A) for the weighted
relation {〈〈α, β〉, w〉 | w = T (α, β) +A(β)}. Sy-
metrically, we write L(A) ◦L(T ) for the weighted
relation {〈〈α, β〉, w〉 | w = A(α) + T (α, β)}.
Both are called applications of T to A. Note that
the intersection of two automata can be expressed
as an finite automaton as well and the application
of a transducer can be expressed as another trans-
ducer:

Lemma 1. 1. IfA andA′ are automata, one can
construct an automataA∩A′ such that L(A∩
A′) = L(A) ∩ L(A′). Moreover, A ∩A′ can
be computed in time O(|A||A′|) (Rabin and
Scott, 1959).

2. If A is an automaton and T is a transducer,
there exists a transducer T ◦ A such that
L(T ◦ A) = L(T ) ◦ L(A). Moreover, T ◦ A
can be effectively computed in time O(|T ||A|)
(Mohri, 2004). The same holds, up to symme-
try, for L(A) ◦ L(T ), and we write A ◦ T for
the corresponding transducer.

For all of the above statements the intuition is to
construct a new automaton/transducer that has pairs
of the two automata’s states as its states and has a
transition with weight w + w′ if the two automata
have matching transitions with weight w and w′

respectively. As a consequence, if A has m states,
u transitions and A′ (resp. T ) has m′ states, u′

transitions, then A∩A′ (resp. A ◦ T or T ◦A) has
O(|k||l|) states and O(|u||u′|) transitions.

Definition 6. For any transducer T , we let VT de-
note the function which maps every state to the
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minimal score which can be assigned to some se-
quence read from that state. Formally: VT (q) =
minα,β,q′δ

∗(q, α, β, q′) + ρ(q′).

In other words, VT gives the weight of the mini-
mum weight or shortest path to any final state plus
the weight of that state (Mohri, 2009).

Lemma 2. For any transducer T and state q, the
set

{〈q, VT (q)〉 | q ∈ Q}
can be computed in O(|Q||δ|) (Mohri, 2009).

This is a shortest path problem, solvable by
the Bellman-Ford (Mohri, 2009) algorithm. If
all weights are positive, this is amenable to
O(|Q|log(|Q|) + |δ|) through Dijkstra’s algorithm
(Dijkstra, 1959).

3 Finite State Automata Oracles

We now provide generic dynamic oracles, prove the
soundness of our constructions and provide com-
plexity upper-bounds. We will encode all the possi-
ble action sequences for a given imitation learning
problem as an automaton and then retrieve the next
transition in a minimum loss complete solution for
a given prefix.

The key question is how to derive an automaton
of losses from a problem instance without having to
explicitly go through all possible action sequences.
In order to do this, we need three requirements
guaranteeing applicability of finite-state techniques.
First, we must be able to build a decomposition au-
tomaton inverting the interpretation function, and
its language must not be empty. Second, we must
be able to approximate the loss function with a
transducer working over action sequences. Third,
there must be an automaton recognizing the set
of admissible candidate output action sequences
for the considered input. These requirements are
formally captured by the following definitions.

Definition 7. 〈x, g, J·K〉 has a decomposable gold
annotation if the set JgK−1 = {α ∈ O∗ | JαK = g}
is both regular and non-empty. An automaton
recognising this set is called a decomposition au-
tomaton.

In our constituency parsing example, the decom-
position automaton for a tree is simply the automa-
ton that accepts the bracketing for the tree, e.g., the
one recognizing “S( John VP( hit NP( the ball ) )
)” for the tree in Fig. 1. The automaton recogniz-
ing this sequence would have positions in the gold
output as states and would have transitions such

as 1, John, 2 or 2, V P (, 3 with weight 0. For ma-
chine translation the decomposition automaton may
recognize any of a number of possible gold trans-
lations. Note that our notion of “decomposable”
is unrelated to the notion of “arc-decomposable”
used in previous research on oracles for depen-
dency parsing. Our notions of decomposability is
concerned with decomposing every possible way
of arriving at the gold output into a sequence of
actions, while arc-decomposability tells us about
the interaction between added edges during depen-
dency parsing.

Definition 8. We say that L is decomposable if
there exists a transducer T such that for any in-
stance 〈x, g, J·K〉 ∈ P and sequences α, α′, β ∈
O∗, if L(Jα′K, JβK) < L(JαK, JβK), then there ex-
ists β′ ∈ O∗ such that Jβ′K = JβK and T (α′, β′) <
T (α, β).

Definition 8 relates the transducer and loss func-
tion with an inequality, not an equality. This pro-
vides more flexibility: we do not require that the
loss function be directly computed by a transducer.
If we did, then that would rule out very common
losses such as F-Score. Rather, we allow transduc-
ers which conserve the right minima (see Lemma 3
below). Variations of the Levenshtein edit-distance
between the output and gold-sequence are express-
ible as a (single state) transducer, and provides a
generic loss function in practical cases. Consider
our example of constituency parsing: the F-Score
is the harmonic mean of two measures that require
division by the total count of constituents present
in a prediction and is hard to express as a trans-
ducer. However, as shown by Cross and Huang
(2016), for purposes of an oracle, the number of
incorrectly inserted and missing brackets (which
corresponds to the edit distance between input and
output for our setting) fits definition 8 and can thus
replace a loss based on the F-Score. An incorrectly
inserted bracket will always reduce precision with-
out changing recall and vice versa for dropping a
bracket. For our example problem the transducer
would have have transitions 0, x, x, 0 with weight
0, which map every symbol to itself, transitions
0, X(, ε, 0, 0, ε,X(, 0 and 0, Y (, X(, 0 which al-
low us to delete, insert, or relable any opening
brackets X(, Y ( with weight 1, as well as transi-
tions 0, X), ε, 0 and 0, ε,X), 0 with weight 0.6

6Because closing brackets need to be matched, each in-
correctly inserted one will incur a loss through an incorrect
opening bracket
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The next lemma states that for any set of action
sequences, the input action sequence assigned min-
imum weight by some decomposition transducer is
indeed a minimum loss action sequence out of that
set.

Lemma 3. LetL be decomposable, 〈x, g, J·K〉 ∈ P ,
and T be as described in definition 8. For any
subset D ⊆ O∗,

if α̃ ∈ arg min
α∈D

min
β,JβK=g

T (α, β),

then α̃ ∈ arg min
α∈D

L(JαK, g)

Proof. Let α̃ ∈ arg minα∈D minβ,JβK=g T (α, β)

and β̃ ∈ arg minJβK=g T (α̃, β). If there existed
α′ ∈ D such that L(Jα′K, g) < L(Jα̃K, g), it
would follow from definition 8 that ∃β′, Jβ′K =
Jβ̃K = g and T (α′, β′) < T (α̃, β̃), which
contradicts the definition of α̃. Hence α̃ ∈
arg minα∈D L(α, β).

Finally, we need to add the regularity of the pos-
sible action sequences:

Definition 9. We say that x has regular constraints
iff τx is regular.

For our context free parsing example, all the pos-
sible parses for a sentence can be expressed in a
finite state automaton by virtue of the fact that any
finite language is regular. We obtain an automa-
ton of size O(n2) for an input of length n, when
we construct states that encode how many brack-
ets are open and which word was last produced.
We would have a state (3, c, t), which would be
reached after producing, e.g., ((a(bc for the input
sentence abcd. t and f would be use to indicate
whether we can still produce closing brackets be-
fore outputting the next word, to prevent outputs
like ((a(b(). We would allow, e.g., a transition
of the form (3, c, t), ), (2, c, t). Note that we only
need to maintain numbers up to the length of the
inputs sentence, since no more can be used in a
permissible parse for the input. Our construction
for the action sequence automaton allows for unary
bracketings, but since they do not occur in the gold
output and would always incur additional loss, this
will not constitute a difficulty.

From here on, we assume 〈x, g, J·K〉 to be an
instance with both decomposable gold annotation
and regular constraints, and L to be a decompos-
able loss function. We now proceed to a first oracle
construction which follows naturally from these as-
sumptions and some of the properties of finite state

machines listed in section 2. Let α ∈ O∗ represent
a sequence of k actions that the model has already
taken. We can find an optimal action for the next
step: consider an arbitrary candidate action o ∈ O
and recall that the oracle must determine which,
among the possible choices for o, is part of the
minimum loss completion of α into an admissible
action sequence. Letting (for any action sequence
γ) contγ = {γ′ ∈ τx | γ′ ≥ γ} denote the set
of admissible continuations of γ, we can formally
rephrase our objective as choosing an action o min-
imizing the quantity minα′∈contα•o L(Jα′K, g).

To ease notational clutter, let us define l(α′) =
minβ′∈JgK−1 T (α′, β′). Observe that lemma 3 en-
sures that we solve the oracle task if we find
õ ∈ arg mino∈O minα′∈contα·o l(α

′). For if we find
such õ, letting α̃ ∈ arg minα′∈contα•o l(α

′), we
have α̃ ∈ arg minα′∈contα l(α

′) (easily checked
from the definition of õ). Then, from lemma 3 fol-
lows that α̃ ∈ arg minα′∈contα L(Jα′K, g), which
(since α̃ ∈ contα•õ) finally shows that õ is one
of the optimal choices for continuing α, i.e. õ ∈
arg mino∈O minα′∈contα•o L(Jα′K, g).

How can we compute this quantity? We first
build an automaton Aα•o which recognizes the
set α • o • O∗. This is easily done as depicted
below, with the following graphical conventions:
states are circled, the start state (0) is marked with
a left-dangling incoming arrow, arrows between
states represented transitions, annotated with their
label(s) and weight (a set of labels like O is a
factored representation of one transition for each
o ∈ O, all with the same indicated weight), and
final weights are given by the downwards outgoing
arrows.

0 1 . . . k − 1 k α

α1, 0 α2, 0 αk−1, 0 αk, 0 o, 0

O, 0

+∞ +∞ +∞ +∞ 0

In our example setting, this would be an automa-
ton that accepts the brackets and word tokens pro-
duced so far, followed by all possible words and
brackets and which assigns weight 0 to each of
those transitions.

Let Cx be an automaton recognizing the set τx
of admissible actions for x (Cx exists since x has
regular constraints). In our example this would be
an automaton that accepts all the valid bracketings
of the input. Note that this can be represented as
a finite state automaton, due to the limit on open
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brackets we stipulated. Observe that Cx∩Aα•o (as
provided by lemma 1) recognizes contα•o.

Let now T be the transducer provided by defini-
tion 8, and Dg be a decomposition automaton for
g. Consider the transducer Tα•o = (Cx ∩Aα•o) ◦
(T ◦ Dg) (provided by two successive applications
of lemma 1), and let q0 be its initial state. With a
little work (we skip the details here, due to space
limitations), one can show that if β′ /∈ JgK−1 or
α′ /∈ contα•o then Tα•o(α′, β′) = +∞, and that
otherwise Tα•o(α′, β′) = T (α′, β′). This guaran-
tees:

min
α′

min
β′

Tα•o(α′, β′)

= min
α′∈contα•o

min
β′∈JgK−1

T (α′, β′).
(1)

Recall that VTα•o(q0) = minα′ minβ′ Tα•o(α′, β′).
Equation (1) and preceding observations establish
the soundness of the following oracle computation:

Oracle computation for prefix α. For each o ∈
O, construct Tα•o, then computes VTα•o(q0). Find
and output the action o minimizing VTα•o(q0).

In terms of our example, this would mean taking
the automaton that expresses all possible contin-
uations of a partial parse and intersecting it with
the automaton of all possible bracketings of the
input. Then we apply a transducer that encodes the
edit distance to the gold bracketing and extract the
shortest path from the resulting automaton

We now briefly discuss the complexity of a sin-
gle call to this oracle, and of a sequence of pre-
diction, at each timestep of an input’s processing.
Recall that k = |α| and observe thatAα•o hasO(k)
states and O(k) transitions. Let mT , mg and mx

denote the number of states of T , Dg and Cx re-
sepectively, and eT , eg, ex their respective number
of finite-weight transitions. We consider the size
of the alphabet O constant and exclude it from the
underlying variables of all the asymptotic bounds
reported. By lemma 1, computing Tα•o is done
in time O(k|Dg||T ||Cx|) = O(k(mg + eg)(mx +
ex)(mT + eT )), it has O(kmgmTmx) states and
O(kegeT ex) transitions. By lemma 2 computing
VTα•o(q0) is done in O((kmgmTmx)(kegeT ex)),
and is asymptotically the dominant term. Iterating
(a constant number of times) over o ∈ O leaves the
asymptotic bound O(k2(mgmTmxegeT ex)).

If a machine learning system builds and out-
puts a (complete) sequence of n actions in pro-
cessing (entirely) a given input x, and needs
to call the oracle at each timestep k ∈ [1, n]

(i.e., there is a call on each prefix of length
k of the complete action sequence), the overall
cost of oracle calls in the processing of x will
then be O(n3(mgmTmxegeT ex)). If no nega-
tive weights are involved, this can be lowered to
O(n2(mgmTmxlog(nmgmTmx) + egeT ex)).

This is extremely suboptimal, because the al-
gorithm discussed above is only superficially dy-
namic: at every timestep, an independent com-
putation arises with redundant work all the way
up to the prefix α of previous actions disregard-
ing the result of previous timesteps’ computations.
In fact, shortest path computations can be per-
formed in advance. To this aim, we can work with
Tε = Cx ◦ (T ◦ Dg), a transducer that combines
the automaton of all possible input sequences with
the decompositions of the gold output. This trans-
ducer is only dependent on the problem and the
loss function, hence only needs to be computed
once, at the time the corpus is created. We can
use the following observation: when we start pro-
ducing the output sequence, the best action is the
first action of the best path from Tε’s start state q0.
After outputting an action a, we can obtain a set
c of states in Tε that are reachable by reading a
from q0. The best next action must then be the first
action of some path from some state q′ ∈ c, which
is determined according to the cost of reaching q′

through a plus the weight of the best path from q′.
This updating can be carried forward during the
whole decoding process. This frees us from having
to repeat a lot of computation, as we will see that
we only need to compute the best paths in Tε once.
To formalize this: let Tε = 〈q0, Q,O,O, δ, ρ〉, then

min
α′∈contα

min
β′∈O∗

Tε(α
′, β′)

= min
q′

(min
β
δ∗(q0, α, β, q′) + VTε(q

′)).
(2)

Let Preα(q′) = minβ∈O∗ δ∗(q0, α, β, q′), the
minimum weight of a path reaching q′ from the
start state with α. Using Eq. (2), we have

arg min
o∈O

min
α′∈contα•o

min
β′

Tε(α
′, β′)

= arg min
o

min
q′

Preα•o(q′) + VTε(q
′).

Finally, since by construction Tε(α′, β′) 6= +∞
entails Jβ′K = g, it is sufficient to find

õ ∈ arg min
o

min
q′

(Preα•o(q′) + VTε(q
′)) (3)

to solve the oracle problem for prefix α. Our sec-
ond construction thus proceeds as follows:
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Second oracle computation for α. When con-
structing the problem, compute VTε for each in-
stance. During iteration, to obtain the optimal next
action o ∈ O for prefix α, choose the minimum of
Preα•o(q′) + VTε(q

′).
What we gain from this obviously depends on

the cost of computing Preα(q′) for every state q′.
The key insight is that Preα•o can be computed
inductively from Preα:

Preα•o(q′)

= min
β∈O∗

δ∗(q0, α • o, β, q′)

= min
β′,β′′,p

min
q′′

δ∗(q0, α, β′, q′′)

+ min
q′′′

δ(q′′, o, p, q′′′)

+ δ∗(q′′′, ε, β′′, q′)

= min
q′′

Preα(q′′)

+ min
q′′′

min
p
δ(q′′, o, p, q′′′)

+ δ∗(q′′′, ε, β′′, q′)

Obverse that in the second equality above, the quan-
tity minq′′′ minp δ(q

′′, o, p, q′′′) + δ∗(q′′′, ε, β′′, q′)
depends only on Tε, the states q′′ and q′, and not
on the prefix α. We thus refer to this quantity
as C(q′′, q′). Since it does not depend on α, it
can be precomputed once for every pair 〈q′′, q′〉,
and reused through every iteration. The cost of
this precomputation is asymptotically bounded by
O(|Q|3): the lion’s share is computing a table for
the (lhs) epsilon closure δ∗(q′′′, ε, β′′, q′), for all
pairs 〈q′′′, q′〉. This is an instance of an all-pair
shortest-path problem and solved with the Floyd-
Warshall algorithm (Mohri, 2009). This is also akin
to considering Tε has an automaton rather than a
transducer, using only the ’input’ side (lhs) of tran-
sitions, and eliminating ε transitions. Note in pass-
ing, that computing Preε is a similar problem and
therefore done with the same asymptotic bound.

Because Preα•o can be computed inductively, it
is possible to update it as the Dagger algorithm is
going through a problem instance computing first
Preε, and then updating by taking a minimum over
all possible transitions for the next action produced.
The induction step then computes Preα•o(q′) from
the different Preα(q′′) and C(q′′, q′) in O(|Q|2)
(since for each entry q′ we need to range over all
q′′). This could be reduced to constant time by
looking just at the inputs of Tε and making the
induced automaton deterministic (Hopcroft et al.,

2006), however, that would come at the cost of a
worst-case exponentially larger precomputation.

We now turn to the complexity analysis of the
refined oracle construction. Computing VTε is
the only precomputation that we have not yet ad-
dressed, and can be achieved in time O(|Q||δ|)
before any Dagger iterations. We can bound this
with O(|Q|3) as well. Oracle calls will receive a
(possibly empty) prefix of the form α. To compute
the oracle we have to compute Preα·o from Preα,
which will cost O(|Q|2) for a nondeterministic au-
tomaton, and then compute the minimum in equa-
tion (3). Hence, over a sequence of n actions with
oracle calls in one entire pass over input x in Dag-
ger, the total cost of oracle calls will be bounded
by O(|Q|3 + n|Q|2), or with the same notations as
before O((mxmgmT )3 + n(mxmgmT )2). Hold-
ing other parameters fixed, our second construction
is much more efficient with respect to n, the length
of the input. We can therefore conclude that our
second construction is much more efficient during
the actual Dagger training steps, with most of the
computation moved into preprocessing, which is
only needed once during the lifetime of a corpus.

Applied to our context free parsing example, our
analysis bounds an oracle call (and update of Pre)
with O(n6). The precomputation is bounded by
O(n9), and the total of oracle calls in building a
complete output is bounded with O(n7). However,
we used here a generic bound that will hold for
all instances of our method. No assumption were
made on the nature of the automata involved7, and
specific instances will allow more efficient imple-
mentation of automata-theoretic operations, with
no change to the general framework. We leave dis-
cussion of the automata theoretic properties that
enable more efficient oracles for future work.

4 Related Work

Our dynamic oracle construction is general and
only takes limited bookkeeping as seen in the previ-
ous section. However, this computation can still be
costly and one topic in existing imitation learning
is avoiding oracles computations where possible.
A recent approach uses statistical techniques for
the so called task of apple tasting to learn when
it is necessary to call to an expensive oracle and
when it is possible to instead use a cheap heuristic
(Brantley et al., 2020). We could implement trans-

7Also, we relied for simplicity on a worst-case estimation
O(Q2) for the number of transitions of Tε.
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ducer application and other computations on the
finite state automata in a lazy manner and avoid or-
acle computations in order to save on computations
for the automata and for tracking shortest paths.
Other work uses reinforcement learning in order to
derive approximate oracles (Yu et al., 2018; Fried
and Klein, 2018). By using reinforcement learning
to replace many of the oracle evaluation, it would
also be possible to save on automaton construction.

The finite state approach we have sketched can
give us an optimal action to take next. While this
is sufficient to implement active imitation learning
with a technique like Dagger, in some settings it
can be beneficial to use not just information on
what the best next action is, but rather to obtain the
minimum loss for every available action in a given
state (Ross and Bagnell, 2014) and to then train a
loss aware classifier. As we are already computing
these quantities, our algorithms would also suitable
for this setting.

Related Dynamic Oracles There are a number
of previously published oracles that are related to
our setting, even if they proceed slightly differ-
ently. They are particularly used for dependency or
constituency parsing. Note that our approach for
constructing an automaton expressing the loss for
all possible continuations could be applied to set-
ting where the output is produced in a fashion other
than left to right. Assume, e.g., that we use an algo-
rithm which produces parse trees by “splitting” a
sentence into sub-sequences repeatedly as in Stern
et al. (2017). Let the output generated to far be
S(NP(The old baker)VP(uses a sharp knife)). We
would then simply construct an automaton equiva-
lent to the regular expression S(NP(.∗The.∗old.∗
baker.∗)VP(.∗uses.∗a.∗sharp.∗knife.∗)), where
.∗ stands for an arbitrary sequence of brackets.
Through application of the loss transducer approx-
imating the loss for all possible action sequences,
we could retrieve the minimum loss continuation.
We leave work on whether this construction allows
for more efficient look-up to future work.

A predecessor of the work by Stern et al. (2017)
is the paper by (Cross and Huang, 2016) which
discusses a shift-reduce system for constituency
parsing and gives a constant time dynamic ora-
cle for this system. It would be possible to ex-
press their setting, as well as those of Coavoux and
Crabbé (2016), Fernández-González and Gómez-
Rodrı́guez (2018b) and the discourse parsing fo-
cused on of Hung et al. (2020) in our framework.

Dynamic oracles have also been developed for
different formalizations of the dependency pars-
ing problem (Goldberg and Nivre, 2012; Gold-
berg et al., 2014) for shift reduce parsing. For the
projective setting, one could generalize these ora-
cles by translating dependency tree to constituency
trees Mareček and Žabokrtský (2011) or tag se-
quences (Gómez-Rodrı́guez et al., 2020). Oracles
for non-projective dependency and constituency
parsing (Coavoux and Cohen, 2019; Nederhof,
2021; Gómez-Rodrı́guez and Fernández-González,
2015; Fernández-González and Gómez-Rodrı́guez,
2018a; de Lhoneux et al., 2017; Gómez-Rodrı́guez
et al., 2014) can in certain cases be computed in
polynomial time, but would be harder to express
in this framework without necessitating extremely
large automata as it would be difficult to encode
the different admissible sets of actions.

Our idea of using interpretations of action se-
quences is inspired by Interpreted Regular Tree
Grammars (IRTGs) (Koller and Kuhlmann, 2011).
Our approach works in terms of automata over
string sequences and IRTGs are based on automata
over trees. In future work we will use IRTGs to
extend our approach to additional domains.

5 Conclusion

This paper gives a generic approach for deriving
dynamic oracles for NLP. The oracles make it possi-
ble to implement error aware learning and learning
in ambiguous environments for a wide range of
NLP problems, including most problems that can
be approached with sequence to sequence models.
There is no need to derive new oracles for every
new loss or set of output actions, instead automata
can be derived once and reused if only part of a
problem changes. We also showed how to substan-
tially improve the efficiency of oracle lookup, by
moving most computational cost into a one time
pre-computation.
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Abstract

In this paper, we present the first statistical
parser for Lambek categorial grammar (LCG),
a grammatical formalism for which the graphi-
cal proof method known as proof nets is applica-
ble. Our parser incorporates proof net structure
and constraints into a system based on self-
attention networks via novel model elements.
Our experiments on an English LCG corpus
show that incorporating term graph structure is
helpful to the model, improving both parsing
accuracy and coverage. Moreover, we derive
novel loss functions by expressing proof net
constraints as differentiable functions of our
model output, enabling us to train our parser
without ground-truth derivations.

1 Introduction

In the family of categorial grammars, combina-
tory categorial grammar (CCG) has received by
far the most attention in the computational lin-
guistics literature. There exist algorithms for both
mildly context-sensitive (e.g., Kuhlmann and Satta,
2014) and context-free (typically CKY; Cocke and
Schwartz, 1970; Kasami, 1966; Younger, 1967)
CCG parsing, and there has been much research
on statistical CCG parsers (e.g., Clark and Curran,
2007; Lewis et al., 2016; Stanojević and Steedman,
2020). Another member of the categorial family,
Lambek categorial grammar (LCG), has been less
well-explored: LCG work has been primarily theo-
retical or focused on non-statistical parsing.

The recent lack of attention is likely due to two
notable results: (1) LCG is weakly context-free
equivalent (Pentus, 1997); and (2) LCG parsing is
NP-complete (Pentus, 2006; Savateev, 2012). How-
ever, neither of these issues is necessarily practi-
cally relevant. Moreover, LCG presents a number
of advantages and interesting properties. For exam-
ple, LCG provides even greater syntax-semantics
transparency than is the case for most CCG parsers

because it does not invoke non-categorial rules,
maintaining a consistent parsing framework. LCG’s
rules together define a calculus over syntactic cate-
gories that is a subset of linear logic (Girard, 1987).

LCG, like CCG or LTAG, is a highly lexicalized
formalism: lexical categories encode substantial
syntactic information, and as a result are them-
selves complex and structured. Despite this, the in-
ner structure of the categories has not been strongly
considered in parsers beyond evaluating the cate-
gory for compatibility with a grammatical rule.

In this paper, we present the first statistical LCG
parser. Unlike past parsers for CCG or LTAG, our
parser explicitly incorporates structural aspects of
the grammar. We base our system on proof nets,
a graphical method for representing linear logic
proofs that abstracts over irrelevant aspects, such
as the order of application of logical rules (Girard,
1987; Roorda, 1992). This corresponds to the prob-
lem of spurious ambiguity, making proof nets an
attractive choice for representing derivations.

Our work has two primary contributions. First,
we introduce a self-attention–based LCG parsing
model that incorporates proof net structure in mul-
tiple ways. We find that minding proof net structure
enables us to define a model that is differentiable
through this categorial structure down to the atomic
categories of the grammar, improving parsing ac-
curacy and coverage on an English LCG corpus.

Second, proof net constraints allow us to define
novel grammatico-structural loss functions that can
be used as training objectives. This enables us to
train a parser without ground-truth derivations that
has high coverage and even frequently includes
the correct parse among the parses that it finds.
Our analysis shows that all of our components
contribute to the parser’s performance, but that
planarity information is especially important.
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𝛥 ⊢ 𝑋/𝑌 𝛤 ⊢ 𝑌 /e
𝛥, 𝛤 ⊢ 𝑋

𝛤 ⊢ 𝑌 𝛥 ⊢ 𝑋\𝑌 \e
𝛤, 𝛥 ⊢ 𝑋

𝛤,𝑌 ⊢ 𝑋 /i
𝛤 ⊢ 𝑋/𝑌

𝑌, 𝛤 ⊢ 𝑋 \i
𝛤 ⊢ 𝑋\𝑌

axiom
𝑋 ⊢ 𝑋

Figure 1: The rules of the associative Lambek calculus
without product and allowing empty premises.

2 Background

2.1 Lambek categorial grammar
Lexical categories in LCG, like those of CCG, com-
prise an infinite set of categories that is formed by
the closure of two binary connectives, the forward
(/) and backward slash (\), on a small set of atomic
(i.e., primitive) categories, such as S and NP for sen-
tences and noun phrases. The connectives both cre-
ate functional categories, and they differ in which
of a word or phrase a specified argument must ap-
pear. For example, (S\NP)/NP/NP represents a
category that combines with two NPs to its right
and one NP to its left to yield a valid S.1 In English,
this category might represent a ditransitive verb.

Figure 1 shows the rules of inference for L*, the
associative Lambek calculus without product and
allowing empty premises. In L*, statements, called
sequents, have (ordered) lists of categories as an-
tecedents on the left of the turnstile and single
categories as consequents on the right. The inter-
pretation of a sequent is that its consequent can be
derived from its antecedents. The rules have their
premises above a bar, conclusions below, and a la-
bel for the rule to the right. Rules /e and \e eliminate
a slashed category, in that it is missing from their
conclusions; rules /i and \i introduce a new slashed
functor in the consequent of their conclusions.

Each rule states that its concluding sequent is
true (derivable) if and only if all of its premises are.
𝑋 and 𝑌 are variables over categories (atomic or
complex) whileΔ and Γ are variables over possibly-
empty2 lists of categories. A typical application of
LCG is to look up a category for each word in a
sentence and then inquire whether the consequent
S is derivable from the antecedent that lists these
categories in the same order as their words.

While some of CCG’s rules are not derivable
in the Lambek calculus (inter alia, crossing com-

1Although LCG’s usual notation employs these connec-
tives slightly differently, we use CCG notation here.

2There are calculus variants that disallow such empty lists.

position and substitution), first-degree harmonic
composition and type-raising are. At the same time,
LCG’s introduction rules cannot be derived by any
CCG with finite rules (Zielonka, 1981).

Although LCG parsing is known to be an NP-
complete problem (Pentus, 2006; Savateev, 2012),
Fowler (2010) presented an algorithm that is expo-
nential only in category order, a quantity that is
bounded to small values in practice (Fowler, 2016).

2.2 Term graphs: enhanced proof nets
Our work in this paper is based on a variety of
proof net known as term graphs. A term graph
is a digraph that represents a sequent proof in the
Lambek calculus. The atoms of the sequent cor-
respond to vertices in the graph, and the internal
structure of the lexical categories is represented
by regular edges and Lambek edges between the
vertices. Together, the vertices, regular edges, and
Lambek edges are referred to as a proof frame,
which is invariant across possible proofs for the se-
quent. A proof is represented by a proof frame plus
by an additional set of regular edges between the
vertices called a linkage. Different linkages corre-
spond to different proofs, which in turn correspond
to different syntactic parses. For a term graph to be
valid, the frame-plus-linkage is subject to certain
conditions, detailed below.3

To construct a proof frame for a sequent
𝐴1, 𝐴2, . . . , 𝐴𝑛 ⊢ 𝐵, the categories in the sequent
are first assigned positive or negative polarities.
Each lexical category 𝐴𝑖 of the antecedent is
marked negative (𝐴−𝑖 ), while the consequent 𝐵 is
marked positive (𝐵+). Each polarized category is
decomposed into its polarized atoms according to
a set of recursively-applied rules. These rules also
specify the regular and Lambek edges between the
atoms, represented as solid and dashed edges, re-
spectively. The lexical decomposition rules are:

(𝑋/𝑌 )− ⇒ 𝑋− → 𝑌+ (𝑋\𝑌 )− ⇒ 𝑌+ ← 𝑋−

(𝑋\𝑌 )+ ⇒ 𝑋+ d 𝑌− (𝑋/𝑌 )+ ⇒ 𝑌− c 𝑋+

The total order of the frame (indicated left-to-right)
is determined by the ordering of the lexical cat-
egories in the sequent together with the ordering
specified in the decomposition rules above.

A linkage for a proof frame consists of directed
edges called links from positive vertices to negative
vertices of the same atomic category. Valid linkages
form perfect matchings: each vertex in the frame

3See (Fowler, 2009, 2016) for full details.
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S− S+ NP− NP+ S− PP+ PP− NP+ NP− N+ N− S+

N S
difference ?

S/(S\NP) (S\NP)/PP PP/NP NP/N
What accounts for the

Figure 2: An example term graph. Dotted vertical lines
delimit polarized atoms within a word; solid vertical
lines mark lexical boundaries. The linkage is shown
above the atoms; the proof frame edges are shown below
them, with solid regular edges and dashed Lambek edges.
The consequent category is aligned with sentence-final
punctuation for convenience. This single term graph
represents multiple spuriously ambiguous derivations.

has exactly one link, and that link is outgoing for
positive vertices and incoming for negative vertices.

A term graph represents a proof in L* (Fowler,
2009), and therefore also an LCG parse, so long as
it meets the following conditions:

T1. The linkage is half-planar; i.e., the links can
be drawn above the linearly-ordered vertices
without crossing.

T2. Treating links as regular edges, the graph
is regular-acyclic; i.e., there are no cycles
containing only regular edges.

T3. For each Lambek edge ⟨𝑖, 𝑗⟩, there exists a
regular path from 𝑖 to 𝑗 .

A term graph that satisfies these conditions is called
L*-integral. Figure 2 shows an example term graph.

3 Neural network LCG parsing

For categorial and other highly-lexicalized gram-
matical formalisms, the standard approach to statis-
tical syntactic parsing separates the problem into
two steps: (1) a supertagger assigns lexical cate-
gories to the words in the input sentence; then (2) a
parser uses the supertagger’s predictions to produce
a predicted parse for the sentence. With proof nets,
the lexical categories uniquely determine the proof
frame, so supertagging can be seen as predicting a
proof frame for the sentence. The second step then
corresponds to predicting the linkage for the proof
frame. Of course, the linkage must, together with
the proof frame, yield an L*-integral term graph.

Our work in this paper focuses on the latter com-
ponent. Our parser is constructed such that we can
separate its aspects that incorporate term graph
structure and constraints from a “baseline” model
which uses almost no such information. To provide
a broad overview, our baseline model runs a Trans-
former encoder stack (Vaswani et al., 2017) over the

proof frame vertices. The top encoder block is trun-
cated, omitting everything after and including the
softmax, which directly yields scores for every pair;
we mask these scores so that only valid links (i.e.,
those from positive vertices to negative vertices of
the same atomic category) are considered.

We next detail our baseline model in Section 3.1
and then our various methods for incorporating
term graph structure in Sections 3.2–3.4. Note that
we use named tensor notation (Chiang et al., 2021)
in the mathematical descriptions.

3.1 Baseline: parsing by predicting links

3.1.1 Parser inputs
Our baseline model takes as input a sentence, an
associated proof frame, and an alignment between
the words in the sentence and the polarized atoms
that are the proof frame’s vertices. We represent
each word as a vector of size |vec| so that a sentence
of length |words| is represented as a matrix 𝑯 ∈
Rwords× vec. For a grammar with atomic categories
T = {𝑡1, 𝑡2, . . . , 𝑡 |𝑇 |}, the set of possible polarized
atoms is PT = {𝑡+1 , 𝑡−1 , 𝑡+2 , 𝑡−2 , · · · , 𝑡+|T |, 𝑡−|T |}; the
proof frame vertices are thus each represented as
one-hot vectors of width |pt| = |PT | = 2|T |. A
proof frame with |vtx| vertices is represented by
stacking its vertex’s vectors, forming a matrix 𝑵 ∈
{0, 1}vtx× pt with

∑
pt 𝑵 = 1. The vtx axis is ordered

according to the vertices’ total order. Finally, the
word-vertex alignment is represented as a matrix
𝑴 ∈ {0, 1}vtx×words where 𝑴vtx(𝑖) ,words( 𝑗) = 1 if
and only if vertex 𝑖 corresponds to word 𝑗 .

3.1.2 Transformer encoder stack
The Transformer encoder stack as defined by
Vaswani et al. (2017) adds positional encoding vec-
tors to the model inputs. In our case, we have two
input sequences (polarized atoms and word vec-
tors) of differing lengths, along with an alignment
between them. We include the positional encoding
vectors over the word positions as inputs to the en-
coder, and apply relative positional attention (Dai
et al., 2019) during the self-attention step over the
polarized atom positions. We found this combina-
tion most effective during development.

More precisely, we add the usual sinusoidal po-
sitional encoding vectors (Vaswani et al., 2017)
𝑷w ∈ Rwords× vec to the word vectors and map the
result to the vertex indices. We embed the polarized
atoms 𝑵 via trainable matrix 𝑨 ∈ Rpt× vec and add
them to their corresponding word vectors to yield
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inputs 𝑿0 ∈ Rvtx× vec for the encoder stack:

[PE(𝑝)]vec(𝑖) =




sin
(

𝑝 − 1
104(𝑖−1)/ |vec |

)
𝑖 odd

cos
(

𝑝 − 1
104(𝑖−2)/ |vec |

)
𝑖 even

[𝑷w]words(𝑝) = PE(𝑝)
𝑿0 = (𝑯 + 𝑷w) ⊙

words
𝑴 + 𝑵 ⊙

pt
𝑨

The Transformer encoder stack consists of 𝐿
encoder layers. Denoting the input to layer 𝑙 as
𝑿𝑙−1, with 𝑿0 as above, each layer computes 𝑿𝑙 as:

𝑻𝑙 = SelfAttn𝑙 (𝑿𝑙−1) + 𝑿𝑙−1

𝑿𝑙 = FFN𝑙 (𝑻𝑙) + 𝑻𝑙
with FFN defined as in (Vaswani et al., 2017).4

From a given input sequence, standard self-
attention computes query, key, and value tensors.
Although all three tensors derive from the same
input sequence, the key and value tensors function
as “memory” tensors, so their sequence axis is a
“lookup” axis distinct from that of the query tensors.
In our case, the input sequence axis is vtx, so we
preserve this distinction by renaming the vtx axis
to vtx′ for the key and value tensors.

We employ relative positional encoding follow-
ing Dai et al. (2019), allowing our model to directly
learn to attend to polarized atoms at positions rela-
tive to a given atom. The relative positional vectors
are represented as a tensor 𝑷v ∈ Rvtx× vtx′ × vec so
that [𝑷v]vtx(𝑖) ,vtx′ ( 𝑗) = PE(𝑖 − 𝑗) is the encoding
of position 𝑗 (on the key/value axis) relative to
position 𝑖 (on the query axis).

For multi-headed self-attention, each encoder
layer 𝑙 computes |heads| attention heads, each of
width |hdim|. We thus have trainable parameters
𝑾q,𝑙,𝑾k,𝑙,𝑾v,𝑙,𝑾r,𝑙𝑾o,𝑙 ∈ Rheads× hdim× vec and
𝒃k,𝑙, 𝒃r,𝑙 ∈ Rheads× hdim with which we compute the
query, key, value, relative position encoding, and
attention score tensors 𝑸𝑙, 𝑲𝑙,𝑽𝑙, 𝑹𝑙, and 𝑺𝑙 as:

𝑸𝑙 = 𝑾q,𝑙 ⊙
vec

𝑿𝑙−1 (1)

𝑲𝑙 = 𝑾k,𝑙 ⊙
vec
[𝑿𝑙−1]vtx→vtx′ (2)

𝑽𝑙 = 𝑾v,𝑙 ⊙
vec
[𝑿𝑙−1]vtx→vtx′

𝑹𝑙 = 𝑾r,𝑙 ⊙
vec

𝑷v

4We apply layer normalization (Ba et al., 2016) as well, but
omit it here for concision. We use the “pre-norm” application
order (Wang et al., 2019; Nguyen and Salazar, 2019).

𝑺𝑙 =

(𝑸𝑙 + 𝒃k,𝑙) ⊙
hdim

𝑲𝑙 + (𝑸𝑙 + 𝒃r,𝑙) ⊙
hdim

𝑹𝑙

√︁
|hdim|

(3)

where vtx → vtx′ denotes renaming axis vtx to
vtx′. Next, with final trainable parameter 𝑾o,𝑙 ∈
Rheads× hdim× vec, we compute the SelfAttn𝑙 output:

SelfAttn𝑙 (𝑿𝑙−1) =𝑾o,𝑙 ⊙
hdim
heads

(
softmax

vtx′
(𝑺𝑙)⊙

vtx′
𝑽𝑙

)
(4)

Each encoder layer includes all of these steps except
for the final layer 𝑙 = 𝐿, where we omit Equation 4.

Finally, we apply a mask 𝑭 ∈ {0,∞}vtx× vtx′ to
ensure that only edges from positive atoms to neg-
ative atoms of the same category are considered:

𝑭vtx(𝑖) ,vtx′ ( 𝑗) =



0 if atom(𝑖) = atom( 𝑗)
and pol(𝑖) > pol( 𝑗),

∞ otherwise

𝑺 = mean
heads
(𝑺𝐿) − 𝑭 (5)

where atom(𝑖) returns the category of vertex 𝑖 and:

pol(𝑖) =
{

1 if vertex 𝑖 is positive,
−1 if vertex 𝑖 is negative.

3.1.3 Linkage loss function
Given the predicted score matrix 𝑺, it still remains
to specify how to predict candidate linkages. We
first note the problem with which we are presented
at this stage is exactly that of finding the max-weight
(or min-cost) perfect bipartite matching. Ideally, 𝑺
will provide scores that, when optimized over, yield
the desired matching, i.e., the ground-truth linkage.

As we aim to train our parser on a corpus
with ground-truth linkages using gradient descent,
our perfect matching algorithm must be differen-
tiable for training so that gradients can be back-
propagated through it from the loss function; we
use Sinkhorn’s algorithm (Sinkhorn and Knopp,
1967) with temperature, also known as SoftAssign
(Kosowsky and Yuille, 1994; Gold and Rangarajan,
1996b). The procedure, which alternates normaliz-
ing the rows and columns of exp(𝑺/𝜏), 𝜏 > 0, con-
verges to a doubly-stochastic matrix. In the limit
of 𝜏 → 0, this converges to the optimal matching
(Mena et al., 2018), thereby providing a means of
computing the optimal linkage. Moreover, with the
addition of standard Gumbel noise, 𝑺 can be seen
to parameterize a distribution over permutation ma-
trices, with the Sinkhorn operator then functioning
as a means of sampling from this distribution.
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Importantly for training with gradient descent,
the operations of Sinkhorn’s algorithm are fully
differentiable. For a given doubly-stochastic output
matrix from Sinkhorn’s algorithm, the negative log
likelihood 𝔍NLL of the ground-truth linkage L ={⟨𝑖1, 𝑗1⟩, ⟨𝑖2, 𝑗2⟩, . . . , ⟨𝑖 |vtx |/2, 𝑗 |vtx |/2⟩

}
is a natural

choice of loss function for training:

𝒁 = Sinkhorn
vtx,vtx′

(exp(𝑺/𝜏)) (6)

𝔍NLL(L, 𝒁) = −mean
⟨𝑖, 𝑗 ⟩∈L

(
ln[𝒁]vtx(𝑖) ,vtx′ ( 𝑗)

)
(7)

Our base model uses this loss function and is trained
with the ground-truth linkages as targets.

3.2 Modelling term graph structure

The model just described is a straightforward appli-
cation of attention scores and Sinkhorn’s algorithm
to the problem of finding linkages for a proof frame.
However, the only place where the structured na-
ture of the proof net is exploited is in the polarity
and category restrictions on the matching; other
relevant characteristics are not directly taken into
account, such as the proof frame or the validity con-
ditions. Given that the validity conditions cannot
even be evaluated without the proof frame edges,
we hypothesize that including knowledge of the
proof frame structure will help the model to select
valid linkages, or even the correct one. Similarly,
encoding information about the validity conditions
themselves may also be beneficial. We therefore
incorporate term graph structure into our model in
a number of ways, which we now describe.

3.2.1 Regular and Lambek edges
As is, the parser does not have knowledge of the
internal structure of the lexical categories; while it
receives as input the atomic category and polarity of
each vertex in the proof frame, it has no knowledge
of the regular and Lambek edges. We hypothesize
that incorporating this structure will boost parser
performance, as the edges provide crucial informa-
tion about which links combinations fail to satisfy
the validity conditions for term graphs.

To encode these edges in the parser, we alter the
inputs to the encoder’s attention blocks. We repre-
sent the regular edges as an adjacency matrix 𝑬R ∈
{0, 1}vtx× vtx′ where [𝑬R]vtx(𝑖) ,vtx′ ( 𝑗) = 1 if and only
if the proof frame has a regular edge from (negative)
vertex 𝑖 to (positive) vertex 𝑗 . Lambek edges are rep-
resented similarly as an adjacency matrix 𝑬L. For

each encoder layer 𝑙, we introduce four new trans-
formation matrices 𝑾q,R,𝑙,𝑾q,L,𝑙,𝑾k,R,𝑙,𝑾k,L,𝑙 ∈
Rheads× hdim× vec and alter Equations 1 and 2:

𝑸𝑙 =𝑾k,𝑙 ⊙
vec

𝑿𝑙−1

+
[(
𝑾q,R,𝑙 ⊙

vec
𝑿𝑙−1

)
⊙
vtx

𝑬R

]
vtx′→vtx

+
(
𝑾q,L,𝑙 ⊙

vec
[𝑿𝑙−1]vtx→vtx′

)
⊙

vtx′
𝑬L

𝑲𝑙 =𝑾q,𝑙 ⊙
vec
[𝑿𝑙−1]vtx→vtx′

+
[(
𝑾k,R,𝑙 ⊙

vec
[𝑿𝑙−1]vtx→vtx′

)
⊙

vtx′
𝑬R

]
vtx→vtx′

+
(
𝑾k,L,𝑙 ⊙

vec
𝑿𝑙−1

)
⊙
vtx

𝑬L

Per adjacency matrix, this alteration first com-
putes a transformation of the input for both the
query and key aspects of the self-attention trans-
formation. Multiplying by the adjacency matrix
then, for each vertex 𝑖, sets the value to be equal to
the sum of the values of either 𝑖’s out-neighbours
or 𝑖’s in-neighbours, depending on the particular
term. This serves as a form of message passing
along the graph edges, similar to some methods in
graph-based neural networks (Gilmer et al., 2017).

3.2.2 Planarity-aware attention
Condition T1 requires that term graph linkages be
half-planar. We include planar crossing information
in the attention scores 𝑺𝑙 in Equation 3 for each
vertex pair by subtracting the mean attention score
of conflicting vertex pairs. More formally, let X𝑖 𝑗
denote the set of vertex pairs between which a link
would cross with a link between vertex pair (𝑖, 𝑗)
in the half-plane above the linearly ordered vertices
of the term graph. Then we adjust 𝑺𝑙 as follows:

X′𝑖 𝑗 =
{
(𝑘, 𝑚)

����� 𝑘 < 𝑖 < 𝑚 < 𝑗

or 𝑖 < 𝑘 < 𝑗 < 𝑚

}

X𝑖 𝑗 = X′𝑖 𝑗 ∪ {(𝑚, 𝑘) | (𝑘, 𝑚) ∈ X′𝑖 𝑗} (8)
[𝜇cross(𝑨)]vtx(𝑖) ,vtx′ ( 𝑗) = mean

(𝑘,𝑚) ∈X𝑖 𝑗
[𝑨]vtx(𝑘) ,vtx′ (𝑚)

𝑺′𝑙 =

(𝑸𝑙 + 𝒃k,𝑙) ⊙
hdim

𝑲𝑙 + (𝑸𝑙 + 𝒃r,𝑙) ⊙
hdim

𝑹𝑙

√︁
|hdim|

𝑺𝑙 = 𝑺′𝑙 − 𝜇cross(𝑺′𝑙)
3.2.3 Edge filtering
In Equation 5, a mask is applied to the candidate
link scores produced by the model to enforce the
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category and polarity constraints. We augment this
mask in two ways. First, we disallow necessar-
ily non-planar links, i.e., links that cannot be in
any planar linkage. Penn (2004) defined a context-
free grammar for building planar linkages; we use
this CFG with the inside-outside algorithm (Baker,
1979) to identify whether candidate links each exist
in any spanning planar linkage.

Second, we disallow intra-word links, i.e., links
between any two vertices that map to the same word.
Some of these links are permissible according to
the rules of L*, but do not occur in our corpus;
moreover, their linguistic utility is unclear. Overall,
we expect that these restrictions on allowable links
will help reduce the size of the search space, thereby
improving system performance.

Inspecting Figure 2 exemplifies how these extra
filters can be useful. Disallowing necessarily non-
planar links eliminates a candidate link from the
NP+ of “for” to the NP− of “What” as it would
prevent the NP+ and S− of “accounts” as well as
the NP− of “the” each from having any planar links.
This then implies that there must be a link from
the NP+ of “for” to the NP− of “the”, since that is
the only remaining option. Similarly, disallowing
the S+ of “What” from linking to its own S− im-
mediately implies that it must then link to the S−
of “accounts” while also preemptively preventing
a violation of condition T2.

3.3 𝑘-best linkages

While Sinkhorn (with Gumbel noise) provides dif-
ferentiable sampling of matchings, it has two note-
worthy drawbacks. First, it sometimes does not con-
verge to an exact permutation and gets stuck with
some values very close to 0.5 (Guigues, 2020), re-
quiring some means of or discretizing such cases
(e.g., Gold and Rangarajan, 1996a). This does not
pose a potential issue for our parser during training,
since 𝔍NLL does not require a permutation matrix.
During inference, however, the parser needs to be
able to produce a discrete result as its output parse.

Second, Sinkhorn makes it difficult at best to
retrieve multiple matchings from the distribution.
Without Gumbel noise (and with sufficiently small
𝜏), it will converge to the best permutation, but one
cannot specifically retrieve the second-best (etc.)
matchings from this. Sampling (via the addition
of Gumbel noise) may yield multiple matchings,
but there is no guarantee of their overall rank; fur-
thermore, if the input matrix represents a very con-

centrated distribution, retrieving further matchings
may require inordinate sampling rounds.

Since there can be multiple valid parses for a
sentence, a parser should ideally be able to return
multiple parses if they exist. Moreover, there is
no guarantee that the predicted linkage 𝒁 in Equa-
tion 6 will yield an L*-integral term graph, so it
is worthwhile to be able to evaluate alternatives.
We therefore use Murty’s algorithm (Murty, 1968),
a 𝑘-best optimal matching algorithm, to produce
𝑘 candidate linkages from 𝑺. We stably sort the
linkages according to the number of term graph
conditions that they violate when combined with
the input proof frame, allowing fractional viola-
tions of condition T3. Enabling the production of
multiple candidate parses also makes it possible
for the parser to return the correct parse when it
otherwise might not have done so.

3.4 L* structural loss
In contrast to other statistical parsers, the system
presented thus far does not have any explicit encod-
ing of the rules of the grammar. Since the negative
log-likelihood loss function (Equation 7) is based
only on the ground-truth linkage, it is not clear how
well the model will be able to generalize and re-
turn multiple valid linkages when applicable, rather
than linkages most similar to the correct one. We
therefore introduce loss function terms that directly
encode the term graph validity conditions, and posit
that they will help the parser produce linkages that,
with the input proof frame, yield an L*-integral term
graph. These novel loss functions also enable train-
ing our model without ground-truth derivations.

For condition T1, we define the planarity loss
function 𝔍T1 as a function of the post-Sinkhorn
matrix 𝒁 from Equation 6 so that each link in each
pair of crossing links is penalized in proportion to
the scores given to the pair:

𝔍T1(𝒁) =
∑︁
𝑖, 𝑗

(
𝒁vtx(𝑖) ,vtx′ ( 𝑗)

∑︁
(𝑘,𝑚) ∈X𝑖 𝑗

𝒁vtx(𝑘) ,vtx′ (𝑚)

)

where X𝑖 𝑗 is defined as in Equation 8. Minimizing
𝔍T1 then corresponds to minimizing the scores
assigned to crossing links.

The remaining loss terms require further compu-
tation. Note that conditions T2 and T3 both express
constraints on the (non-)existence of certain regu-
lar paths; the latter is already stated as such while
the former can be equivalently restated as barring
regular paths from any vertex to itself. Checking
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for the existence or absence of paths between two
vertices of a graph requires traversing graph edges.
As graph traversal corresponds to multiplication by
the graph’s adjacency matrix, this presents a differ-
entiable means of computing the extent to which a
candidate term graph meets conditions T2 and T3.

For an arbitrary weighted graph 𝐺 with vertices
V, denote byW𝑖, 𝑗 ,𝑛 the set of all walks of length
𝑛 from vertex 𝑖 to vertex 𝑗 . By definition, each
walk 𝑤 ∈ W𝑖, 𝑗 ,𝑛 is a sequence of 𝑛 edges, i.e.,
𝑤 = (⟨𝑘1, 𝑙1⟩, ⟨𝑘2, 𝑙2⟩, . . . , ⟨𝑘𝑛, 𝑙𝑛⟩), 𝑘1 = 𝑖, 𝑙𝑛 = 𝑗 .
Let 𝑨 denote the adjacency matrix of 𝐺; then
the matrix power 𝑨𝑛 represents the sum (over
walks) of walk edge products, i.e., (𝑨𝑛)𝑖, 𝑗 =∑

𝑤∈W𝑖, 𝑗,𝑛

∏
⟨𝑘,𝑙⟩∈𝑤 (𝑨)𝑘,𝑙 . If edges in 𝐺 have only

positive weights, then (𝑨𝑛)𝑖, 𝑗 = 0 if and only if
there are no walks of length 𝑛 from vertex 𝑖 to
vertex 𝑗 . It then follows that (∑𝑁

𝑛=1 𝑨
𝑛)𝑖, 𝑗 = 0 if

and only if there are no walks of length ≤ 𝑁 from
vertex 𝑖 to vertex 𝑗 . Since a cycle in 𝐺 can have
length at most |V|, 𝐺 is therefore acyclic if and
only if (∑𝑁

𝑛=1 𝑨
𝑛)𝑖,𝑖 = 0∀𝑖 ∈ V, 𝑁 ≥ |V|.

Returning to term graphs, for condition T2 this
means that we can detect regular cycles in a can-
didate graph with |V| vertices by constructing an
adjacency matrix 𝑨 ∈ R |V | × |V | from the regular
edges of the proof frame together with the can-
didate linkage, computing

∑ |V |
𝑛=1 𝑨𝑛, and then ver-

ifying that the diagonal entries are all zero. For
condition T3, we can similarly inspect the entries
corresponding to the parent and child nodes of all
Lambek edges and verify that they are all one, in-
dicating that a regular path exists. We can now see
how to specify these conditions as loss functions:

𝑮 =
|vtx |∑︁
𝑛=1

𝑨𝑛 =
|vtx |∑︁
𝑛=1
(𝑬R + 𝒁)𝑛

𝔍T2(𝑮) =
|vtx |∑︁
𝑖=1
(𝑮𝑖,𝑖)2

𝔍T3(𝑮) =
|vtx |∑︁
𝑖=1

|vtx |∑︁
𝑗=1
(𝑬L)𝑖, 𝑗 (𝑮𝑖, 𝑗 − 1)2

Minimizing𝔍T2 and𝔍T3 correspond to minimizing
violations of conditions T2 and T3, respectively.

We refer to the sum of these three loss functions
𝔍L* = 𝔍T1 +𝔍T2 +𝔍T3 as the (L*) structural loss.

4 Related work

A key aspect of our parser is that it makes use of
a structured decomposition of lexical categories

in categorial grammars. In this sense, our work
follows up on the intuition of recent “construc-
tive” supertaggers, which have been explored for
a type-logical grammar (Kogkalidis et al., 2019)
and for CCG (Bhargava and Penn, 2020; Prange
et al., 2021). Such supertaggers construct cate-
gories out of the atomic categories of the grammar;
this challenges the classical approach to supertag-
ging, where lexical categories are treated as opaque,
rendering the task of supertagging equivalent to
large-tagset POS tagging. With this view, it be-
comes possible for novel categories to be produced;
furthermore, the supertaggers are better able to in-
corporate prediction history and thereby produce
grammatical outputs (Bhargava and Penn, 2020).

Recently, Kogkalidis et al. (2020) proposed a
system for parsing a “type-logical” grammar that
is essentially a modal, non-directional extension of
LCG. The Dutch grammar they used is substantially
different from our grammar: their connectives are
both modal and non-directional; in addition, they
have far more atomic categories. While their model
is similar to our baseline (Section 3.1), our work
here differs substantially in that we incorporate
proof-net structural elements and validity condi-
tions, and our system is able to return multiple
linkages (Sections 3.2–3.4). Our approach also en-
ables ground-truth–free training.5

Lastly, our trained parser operates in polynomial
time. Since LCG parsing is NP-complete, our work
adds to the body of recent work applying neural
networks to NP-hard combinatorial optimization
problems to yield polynomial-time approximate
solvers (e.g., Li et al., 2018; Gannouni et al., 2020;
Sultana et al., 2020; Cappart et al., 2021).

5 Experiments

5.1 Data
We train our models on LCGbank, a semi-automatic
conversion of CCGbank to LCG (Fowler, 2016).
This conversion necessitated adjusting for instances
of CCG’s crossing rules that are not permitted in
LCG, as well as providing fully categorial parses for
the cases in CCGbank where non-categorial rules
are used (e.g., unary type-changing).6 LCGbank
also omits features on its categories and includes

5Although Kogkalidis et al. (2020) describe their model’s
training as “end-to-end”, their approach is perhaps better de-
scribed as joint training. A truly end-to-end system would
allow differentiation through the supertagger/proof frame con-
struction, which remains a topic for further investigation.

6Refer to (Fowler, 2016) for further conversion details.
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Category Count

NP 1,356,438
S 563,390
N 419,766
PP 48,642
conj 844

Category Count

, 32
RRB 26
: 16
. 2
LRB 2

Table 1: Counts of atomic categories in LCGbank.

the 274 sentences that were originally excluded
from CCGbank. These adjustments substantially
increase the number of lexical categories in LCG-
bank compared to CCGbank. Without the features,
CCGbank has 476 unique lexical categories, while
LCGbank has 987. Decomposed, the categories
yield 10 atomic categories, shown in Table 1.

We follow the CCGbank/PTB tradition of using
section 0 for development/validation and section
23 for testing, yielding 1,921 and 2,414 sentences,
respectively. For training, however, we use all of the
remaining data (sections 1–22 and 24), in contrast
to the usual training set for CCGbank (sections 2–
21). This is simply to make full use of all available
data and yields 44,833 sentences for training.

5.2 Model & training details

We implement our model with PyTorch (Paszke
et al., 2019) and PyTorch Lightning (Falcon et al.,
2019). Including the truncated top layer, we use
three encoder layers (i.e., 𝐿 = 3) with |vec| =
384 and |heads| = 4. We use ReLU activations
(Nair and Hinton, 2010) throughout. Parameters
are initialized according to PyTorch’s defaults. Our
transformer uses normalization before each layer
rather than after (Wang et al., 2019; Nguyen and
Salazar, 2019). To represent the lexical inputs, we
use a distilled (Sanh et al., 2019) version of Roberta
(Liu et al., 2019) as provided by the Hugging Face
Transformers library (Wolf et al., 2020).

For our inside-outside algorithm implementa-
tion, we adopt Rush’s (2020) overall method for
adapting it to GPU matrix operations. We imple-
ment the intensive parts of the algorithm as custom
CUDA kernels that operate on packed Booleans.
We use the fastmurty library (Motro and Ghosh,
2019) for the 𝑘-best matchings algorithm.

Training examples are sorted by output sequence
length to yield efficient batches; the ordering of the
batches is shuffled every epoch. We clip gradients,
scaling accordingly, if the sum of gradient norms

exceeds 1. We train our models with the AdamW
optimizer (Loshchilov and Hutter, 2019; Kingma
and Ba, 2014) for 40 epochs, halving the learning
rate when performance reaches a plateau with pa-
tience of three epochs. We keep the model weights
from the epoch with the best development set per-
formance. We report results averaged over three
training runs with different random seeds.

We tune hyperparameters with Optuna (Akiba
et al., 2019), using the tree-structured Parzen esti-
mator (Bergstra et al., 2011) for sampling and asyn-
chronous successive halving (Karnin et al., 2013;
Jamieson and Talwalkar, 2016; Li et al., 2020) for
pruning. The initial learning rate and weight decay
coefficients are sampled from log-uniform distribu-
tions on [10−5, 10−2) and [10−7, 10−2), respectively.
The dropout rate is sampled from a uniform distri-
bution on [0, 0.6). We also use dropout on the input
lexical tokens, sampled uniformly on [0, 0.1).

5.3 Experimental conditions and evaluation

We evaluate four conditions: (1) the baseline model
(Section 3.1) trained only with 𝔍NLL; (2) the im-
proved model (Section 3.2) trained only with 𝔍NLL;
(3) the improved model trained with both 𝔍NLL and
𝔍L*; and (4) the improved model trained only with
𝔍L*. The latter condition is trained without ground
truth while the others are trained with it. Since com-
paring the two cases would be unfair (especially on
a measure such as sentence accuracy), we evaluate
them separately. To evaluate the effect of allowing
𝑘-best linkages (Section 3.3), we evaluate all condi-
tions with both 𝑘 = 1 and 𝑘 = 512. Note that with
𝑘 = 1, our baseline model is similar in design to
that of Kogkalidis et al. (2020), with minor differ-
ences such as model sizes and vector embedding
details; this represents the closest point of compar-
ison while controlling for our other model aspects
as well as our grammar and corpus.

We evaluate our parser using four measures:
(1) link accuracy, the percentage of positive ver-
tices that were assigned their correct negative ver-
tex; (2) sentence accuracy, the percentage of sen-
tences with 100% link accuracy; (3) coverage, the
percentage of sentences for which an L*-integral
linkage was found; and (4) the average number of
unique parses (i.e., L*-integral) found per sentence.

When used for computing 𝔍NLL, we use
Sinkhorn temperature 𝜏 = 0.01. We use a sepa-
rate temperature parameter 𝜏L* when computing
𝔍L*. The intuition behind this is that because 𝔍NLL
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Condition LAcc SAcc Cov Parses

Baseline 97.7 86.2 97.3 —
+TG 97.9 87.4 98.4 —
+TG+𝔍L* 97.9 87.2 98.7 —

Baseline 97.9 87.7 99.8 5.9
+TG 98.0 88.2 99.96 5.7
+TG+𝔍L* 98.0 87.8 99.96 5.8

𝑘
=

1
𝑘
=

51
2





Table 2: Link accuracies (LAcc), sentence accuracies
(SAcc), coverage (Cov), and average number of parses
per sentence for the 𝔍NLL-trained systems on the LCG-
bank test set. +TG refers to the model changes of Sec-
tion 3.2. +TG+𝔍L* includes the model changes and is
trained with both 𝔍NLL and 𝔍L*. All values are averages
over three random seeds.

permits one specific parse while 𝔍L* permits multi-
ple parses, they may require different levels of un-
certainty in their corresponding doubly-stochastic
matrices. We treat 𝜏L* as a hyperparameter with
initial values sampled log-uniformly on [0.01, 10).

For the condition that includes both 𝔍NLL and
𝔍L*, we linearly combine the two to obtain the final
objective function 𝔍 = 𝛼𝔍NLL +(1 − 𝛼) 𝔍L*. We
tune 𝛼 as a hyperparameter as well, with initial
uniform sampling on [0.05, 0.95).
5.4 Results
5.4.1 Training with ground truth
Table 2 shows the performance of the systems
trained against gold-standard linkages. Evaluating
multiple linkages from the single score matrix 𝑺
is clearly beneficial on all accounts. In particular,
doing so yields almost complete coverage for all
cases, but especially for our two improved versions.
The accuracies improve as well; since our sorting of
multiple candidates linkages is stable, the improve-
ments to sentence accuracy come from cases where
the correct parse was scored higher than other valid
parses, but lower than some invalid parses. Here,
filtering the list using the term graph validity con-
ditions is clearly useful.

Incorporating term graph structure in the model
as described in Section 3.2 improves performance
as well, though not by as much as evaluating mul-
tiple linkages. While we expected the number of
parses per sentence found by the parser to increase
due to the presence of grammatico-structural in-
formation, in fact it returned fewer parses. With
𝔍NLL as the sole training objective, the model uses
this extra information solely to increase its perfor-

mance as measured by that objective. Interestingly,
adding 𝔍L* to the model improvements seems to de-
crease accuracy, nearly to the baseline’s level for the
𝑘 = 512 case. Coverage remains high, however. In
this case, we believe that the two training objectives
are somewhat conflicting, with 𝔍NLL pushing the
model towards the correct linkage but 𝔍L* equally
preferring other valid linkages.

5.4.2 Training without ground truth
Training a model without ground-truth linkages
impairs system performance substantially, as ex-
pected: the model has no signal guiding it to the
correct linkage, nor differentiating the correct link-
age from other valid ones. With 𝑘 = 1, the system
achieves 91.2% coverage on the LCGbank test set.

With 𝑘 = 512, this increases substantially to
96.2%. Here the parser finds an average of 5.9
parses/sentence. Since it did not find a single valid
parse for 3.8% of sentences, the number of parses
found for covered sentences is 6.2. This is further in
line with the idea that 𝔍L* “pulls” the model away
from the correct parse in the direction of other
(valid) parses.

Since the loss function cannot distinguish correct
linkages from other valid ones, this configuration
cannot be expected to select the correct linkage.
Nonetheless, the correct parse appears in the sys-
tem’s set of output parses for 79.0% of sentences,
appearing at the top (i.e., the correct sentence is
given the highest score) for 53.4% of sentences
with 𝑘 = 1 and 54.9% of sentences with 𝑘 = 512.

5.5 Analysis

Finally, we conduct a post-hoc ablation study for
the ground-truth–free condition. For each ablated
as, we adjust the model or loss function accordingly,
and then retrain the model from scratch using the
same hyperparameters as the original model. Ta-
ble 3 shows the results, comparing coverage of the
ablated versions with that of the original.

We see that removing all planarity information
(i.e., the link filtering, the planarity-aware attention,
and the planarity loss term 𝔍T1) is disastrous; this
condition has by far the largest drop in coverage.
This is especially notable as LCG proof nets must
be half-planar due to the non-commutativity of L*;
this useful constraint is not present in type-logical
grammars that do not have this property, such as
that employed by Kogkalidis et al. (2020).

Other decreases range from moderate to small:
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Condition 𝑘 = 1 𝑘 = 512

+TG+𝔍L*−𝔍NLL 91.2 96.2
−𝔍T1 84.5 95.1
−𝔍T2 72.9 92.9
−𝔍T3 70.6 93.8
−RL 89.0 95.9
−IW 81.1 91.0
−IW−NP 73.9 85.6
−RL−IW−NP−PA 74.9 90.7
−IW−NP−PA−𝔍T1 19.2 44.7

Table 3: LCGbank test set coverage under various
ground-truth–free training conditions. −𝔍𝑥 removes
loss term 𝑥; −RL removes regular and Lambek edges;
−IW removes the filter on intra-word links; −NP re-
moves the filter on non-planar links; −PA removes
planarity-aware attention. In contrast to Table 2, here
the ablated versions (all but the first line) are results
from one single training run each.

• All three loss terms are important, with cov-
erage decreasing notably upon ablation; the
decrease is lowest for 𝔍T1, suggesting that its
removal is partially ameliorated by the other
sources of planarity information in the model.

• Removing the regular and Lambek edge infor-
mation decreases coverage by a small amount.

• Filtering out intra-word links is surprisingly
important; we had suspected that, since the
model has information about which words are
the same for given atomic category pairs, it
would learn to avoid them. If the filter on non-
planar links is also removed, coverage drops
further. Removing planarity-aware attention
and the proof frame edge information (i.e.,
stripping down to the baseline system of Sec-
tion 3.1, but here training with the structural
loss only) strangely slightly restores coverage.

6 Conclusion and future work

We have presented an LCG parser with multiple
novel techniques, including neural term graph struc-
ture and structural constraint encodings, novel loss
functions derived from LCG term graph validity
conditions, and a self-attention–based system for
returning and efficiently evaluating 𝑘-best match-
ings. Evaluating on a corpus of English LCG proof
nets, we found our improvements to be effective,
especially the 𝑘-best matchings. Our loss functions,
furthermore, enable training an LCG parsing model

without ground-truth derivations or linkages. Anal-
ysis shows that planarity conditions are especially
important, but that all of our alterations contribute
to the parser’s improved performance.

As we saw in Table 2, combining 𝔍NLL and 𝔍L*
seems to be detrimental to parser accuracy. The
two loss terms have seemingly conflicting objec-
tives, with the former concentrating probability
mass around a single solution and the latter spread-
ing probability mass over multiple solutions. We
believe it would be worthwhile to explore combin-
ing these two in a more congruent manner.

Since our model allows differentiating through
the structure of lexical categories, the obvious next
step is to incorporate a supertagger and pass gra-
dients down to it. As it stands, supertaggers have
rudimentary knowledge of their context, with no
notion of how the atomic subcategories of one cate-
gory might combine with those of another. A tight
coupling of the techniques we proposed here with
an appropriately designed supertagger would yield
a true end-to-end differentiable LCG parser.

Lastly, we believe further investigation of struc-
tural constraints and objectives to be promising.
Although we still relied on supertags from the
corpus, our results with the grammatico-structural
loss functions demonstrate the training of a high-
coverage parser with a decreased annotation burden.
Techniques such as those presented here suggest a
potential path to parsing with lower data require-
ments, or perhaps even to structured, formalism-
driven unsupervised parsing.
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Abstract

The Reading Machine, is a parsing framework
that takes as input raw text and performs six
standard NLP tasks: tokenization, POS tagging,
morphological analysis, lemmatization, depen-
dency parsing and sentence segmentation. It
is built upon Transition Based Parsing, and
allows implementing a large number of pars-
ing configurations, among which a fully incre-
mental one. Three case studies are presented
to highlight the versatility of the framework.
The first one explores whether an incremen-
tal parser is able to take into account top-down
dependencies (i.e. the influence of high level
decisions on low level ones), the second com-
pares the performances of an incremental and
a pipe-line architecture and the third quantifies
the impact of the right context on the predic-
tions made by an incremental parser.

1 Introduction

Syntactic parsers usually take as input text that
has been processed at several levels. It has gener-
ally been segmented in sentences, tokenized, POS

tagged, and possibly lemmatized and morphologi-
cally analyzed. All such steps are realized by other
NLP modules that are usually organized in a se-
quential pattern, called a pipe-line. The pipe-line
imposes a rational order on the modules: word
boundaries, for example, have to be determined
before a word can be associated to a POS tag and
syntactic parsing usually comes after POS tagging,
for POS tags group words that have close syntactic
properties.

The pipe-line architecture offers many advan-
tages, among which, the independence of the mod-
ules that compose it. The only constraint for their
inter-operability is the compatibility of their inputs
and outputs. Once this constraint is verified, each
module can be built on any kind of model consid-
ered more suitable for the task to perform. Besides,

in a pipe-line architecture, every module narrows
down the search space of the following modules:
a parser, for example, does not have to consider
different tokenization hypotheses nor different POS

tags for a word. Considering all such decisions
can lead to a combinatorial explosion problem and
yields huge search spaces.

The pipe-line architecture nevertheless has its
limits. It is well known that some low level de-
cisions (made by early modules of the pipe-line)
can benefit from high level ones (made by late
modules). Some tokenization decisions, for exam-
ple, can depend on the syntactic structure of the
sentence to parse, such as complex prepositions
in French, as noted by Nasr et al. (2015). Like-
wise, sentence segmentation can depend on syn-
tactic structures, especially when punctuation is
absent or unreliable, such as in speech transcrip-
tions. Such top down dependencies cannot be taken
into account in a strict pipe-line architecture. But
they are arguably less numerous than bottom up
dependencies and this is the reason why the pipe-
line architecture usually yields good results. One
aim of this paper is to propose a framework, called
the Reading Machine (RM), that is flexible enough
to define several patterns for combining different
NLP modules and explore different ways to link
decisions made by these modules. We use in this
paper the RM framework to define and compare sev-
eral non sequential machines that model top down
dependencies.

There is another, less immediate, reason for
studying non sequential architectures, in link with
human cognition. Psycholinguistic studies have
shown that human language processing is incre-
mental, i.e., people do not wait to see the entire
sentence before they start trying to understand it
(see Keller (2010) for more details). Such find-
ings have developed interest in using NLP tools
to implement cognitively-plausible models of hu-
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man sentence processing (see Hale (2017) for a
review). Various “linking hypotheses” have been
proposed to relate the models’ intermediate states
when parsing a given sentence to the behavior of
human subjects trying to understand that same sen-
tence. The RM offers a framework to investigate
such linking hypotheses by defining machines that
implement them and observe their behaviour on
human data. In this perspective, the RM has already
been used for predicting eye-movements during
reading: different RM architectures have been com-
pared on their ability to accurately predict fixation
time (Dary et al., 2021a,b). In order to illustrate the
kind of experiments that can be conducted in such a
perspective, we will define and compare machines
that model different perceptual fields and measure
their influence on an incremental parsing process.

Technically, RM is an extension of the transition-
based parsing algorithm (TBP) (Yamada and Mat-
sumoto, 2003; Nivre, 2003). The reason for this
choice is mainly that TBP implements an incremen-
tal parsing strategy (Nivre, 2008). We propose to
extend this model to define a complete incremental
NLP parser that integrates six tasks: tokenization,
POS tagging, morphological analysis, lemmatiza-
tion, syntactic parsing and sentence segmentation.
RM borrows from TBP the two key notions of Con-
figurations and Actions (also called Transitions), as
well as a greedy algorithm that performs syntactic
parsing. We extend these notions by defining an
enriched version of a configuration and a richer set
of actions. All linguistic decisions, such as word
and sentence boundaries detection, POS tagging,
lemmatization and, of course, syntactic parsing
are realized by actions that are predicted based on
configurations. The RM takes as input raw text and
greedily predicts a sequence of actions that perform
the six tasks mentioned above.

2 Related Work

Solving the circular dependencies that exist be-
tween parsing and other pre-processing steps, is
an active area of research in the parsing literature.
The solution that has been mainly investigated con-
sists in jointly performing syntactic parsing and
other pre-parsing steps. If we restrict ourselves
to recent approaches to dependency parsing, so-
lutions have been proposed both for graph-based
parsing (Yan et al., 2020; Lee et al., 2011; Nguyen
and Verspoor, 2018; Nasr et al., 2015; Li et al.,
2011; Zhang et al., 2015) and transition-based pars-

ing (Yoshikawa et al., 2016; Bohnet and Nivre,
2012; Alberti et al., 2015; Hatori et al., 2012; Hon-
nibal and Johnson, 2014; Constant and Nivre, 2016;
Kurita et al., 2017; Wan et al., 2018).

Solutions to this problem differ vastly for these
two approaches, mainly because of the different
parsing strategies they adopt. This is why we have
decided to restrict ourselves to TBP based papers in
the remainder of this section.

There have been many propositions to real-
ize simultaneously several linguistic tasks in TBP.
Both Bohnet and Nivre (2012) and Alberti et al.
(2015), for example, show how a transition system
can be extended and trained to jointly predict POS

tags and the dependency tree, improving both the
accuracy of tagging and parsing. These systems
are not strictly incremental across the tasks they
realize for they process text that has already been
segmented in words and sentences. Besides, the
text has been pre-tagged in order to limit the size
of the search space.

The closest approach to ours is Kurita et al.
(2017), which is based on the work of Hatori et al.
(2012). The authors propose an extension of the
arc-standard transition system that is able to per-
form a fully joint prediction of word segmentation,
POS tagging and dependency parsing. Their sys-
tem takes a queue of symbols as input, and process
it in an incremental fashion, consuming one sym-
bol at a time. They conducted their experiments
on Chinese, and were the first to use a neural net-
work architecture using both word and character
based embeddings to achieve fully joint prediction
of these three tasks. They showed that their joint
architecture was competitive with a pipeline archi-
tecture for word segmentation and POS tagging, but
fell short on parsing.

For their participation in the 2018 CoNLL
Shared Task (Zeman et al., 2018), Wan et al. (2018)
also defined an extension of TBP that is close to
ours. It is based on the arc-standard system en-
riched with a swap transition (Nivre, 2009), and is
able to jointly perform word segmentation, POS
tagging, morphological tagging and dependency
parsing. They showed that such a system could get
better scores than the shared task’s baseline, while
still being quite far from the top scoring systems.
Their paper focuses on low or even zero resources
languages (what the shared task was mainly about),
and did not test whether or not the joint prediction
of multiple tasks was improving the performances.
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Our model has the following characteristics that
distinguishes it form the approaches cited above.

The RM performs simultaneously six NLP tasks
with the notable inclusion of sentence segmentation
which is almost always pre-processed in parsing
systems.

The RM allows us to build a machine that is
strictly incremental across the six tasks it realizes.
There are two reasons for this choice. The first is
theoretical, we are interested to know how much
information is present in top-down dependencies
and whether they can be captured in an incremental
setup. The second is related to psycholinguistics:
we believe that the definition of a fully incremental
RM offers a useful model for simulating human
behaviour during reading.

The RM is flexible enough to design machines
that implement different strategies in order to com-
pare them. We propose, in section 5, a high-level
description format that allows us to define ma-
chines that differ on a specific dimension and study
the effect of this dimension on the performances of
the machines.

3 The Reading Machine

As mentioned in the introduction, the reading ma-
chine is an extension of the TBP1 framework. The
details of this algorithm are well known and do not
need to be repeated here. We will only introduce
the terms that are important for the rest of the paper.

TBP is an algorithm that predicts the dependency
syntactic structure of sentences. This task can be
viewed as selecting for each word w of a sentence
its syntactic governor (another word w′ of the sen-
tence) as well as its syntactic function f . A directed
arc, referred to as a dependency, is built from w′

to w, labeled with function f . The graph built at
the end of the parsing process is a tree. The TBP

algorithm builds the dependency tree by scanning
the sentence word by word, in reading order. At
each step, an action, is predicted and applied to
the current configuration of the parser and yields
a new configuration. The prediction is realized by
a classifier that takes as input a configuration and
computes a score for every possible action. The
parser makes use of a stack containing words that
need to be linked to words yet undiscovered.

Four types of actions are defined: SHIFT, pushes
the current word on the stack, REDUCE, pops the

1Several sets of actions have been proposed in the litera-
ture, the one used here is known as Arc Eager.

SEG NO NO NO NO NO YES

SYN DET SUB ROOT DET OBJ PCT

GOV +1 +1 0 +1 -2 -3
LEM @ @ s@ @ @ @
MRF DEF SG P3S DEF SG -
POS DET N V DET N PCT

TOK the boy hits the ball .
INPUT t h e b o y h i t s t h e b a l l .

Table 1: Input and output tapes of a RM after processing
the text The boy hits the ball.

stack, LEFTl, creates a left dependency, labeled l,
whose governor is the current word and dependent
is top element of the stack and RIGHTl, which cre-
ates a right dependency, labeled l, whose dependent
is the current word and governor is the top element
of the stack.

Before giving a precise definition of the RM, in
section 3.1, we describe the directions in which the
TBP has been extended.

Tapes: The RM has one input tape, which is a
read tape and an arbitrary number of output tapes
which are read/write tapes.

The input tape contains the text to parse. It is
character based: each cell of the tape contains a
character. The text has not been linguistically pre-
processed: it has not been segmented into sentences
nor into words. The current position of the reading
head of the input tape is called the character index.

Output tapes are word based: each cell of a tape
refers to a word of the input text. Output tapes are
used to write the predictions made by the machine,
typically one tape per type of prediction. These
tapes are synchronized: at all times, the head is
at the same position for all tapes. This position is
called the word index.

Table 1 represents the tapes of a machine af-
ter processing the text The boy hits the ball. The
machine has 7 output tapes and one input tape, rep-
resented at the bottom.

Sliding Window: The reading head of the in-
put tape takes the form of a sliding window. It is
centered on the cell of the tape pointed by the char-
acter index and has access to an arbitrary number
of cells to the left and to the right of this cell.

States and Transitions: TBP can be seen as a
single state machine, in contrast RM are multi-state
machines. Every state, or set of states, is devoted to
a specific linguistic task and is linked to a classifier.
The linking between states and classifiers can range
from a single classifier for all states to one classifier
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per state. States are deterministically linked to
each other through transitions that are labelled with
action labels. At each step, the classifier of the
current state predicts the next action to perform.
The action is applied on the configuration and the
transition labeled with this action is traversed to
reach another state.

Actions: RM actions encompass standard Arc
Eager actions for parsing and new actions have
been defined for performing the other tasks.

Word tagging tasks (POS tagging and morpholog-
ical tagging) are realized through a single action:
TAGL(t), which simply writes symbol t on tape L
at the word index position. For example, action
TAGPOS(DET) tags the current word as a determiner.

It is not straightforward to cast lemmatization
as a classification task, due to the large number of
classes (potentially all the lemmas of a language).
Besides, lemmatization is, to a large extent, regular.
In order to capture this regularity, the classifier
that realizes the lemmatization task predicts editing
rules of the form s1@s2 where s1 is a suffix of
the word to lemmatize and s2 the suffix of the
lemma.2 When applied to a word w, such a rule
strips off suffix s1 from w and appends s2, as in
the following example apply(s@, hits) = hit.

The actions predicted by the tokenizer are of four
types: ADDn adds the n next characters of the input
tape to the current word and moves the character
index n positions to the right, IGNORE ignores the
current character (typically spaces) and moves the
character index to the right, WORD marks the cur-
rent word as complete and SPLITw

W action moves
the character index |w| positions to the right and
adds the word sequence W in the buffer. This last
action is used to expand contractions such as don’t
→ do not.

Programming an oracle function for actions IG-
NORE, WORD and SPLIT is straightforward because
there is no ambiguity on which is correct at any
time. However, the choice of ADDn is ambiguous:
if we consider that the 8 next characters on the in-
put tape are “academic”, we want to add them to
the current word. This could be done using several
action sequences, such as “ADD8”, “ADD4,ADD4”
or “ADD2,ADD3,ADD3,”. In our experiments, we
chose to limit the size of ADDn to n=6 and to pro-
gram the oracle so that it adds the largest number

2Of course, such a simple form of rules can only deal with
suffixal flexional morphology. More complex morphological
phenomena, in templatic morphology for example, ask for
more elaborate types of rules.

State Action Description
TOK ADDn Adds the n next symbols to b.0.
TOK IGNORE Ignores the next symbol.
TOK WORD Marks b.0 as complete.
TOK SPLITw

W Consume symbol sequence w.
Add word sequence W in buffer.

POS,
MRF

TAGL(t) Writes tag t to b.0 on tape L.

LEM s@s’ b.0 lemma := form− s+ s′.
LEM CASEul b.0 lemma to upper/lower case.
SYN REDUCE Pop the the stack.
SYN SHIFT Push b.0 on the stack.
SYN RIGHTl Adds arc (s.0,b.0,l).

Push b.0 on the stack.

SYN LEFTl Adds arc (b.0,s.0,l).
Pop the stack.

SEG EOS(Y/N) Mark b.0 as an end of sentence,
set sentence root, attach orphans
to root then empty stack.

Table 2: Actions used in our RM architecture. b.0
stands for the current word and s.0 for the word on top
of the stack.

of characters at once. During training, the correct
action sequence would then be: “ADD6,ADD2”

Sentence segmentation is realized by a binary
action EOS(YES/NO) which tags the current word
as the end of the current sentence, or not. Once the
end of a sentence has been detected, the deepest
element in the stack is marked as the root of the
sentence and the potential remaining elements of
the stack are attached to the root, before emptying
the stack. The complete set of actions is reported
in Table 2.

3.1 Formal Definition

A RM, as any formal automata, has an input alpha-
bet ΣT , which is a set of characters, a set of states
S, a transition function δ, an initial state s0 and a
set F of final states. It also has N output alpha-
bets Σ1, . . .ΣN associated to its N output tapes.
Transitions between states are labelled with actions.
Moreover, each state is associated, via function γ,
to a classifier, which maps configurations to actions,
along with a score.

Formally, we define a RM as a tuple T =
(ΣT , N,Σ,S, s0,A,K, γ, δ, F ). We develop be-
low the elements of the machine that deserve more
explanation.
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- A is a set of actions. Each action can write a
symbol on an output tape, move the character head
or the word head either to the left or to the right
and push or pop the stack (see Table 2).
- K is a set of classifiers, described in section 3.3
- δ : S ×A → S is a deterministic transition func-
tion, also called a Strategy. Given the current state
and its associated classifier, the action selected by
the classifier is performed and control jumps to the
destination state of the transition. The strategy de-
fines the order in which the predictions are made.
For instance a strategy could force the lemmatiza-
tion task to happen after the dependency parsing
task. Two different strategies are described in sec-
tion 5.
- γ : S → K is a function that maps each state of
the RM to a classifier. This mapping allows several
states to share a single classifier which allows in
turn jointly training several processes.

3.2 Configuration
Configurations for a RM M and a text T are defined
as (S, T, c, β1,N , w, σ,H), where:
- S is the current state of M .
- T is the input tape
- c is the character index
- β1,N is a collection of output tapes.
- w is the word index
- σ is a stack of word indexes, its purpose is the
same as the stack in TBP.
- H is the sequence of transitions that have been
predicted till now.

The set of all configurations for text T is noted
CT .

An initial configuration for a text T is defined
as follows: (s0, T, 0, β, 0, [], []), where all tapes in
β are empty.

An accept configuration is defined as (s ∈
F, T, nc, β, nw, [], H), where nc and nw are respec-
tively the number of characters and words in T .

3.3 Classifier
The classifiers that constitute the set K are func-
tions that map a configuration to actions and scores.

The classifiers are independent of each other but
they all take as input a configuration which con-
tains all aspects of the current state of the RM, in
particular, the content of all the tapes of the RM.
The tapes contain all predictions already realized.
Each classifier defines its own Feature Function
which extracts from the input configuration all fea-
tures considered useful for the type of prediction

it realizes. We will not delve into the set of all
possible features, let us just mention that most of
them allow to access the content of a specific cell
of a specific tape.

4 Training the RM

The training process of a RM is close to TBP train-
ing. It starts with a dependency tree that is de-
composed into a sequence of (state, configuration,
action) triples, by a static oracle. The difference
with TBP is that the set of actions is considerably
larger since it encompasses actions for all six tasks.
This sequence is used to train the classifiers: ev-
ery classifier receives examples corresponding to
the states it is related to. The RM is trained using
only correct examples, predicted by the oracle. In
order to increase the robustness to error propaga-
tion, we use a dynamic oracle (Goldberg and Nivre,
2012) to extract a new set of training examples
where the actions applied were the one predicted
by the network.3 The RM is therefore trained to
predict the next action given potentially incorrect
configurations.

Four epochs are devoted to the first part of the
training process, followed by 26 more epochs in dy-
namic oracle regime.4 At each epoch, the machine
is used to decode the development set, and is saved
if its score (mean score across all 6 levels) is the
best so far. We used cross entropy as a loss function
and Adagrad (Duchi et al., 2011) for optimization.

The classifiers used to predict the actions can
be decomposed into three parts: the first part is
devoted to feature extraction, it is composed of sev-
eral encoders applied to different parts of the RM

configuration. The output of these encoders are
then concatenated yielding a dense vector repre-
sentation of the current configuration, to which we
apply a dropout of 0.5 and feed it into a Multi Layer
Perceptron (MLP) composed of 2 hidden layers of
respective sizes 3200 and 1600 with dropout 0.4
and ReLU activation. The output of the MLP is
then fed into a decision layer, producting a probabil-
ity distribution over the possible actions. The most
probable action is predicted then applied to the con-
figuration. A classifier can have up to 6 decision
layers, one for every task. A schematic represen-
tation of the classifier structure can be found in

3Except for tokenization and sentence segmentation ac-
tions, because our dynamic oracle is not able to deal with
incorrect segmentation.

4All hyper-parameters have been optimized for the devel-
opment set described in section 6.
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Figure 1: General structure of the classifiers of a RM.
They take as input a configuration and predict an action
for up to 6 tasks.

Figure 1.
The most complex part of the classifier is the

transformation of the configuration into a vector:
the input of the MLP. Depending of its feature func-
tion, the classifier extracts from the configuration
elements that can be of different natures: the cur-
rent state of the RM, tags or words read from the
tapes, characters read from the input tape, previ-
ous action present in the history and words from
the stack. All these elements are fed to specific
Bi-LSTM that produce contextual representations,
as in Kiperwasser and Goldberg (2016), that are in
turn concatenated in the MLP input layer.

All feature values are represented by trainable
embeddings of size 128. These embeddings are
randomly initialized, except for word embeddings
that are pretrained5 exclusively on the train set, in
order to produce an embedding for unknown words
(using words occurring only once in the train set).

The Bi-LSTM that take sequences of these em-
beddings as input are made of only one layer of
size 64.

5 Designing Reading Machines

The precise definition of RM, introduced in section
3, allows us to design a large number of machines.
Every machine is defined by a large number of
features and comparing machines is not always
easy. In this section we define a more abstract
description that is based on four high-level features,
and define seven machines that are compared in
section 6.

5Using GloVe (Pennington et al., 2014), implementation:
https://github.com/stanfordnlp/GloVe.

TOKstart

POS LEM MRF

SEG SYN

TOKstart

POS LEM MRF

SEG SYN

Figure 2: Two RM strategies that correspond to the or-
der of predictions. Above, the INCR strategy and below
the SEQ strategy.

We first describe the four high-level features then
give a description of the machines.

5.1 Strategy

As mentioned in section 3, the strategy of a RM

is the structure of the underlying automaton: its
number of states and transition function. A strategy
dictates the order in which the predictions are made.
Two strategies: INCR and SEQ, are defined, they
are represented in Figure 2. The actions that label
the transitions have been omitted for readability
reasons.

The main difference between the two strategies
comes from the loops on all states of the SEQ strat-
egy. These loops model the sequential behaviour of
the RM: the whole text is processed at a given level
before switching to the upper level. In contrast, the
INCR strategy processes a word at a given level then
performs a prediction at the next higher level for
the same word. This difference can be illustrated
in the way the matrix of Table 1 is filled: the SEQ

machine fills it line by line, bottom-up, while the
INCR machine fills it column by column, from left
to right.

5.2 Feature Span

The Feature Span of a machine specifies the part
of the tapes that are accessible to each classifier
in order to make a prediction. Three feature spans
have been defined, they are represented in Figure 3.
Each of the three rectangles represents, schemati-
cally, the tapes of an RM, as in Table 1. The black
square corresponds to the current prediction and the
hatched area to the content of the tapes available for
the current prediction. The past-low (PA-LO) fea-
ture span only sees the tapes content for the lower
level past predictions. Future-low (FU-LO) sees the
past, current and future predictions for lower levels.
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PAST HIGH (PA−HI)FUTURE LOW (FU−LO) PAST LOW (PA−LO)

Figure 3: Three feature spans: the black square is the
current prediction and the hatched area, the available
features.

Past-high (PA-HI) have access to low, current and
high-level predictions from the past.

In the PA-HI configuration, when the tagger, for
example, has to select the POS tag of a word, it has
access to the predictions made by all the modules,
including the parser, for preceding words. The PA-
HI feature span therefore offers an explicit way to
model top down dependencies.

5.3 Number of Classifiers

As mentioned above, several states of a machine
can share a single classifier to predict the actions
associated to these states. The sharing of a sin-
gle classifier by several states amounts to perform
multi-task training, which “uses the domain infor-
mation contained in the training signals of related
tasks as an inductive bias. It does this by learning
tasks in parallel while using a shared representa-
tion; what is learned for each task can help other
tasks be learned better” (Caruana, 1997).

In our case, when a single classifier is used, for
example, to perform both POS tagging and parsing,
the representation of a configuration built by this
classifier is obtained by optimizing both tasks. De-
cisions made by the parser can therefore implicitly
influence the tagger. The Number of Classifiers is,
with the Feature Span, the two ways that will be
tested to take into account top down dependencies.

Two extreme choices have been made with re-
spect to this dimension, in the first one, all states
share a single classifier while in the second each
state defines its own classifier, yielding two differ-
ent values: 1 and 6.

5.4 Window Span

The Window Span of a machine is simply the span
of the sliding window that gives access to the text.
A window span is defined by a pair of integers that
indicate how many characters, to the left and to the
right of the character index, are accessible. The
window span corresponds to the sliding window
introduced by McConkie and Rayner (1975) used
to model the perceptual span of a human reader.

Four different window spans have been defined:
[-5,2], [-5, 5], [-5, 10] and [-5, 15]. We fol-
lowed McConkie and Rayner (1976) in choosing
asymmetric windows.

5.5 Seven Machines

Given the four dimensions defined above and the
number of values per dimension, a total of 48 dif-
ferent machines can be defined. We have selected,
among these, seven machines that can be grouped
in four subsets, as shown in Table 3. Machines in a
subset generally differ from one another for a sin-
gle dimension, the exception are the two machines
of the first subset. These four subsets correspond
to the four experiments that are described in the
following section. The letter in the first column of
the table indicates identical machines. They have
been given several names in order to ease the com-
parisons in section 6. The feature function of the
classifiers of each of these machines can be found
in table 4.

RM Strat. F.Span W.Span NC
A PA-HI INCR PA-HI [-5,10] 6

PA-LO INCR PA-LO [-5,10] 6
B C1 INCR PA-HI [-5,10] 1
A C6 INCR PA-HI [-5,10] 6
B INCR INCR PA-HI [-5,10] 1

SEQ SEQ FU-LO [-5,10] 1
[-5,2] INCR PA-HI [-5,2] 6
[-5,5] INCR PA-HI [-5,5] 6

A [-5,10] INCR PA-HI [-5,10] 6
[-5,15] INCR PA-HI [-5,15] 6

Table 3: Definition of the machines used in the experi-
ments. The letter in the first column indicates identical
machines. NC stands for Number of Classifiers.

6 Experiments

The experiments presented in this section aim at
exploring three directions. The first one is the
modelling of top-down dependencies. We have
introduced two means for taking into account such
dependencies in a RM: joint prediction of several
tasks, using a single classifier, and the feature span
of the classifiers. The two first experiments aim
at studying whether these two techniques allow to
effectively model such dependencies. The second
direction compares the sequential and the incremen-
tal strategies and measure how much information a
parser gets from the knowledge of the next words
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Machine Features
C1
INCR

FORM,ID,POS,MRF,SYN: b.-3 b.-2 b.-1 b.0 s.0
s.1 s.2 b.0.0 s.0.0 s.0.-1 s.1.0 s.1.-1 s.2.0 s.2.-1
Prefix&Suffix of size 5: b.0
Raw text: [-5,10] around character index
History: past 10 actions
Split: list of applicable SPLIT actions
Name: name of the current state
Distances: from s.0 s.1 s.2 to b.0.

SEQ Same as INCR with the addition of right context:
b.1 b.2.

PA-HI
C6
[-5,10]

Each of the 6 classifiers has the same features as
C1.

PA-LO Each of the 6 classifiers is different. The classi-
fier corresponding to a given linguistic level will
only have the features of PA-HI corresponding
to this linguistic level and inferior levels. For
example, the classifier corresponding to MRF
will only access columns FORM,ID,POS,MRF for
targets b.-3 b.-2 b.-1 b.0 and will not have the
distance feature.

[-5,2] Same as [-5,10] but with window [-5,2].
[-5,5] Same as [-5,10] but with window [-5,5].
[-5,15] Same as [-5,10] but with window [-5,15].

Table 4: Features used in our RM architecture. “b.i”
stands for the word at position word index+i in the
buffer and “s.i” for the ith topmost word on the stack.
Additional suffixes “.0” and “.-1” refer respectively to
the leftmost and rightmost dependent.

POS, lemma and morphological analysis. The third
direction aims at measuring the effect of the win-
dow span on the performances of an incremental
RM.

The machines realize six types of predictions: to-
kenization, part of speech tagging, lemmatization,
morphological analysis, syntactic parsing and sen-
tence segmentation. Each of these predictions are
evaluated by a specific metric using the evaluation
script of the CoNLL 2018 shared task (Zeman et al.,
2018). Besides the task specific metrics, we report
the Morphology-Aware Labeled Attachment Score
(MLAS) which takes into account word segmenta-
tion, morphological and POS tagging as well as syn-
tax, as described in Zeman et al. (2018). The MLAS

allows us to compare the general performances of
two machines, while the task specific metrics allow
for a finer comparison of these machines.

Experiments have been conducted on French6

data, using the GSD corpora of the Universal De-

6The same experiments can be replicated on any language
of the UD collection. Comparing the respective merits of
the different machines across languages is a very interesting
but very resource demanding task (mainly for optimizing the
hyper-parameters for each language) and we leave this for
future work.

pendencies collection (Zeman et al., 2019) ver-
sion 2.7. In the official distribution of this cor-
pus, the train/dev/test split is of respective sizes
364,349/36,775/10,298 words. In preliminary ex-
periments, we found out that the test split was
way too small to meaningfully compare machines.
That’s why we decided to use 10 fold cross-
validation: we realized ten different 80%/10%/10%
train/dev/test splits and trained ten copies of each
of our machines on these splits. The ten test sets
were then decoded by the corresponding copy of
the machine and the predictions were concatenated.
This technique allowed us to compare the machines
on their predictions on a test set of 427,763 words.
We tested the significance of our comparisons using
paired bootstrap resampling7 (Koehn, 2004), and
reported in our tables the corresponding p-value,
estimating the probability that in a pair of models,
the model that appear to perform better is in real-
ity a worse model. Unfortunately, the resampling
script we used (the one used in the CoNLL 2018
shared task) is not able to produce p-values for
the task of sentence segmentation, that is why the
corresponding cells in tables 5,6 and 7 are empty.

6.1 Wide vs Narrow Feature Span

This experiment aims at studying if past high level
predictions can help current low level predictions,
which is the explicit means we have proposed to
model top-down dependencies. In order to test this
hypothesis, we compare machines PA-LO and PA-
HI. Both machines differ on their Feature Span. PA-
HI has access to past high-level predictions while
PA-LO does not.

The results, displayed in Table 5, show that PA-
HI yields lower results than PA-LO. This is true
for the general MLAS measure, as well as sentence
segmentation and morphological tagging. The dif-
ferences obtained by the two machines on the other
tasks are not significant. Contrary to what we ex-
pected, using past high level predictions does not
seem to increase the performances of low-level
modules. We do not have for the moment an expla-
nation for this result. It could be explained by the
errors made by PA-HI on earlier predictions which,
in turn, provoke errors on current word predictions.

6.2 Multi Task vs Mono Task

The aim of our second experiment is to test the sec-
ond means we have proposed to model top-down

7Using implementation of Popel et al. (2017).
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Task PA-LO PA-HI p-value
MLAS 77.70 77.30 0.014
Seg 96.65 96.57
LAS 86.88 86.77 0.193
UAS 89.13 89.03 0.183
Lemma 98.04 98.01 0.22
UFeats 97.02 96.87 0.003
UPOS 97.02 96.93 0.051
Words 99.60 99.64 0.02

Table 5: Wide vs Narrow Feature Span

dependencies: multi task prediction. Two machines
are compared: C1 which uses a single classifier
to predict all tasks and C6 which uses a specific
classifier for every task. The results are reported
in Table 6. The table shows that C1 outperforms
C6 on the MLAS metric: on average, a multi-task
setup performs better than a mono-task one. C1 is
significantly better than C6 for parsing, morpholog-
ical and POS tagging. While the two machines are
equivalent on the other tasks. These results show
that predictions based on representations of the ma-
chine configurations that are optimised for all tasks
are beneficial for all tasks. It is tempting to con-
clude that multi task learning is an effective way to
model top down dependencies. It is unfortunately
premature to draw such a conclusion for multi task
learning is a complex process that models a large
number of dependencies in the data. More investi-
gation using, for example, probing, is in order to
give a definite answer to this question.

It is worth noting that C1 has six times less pa-
rameters than C6, because each classifier of C6 has
as many parameter as the classifier of C1, another
argument in favor of multi-task training.

Task C1 C6 p-value
MLAS 77.93 77.29 0.001
Seg 96.40 96.57
LAS 87.08 86.77 0.008
UAS 89.33 89.03 0.004
Lemma 98.02 98.01 0.39
UFeats 97.01 96.87 0.004
UPOS 96.99 96.93 0.135
Words 99.65 99.64 0.315

Table 6: Multi Task vs Mono Task

6.3 Sequential vs Incremental

In this experiment, two machines are compared,
SEQ, a sequential machine that implements a pipe-
line architecture, and INCR that implements an in-
cremental architecture. These two machines differ
on two dimensions, their strategy as well as their
feature span. The aim of this experiment is to mea-
sure to which extend the information given to a
parser by the next words low level analysis (POS

tagging, morphological tagging and lemmatization)
help a parser. The SEQ machine implements a two
words look-ahead: the parser has therefore access
to the form, POS, lemma, and morphological analy-
sis of the next two words.

The results of this experiment are reported in
Table 7. As one can see, SEQ outperforms INCR

on the MLAS metric: on average, SEQ gets bet-
ter results than INCR. As was expected, it is the
parser that takes advantage of the sequential strat-
egy: both LAS and UAS are increased by around
one point. The two architectures achieve equivalent
performances on the low level tasks, meaning that
early processing steps do not take advantage of the
sequential architecture.

Task INCR SEQ p-value
MLAS 77.93 78.60 0.000
Seg 96.40 95.96
LAS 87.08 87.56 0.000
UAS 89.33 89.89 0.000
Lemma 98.02 98.01 0.403
UFeats 97.01 97.16 0.002
UPOS 96.99 97.09 0.036
Words 99.65 99.63 0.115

Table 7: Sequential vs Incremental

6.4 Window Span

Our last experiment aims to study the influence
of the Window Span on the performances of an
incremental machine. Four machines are compared:
[-5,2], [-5,5], [-5,10], [-5,15].

The best MLAS results are obtained by machine
[-5,10] which defines a look-ahead of 10 char-
acters for its predictions. It is interesting to note
that low values of look ahead has a dramatic ef-
fect on the performances. This is partly due to the
metrics used in which tokenization errors provoke
errors on higher level modules. As expected, we
observe diminishing returns as we increase the Win-
dow Span to the right, and going to 15 characters
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slightly decreases performances. These results are
in line with McConkie and Rayner (1975) who
determined experimentally that the span of the win-
dow for humans is about four characters to the left
of the current character and twelve characters to
the right.

Task [-5,2] [-5,5] [-5,10] [-5,15]
MLAS 48.53 76.76 77.29 77.19
Seg 79.75 96.44 96.57 96.68
LAS 59.39 86.28 86.77 86.69
UAS 61.05 88.56 89.02 88.96
Lemma 83.67 97.89 98.01 97.99
UFeats 82.58 96.74 96.87 96.83
UPOS 82.46 96.71 96.93 96.90
Words 85.12 99.55 99.64 99.65

Table 8: Different values of Window Span

7 Conclusion and Future Work

This paper introduced a versatile parsing frame-
work, called the Reading Machine, that allows us to
compare incremental parsers that implement differ-
ent parsing configurations. We illustrated this with
two cases. In the first one, we compared different
ways to take into account top down dependencies
across six tasks. In the second, we compared the ef-
fect of the look-ahead on the parsing performances.

This work will be extended in several directions.
The first one concerns the analysis of the results

obtained in our two first experiments. More in-
vestigation is needed to explain the reason why
using past high level predictions cannot help low
level current ones. Likewise, we would like to
understand if the better results of multi task learn-
ing comes from the modelling of top down depen-
dencies. Two means will be used in order to an-
swer this question: probing and the development
of (small) specialized test sets that focus on such
phenomena.

The sequential machines that have been pro-
posed are greedy: a local decision taken by a ma-
chine is never questioned even when contradicted
by future events. This behaviour is not appeal-
ing from an NLP perspective nor from a psycholin-
guistic one. In order to tackle this problem, we
will introduce in the Reading Machine a backtrack
mechanism that can predict left movements leading
to the re-analysis of a previously analyzed part of
the text.

The third direction consists in evaluating the

model against human experimental data. The Read-
ing Machine has already been used to predict read-
ing time. We will continue further in this direction
and use the Reading Machine to predict saccades.

The strategies implemented in the RM described
in this paper completely specify the order in which
predictions are made. We plan to relax this con-
straint and let the RM learn strategies that optimize
its performances. A RM would have the ability to
decide the order in which to perform some tasks
(specifically, POS tagging, lemmatization and mor-
phological analysis).
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Daniel Zeman, Jan Hajič, Martin Popel, Martin Pot-
thast, Milan Straka, Filip Ginter, Joakim Nivre, and
Slav Petrov. 2018. CoNLL 2018 shared task: Mul-
tilingual parsing from raw text to universal depen-
dencies. In Proceedings of the CoNLL 2018 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 1–21, Brussels, Belgium.
Association for Computational Linguistics.

Daniel Zeman et al. 2019. Universal dependencies 2.5.
LINDAT/CLARIAH-CZ digital library at the Insti-
tute of Formal and Applied Linguistics (ÚFAL), Fac-
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Abstract

Strong and affordable in-domain data is a de-
sirable asset when transferring trained seman-
tic parsers to novel domains. As previous
methods for semi-automatically constructing
such data cannot handle the complexity of re-
alistic SQL queries, we propose to construct
SQL queries via context-dependent sampling,
and introduce the concept of topic. Along with
our SQL query construction method, we pro-
pose a novel pipeline of semi-automatic Text-
to-SQL dataset construction that covers the
broad space of SQL queries. We show that
the created dataset is comparable with expert
annotation along multiple dimensions, and is
capable of improving domain transfer perfor-
mance for SOTA semantic parsers.

1 Introduction

Due to the broad use of SQL in real-world
databases, the task of mapping natural language
questions to SQL queries (Text-to-SQL) has drawn
considerable attention. Several large-scale cross-
domain Text-to-SQL datasets have been manually
constructed and advanced the development of Text-
to-SQL semantic parsing (Zhong et al., 2017; Yu
et al., 2018).

While these datasets are built for domain-general
semantic parsing, current state-of-the-art (SOTA)
semantic parsers still suffer sharp performance drop
when generalising to unseen domains (Wang et al.,
2020; Guo et al., 2019; Zhang et al., 2019).

This could be attributed to the observation that
the mapping of Text-to-SQL vary vastly across dif-
ferent domains, particularly in terms of the expres-
sions of predicates1. It is very difficult for models
to generalize to those variations in a zero-shot fash-
ion. Thus, additional in-domain data is desirable
when applying semantic parsers to novel domains.

1An example illustrating such difference is presented in
Appendix A

Unfortunately, the cost and scarcity of super-
vised data have been a major barrier for the wider
application of the Text-to-SQL task, as creat-
ing pairs of natural language questions and SQL
queries is a complex task demanding expertise in
both SQL language and the specific domains. Take
the SPIDER dataset (Yu et al., 2018) for example,
10,181 Text-SQL pairs in 200 databases (from 138
domains) required 11 computer science graduates
to invest 1,000 human hours.

In semantic parsing, some semi-automatic
dataset construction methods have been proposed.
Wang et al. (2015) built logical forms composi-
tionally, converted them to rigid pseudo natural
language (Pseudo-NL) questions with rules, then
crowd-sourced those Pseudo-NL questions into NL
questions. Cheng et al. (2018) further broke down
the pseudo-NL questions into question sequences
to make them more digestible for crowd workers.

While these approaches shed light on the
methodology of semi-automatic construction of
semantic parsing datasets, applying them to collect
broad-coverage Text-to-SQL data for domain trans-
fer is not trivial. Firstly, SQL language has a much
larger variety of realistic queries than Lambda-DCS
logical forms (Liang, 2013), which were the focus
of earlier work. Blind enumeration-up-to-a-certain-
depth from a CFG is therefore intractable in size.
Secondly, Herzig and Berant (2019) have discov-
ered a mismatch between semi-automatically con-
structed queries and real-world queries, in terms of
the distribution of logical form and the style of nat-
ural language expressions. As achieving accuracy
gains in domain transfer demands high quality for
the in-domain data, narrowing these mismatches is
crucial.

In this paper, we propose a novel semi-automatic
pipeline for robust construction of Text-SQL pairs
as training data in novel domains, with broad se-
mantic coverage, from databases only. Following
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Wang et al. (2015), our pipeline consists of three
parts: automatic SQL query construction, SQL-to-
PseudoNL conversion and PseudoNL-to-NL para-
phrasing. In SQL query construction, we use a
context-dependent probabilistic approach: first, we
choose a topic of interest, a random n-tuple of ta-
bles in the novel domain, such as Concerts and
Stadiums; then, we sample from a set of grammar
rules, at each step pruning the generation space
based on decision history. In SQL-to-PseudoNL
conversion, we follow Cheng et al. (2018) in break-
ing down constructed SQL queries with templates,
but also assign a “dominant concept” to topics to
simplify Pseudo-NL questions. In PseudoNL-to-
NL paraphrasing, we do crowd annotation, and pro-
vide crowd workers with various annotation scaf-
folds to collect quality NL questions. An example
through our pipeline is shown in Figure 1.

We show that by using schema-inspired topic
and context-dependent sampling instead of blind
enumeration, SQL queries analogous to real-world
queries can be constructed, and effective fine-tune
datasets for domain transfer can be built. Our ex-
periment shows that even a modest amount of our
data facilitates domain transfer across a range of se-
mantic parsers, raising accuracy in novel domains
by up to 1%2.

2 Related Work

Alternative Supervision To resolve the diffi-
culty in gathering supervised data for semantic
parsing, various methods have been proposed from
different perspectives.

Numerous approaches have explored distant su-
pervision to bypass the use of expensive anno-
tated data. Kwiatkowski et al. (2013); Berant et al.
(2013); Yao and Van Durme (2014); Berant and
Liang (2014) used question-answer pairs as super-
vision instead of logical form annotations; Reddy
et al. (2014) used web-scale corpora of descriptive
sentences, formalizing semantic parsing as a graph
matching problem. These methods perform well on
factoid questions; however, for more complex ques-
tions, it is harder to infer the underlying queries
from the answers alone.

Later on, semi-automatic data collection meth-
ods, which reduce the cost of annotation, have
been given considerable attention. Wang et al.

2Our code and data will be released at https:
//github.com/Teddy-Li/SemiAuto_Data_
Text_SQL

Figure 1: A example of the data construction pipeline,
from the topic of “concerts and stadiums” to the final
results: the SQL query and the paired natural language
question.

(2015) propose to compose logical forms by
combining sub-components through a grammar,
and translate the resulting trees into NL ques-
tions via rigid Pseudo-NL questions and crowd-
paraphrasing. Cheng et al. (2018) further replace
the Pseudo-NL questions with question sequences
to simplify the annotation for individual sentences.

While those approaches pioneered semi-
automatic data collection, the query construction
method based on exhaustive enumeration has its
weaknesses. Herzig and Berant (2019) showed
that there exists a significant mismatch between
the distributions of created logical forms and real
query logical forms, and between the language
style of paraphrases and real questions.

Text-to-SQL Text-to-SQL as a semantic pars-
ing task, has attracted increasing interest, where
multiple large-scale datasets have been released.
Zhong et al. (2017) created a large single-table
Text-to-SQL dataset, WikiSQL, from Wikipedia
entries, upon which many semantic parsers have
been trained, achieving high accuracies surpass-
ing 80% (Chang et al., 2020; Lyu et al., 2020;
Wang et al., 2018; Hwang et al., 2019; He et al.,
2019). Yu et al. (2018) proposed SPIDER, another
large-scale text-to-SQL dataset with multi-table
databases, much wider grammar coverage, and
more complex queries. It involves features includ-
ing GROUP-BY aggregation, ORDER-BY, nested
queries. This has made SPIDER a more realis-
tic, and also more challenging parsing task, with
SOTA semantic parsers achieving accuracies of
above 60%. (Guo et al., 2019; Wang et al., 2020).

Although SPIDER is considered a domain-
general semantic parsing dataset, semantic parsers
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trained on it still suffer a sharp performance drop
when generalizing to unseen domains3.

Thus, additional resource for domain transfer is
appealing. However, in this more complex multi-
table Text-to-SQL task, previous semi-automatic
dataset construction methods face an even greater
challenge. With multi-table SQL queries with
more complex clauses, exhaustive enumeration is
intractable in size and prone to mismatches.

More recently, various methods of Text-to-SQL
dataset construction have been proposed (Yu et al.,
2020; Zhong et al., 2020; Zhang et al., 2021), fur-
ther automating the SQL-to-NL step with neural
question generation. However, for query construc-
tion, they either do vanilla grammar-based SQL
query sampling (Zhang et al., 2021) or use tem-
plate sketches from existing datasets (Zhong et al.,
2020; Yu et al., 2020). On the other hand, we focus
instead on the context-dependent construction of
SQL queries that both generalize beyond existing
datasets and remain realistic.

3 Method

Our pipeline takes database schema as input, and
outputs a set of aligned pairs of NL questions and
SQL queries. We start by selecting a topic of inter-
est from the schema, followed by sampling produc-
tion rules from a concise SQL query grammar as
in figure 2, resulting in a created SQL query. We
then convert the query into a sequence of pseudo-
NL questions, and finally crowd-paraphrase the
sequence into a fluent NL question.

Specifically, we highlight two key features in
our SQL query construction algorithm, asserting
control to the process of sampling:

• We set the topic, namely the attended subset
of tables in database with an algorithm based
on Pagerank and Prim’s MST algorithm;

• At each step of sampling, we prune the space
of candidates by conditioning the distribution
of production rules heuristically on the deci-
sion history, namely ancestor nodes, left sib-
lings and left siblings’ descendants.

3.1 Setting the Topic
For each valid NL question, there is one topic refer-
ring to a concrete concept; similarly, for each real
SQL query, however complex, there is one topic,
the set of entities it attends to, typically specified in

3https://yale-lily.github.io/spider

Figure 2: The grammar for generating SQL queries,
listed iteratively. PREDEFINED TOPIC is the topic
set with method in section 3.1; terminal nodes are in
red, non-terminal nodes are in blue.

the ‘FROM’ clause, that should reflect some con-
crete concepts. For queries involving one table, the
topic is simply the table itself; for queries involving
multiple tables, which is an iconic feature of SPI-
DER, it is crucial to identify which tables should
be bound together and how.

Our approach here, which is a novel contribution
in this paper, takes inspiration from observations in
existing datasets. In SPIDER, 93.9% of ‘join-on’
clauses are between columns with foreign-key re-
lations, an additional 4.2% share the same name4.
This is consistent with our intuition about SQL
language, where join-on clauses are most closely
related to foreign-key relations. The popularity of
columns sharing the same name apart from foreign-
keys is partly a result of missing foreign-key rela-
tions and partly a reflection of the fact that columns
with the same names are likely relevant.

We therefore set up a table relation graph for
each database to model the probabilities that a topic
defined by join-on clauses is meaningful. When
two columns have a foreign key relation or share
the same name, we add an edge between their cor-
responding tables (foreign-key relations are given
higher weights for frequency). Multiple edges
between pairs of tables are reduced by sum. To
maintain the completeness of grammar space, we
assign a small ‘background radiation’ weight be-

4for examples of join-on relations with foreign-key and
same-name, please refer to Table 5 in Appendix
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tween each pair of tables.
The topic for each SQL query can then be mod-

elled as a sub-graph of this table relation graph, and
the transition distribution given previously chosen
tables can be modelled with a stochastic version of
Prim’s MST algorithm (Prim, 1957), formalized as:

p(tk|Φ) =
Σe∈edge(tk,Φ)e.w ∗ e.To.w
Σe∈edge(Φc,Φ)e.w ∗ e.To.w

(1)

where Φ = t1, ..., tk−1 is the set of previously cho-
sen tables, e.To is the candidate table, and e.w are
edges’ weight and e.To.w are Pagerank weights of
candidate tables.

With these transition probabilities, the problem
has been reduced to choosing the first table. To do
this, we need a prior distribution among all tables.
Again, we use Pagerank for this purpose: first, each
table is assigned an initial importance according to
their columns, then we do Pagerank on the table
relation graph with random-jump probability of 0.2
to get a context-aware importance among tables,
which is then normalized to a distribution. Note
that we turn edges to the reverse direction so that
weights would accumulate from the primary side
to the foreign side of foreign-key relations and the
foreign sides would be more likely chosen as the
first table, as we would hope.

In sum, as the first step of constructing an SQL
query from scratch, we settle its topic. We first
sample an ‘initial table’ from a prior distribution
of tables, which is ‘Concert’ in the case of our
example in Figure 1; then we iteratively expand to
other tables until halting after a random number of
steps5, which in the case of our example, results in
the value of Topic row in Figure 1.

3.2 Context-dependent Sampling

After sampling a topic from the table relation graph,
we move on to sampling the whole SQL query from
a concise SQL query grammar as in Figure 2. We
start from a root node Z and recursively dive down
until all branches have hit terminal nodes (colored
red in Figure 2). An example is shown in Figure 3.

We follow depth-first traversal order, and, to cre-
ate SQL query sets analogous to the queries in
real world, we use decision history as condition of
candidate distributions at each step. Namely, we

5in practice the maximum number of tables is limited to 4
following statistical observations.

Figure 3: An Example of Created SQL query “Se-
lect Count(Concert.concert id) from Concert join Sta-
dium on Concert.stadium id = Stadium.id where Sta-
dium.name = ‘Murrayfield’ group by Concert.year”
with tree structure.

assign a larger probability mass to relevant candi-
dates, avoid contradictory or redundant candidates,
thereby asserting control to clause structures.

On one hand, we want the resulting SQL queries
to make sense in the real world; on the other hand,
we don’t want their distribution to over-fit to ex-
isting domains. Thus, in practice we employ a
conservative heuristic approach, set up rules by col-
lecting patterns of ‘bad’ queries and other domain-
agnostic patterns from trials, and prune the space
by tuning distributions toward ‘good’ combinations
and against ‘bad’ ones.

For example, the following rule “A column is
more likely chosen to ‘where’ clause if it has been
chosen in the last ‘where’ clause”, tunes probabili-
ties against queries like select editors’ names from
journal committees and their corresponding jour-
nals and editors, whose age is smaller than 50 and
journal’s sales is larger than 1600, in favour of
those like select editors’ names whose age is larger
than 40 and smaller than 50.

Additionally, to reduce redundancy, we validate
all candidate clauses at each step by executing them
against the databases and collecting responses. We
compare query response before and after adding a
candidate clause, and screen out clauses that either
make no difference or result in empty responses.
We present the full set of rules in Appendix B.

3.3 From SQL to Pseudo-NL

Following previous work, to translate SQL queries
to NL questions, we first use a template-based ap-
proach to convert them to pseudo-NL questions.
Similarly to Cheng et al. (2018), we deterministi-
cally convert complex SQL queries into sequences
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of pseudo-NL questions to make annotation easier.
In practice, with the more complex SQL clause
structures, we find it not ideal to split questions
into sequences as granular as Cheng et al. (2018),
because annotators again get lost in the labyrinth
of coreferences between questions in the same se-
quence. Thus we re-balance the trade-off between
the number of sentences and individual complexity
towards longer but fewer sentences, so it’s not too
hard for crowd workers to follow6.

Notably, while generally speaking SQL language
looks similar to natural language, its FROM clauses
with table-joining are very unnatural, and when in-
volving many tables, can make their literal transla-
tions impenetrable. Unlike in NL questions where
there is an integrated topic, in SQL language the
topic defined by ‘FROM’ clause could be long
and confusing. Take the example in Figure 1,
its topic ‘Concerts and Stadiums’ in the form of
SQL query becomes ‘Concert join Stadium on Con-
cert.stadium id = Stadium.id’. Worse still, multiple
tables also make the meaning of wildcard column
‘*’ confusing in clauses such as ‘select count(*)’.

Luckily, we have observed that for a pair of ta-
bles joined by foreign key relations, we can always
consider the foreign side as the ‘main’ table of the
pair, since it is the one from which the primary
side is extended. Therefore, we define this direc-
tionality for a topic sub-graph of the table relation
graph: primary −→ foreign as root-wise and for-
eign −→ primary as leaf-wise; for table pairs linked
by same-name relation, an edge is kept on both
directions.

Then, for multi-table queries, we assume that
the table(s) at the root-most position is the “dom-
inant concept” of the topic. Since sub-graphs are
predominantly trees, mostly there is one dominant
concept for each query. Whenever possible, we
replace all pseudo-NL phrases for the table joining,
such as the above, with expressions like ‘Concerts
and their corresponding Stadiums’, and replace
all phrases for wildcard column ‘count(*)’ with
expressions like ‘the number of Concerts’. This
way pseudo-NL questions are simplified, and the
annotation burden is eased.

3.4 From Pseudo-NL to NL

The last part of our pipeline involves crowd-
paraphrasing these pseudo-NL question sequences

6For a flowchart with details please see Figure 4 in Ap-
pendix.

into fluent NL questions. We recruit workers on the
Amazon Mechanical Turk (AMT) platform, present
tasks to AMT workers randomly and pay $0.25 for
each task completed.

In each task, we present the workers with a
pseudo-NL question sequence paired with exam-
ples from DB response. In pilot trials, we found
that annotators tend to keep fragments from the
pseudo-NL questions even when they’re clearly
rigid. We hypothesize that this is an exposure ef-
fect, that annotators’ exposure to the pseudo-NL
questions influenced their own style of expression.

As another of our novel contributions, we pose a
countermeasure to this exposure effect. First, we
engage annotators in the context of helping their
foreign friends sound local. Further, we present
a personalized example specific to each generated
SQL query. These personalized examples are taken
from expert annotated datasets in other domains,
but can give crowd workers a general idea of what
level of naturalness is expected and in which way.

Each personalized example involves a pseudo-
NL question sequence, an expert-annotated NL
question and an example DB response. To provide
the most relevant hint, we retrieve from existing
data the most similar entries to each created SQL
query, where similarity is measured as the cosine
similarity regarding an engineered feature vector7.
We retrieve the top 10 example queries with small-
est distances in the above terms. We then randomly
pick one as the personalized example to display.

We employed only the English speaking AMT
workers with 95%+ acceptance rate and 50+ accep-
tance history to restrict this paraphrasing task to a
set of competent workers. However, empirically
we still found a considerable number of workers
submitting nonsensical paraphrases, apparently not
understanding the task or giving up on the com-
plex input. Thus, we restricted the access to only
the trusted workers who had previously performed
well in our task.

4 Our Experimental Corpus

4.1 Corpus Construction Details

We experiment on the basis of the SPIDER dataset,
with data split details described in Table 1. Because
the databases and Text-SQL pairs for SPIDER test
set domains are not released, we re-split the 20
SPIDER development (dev) set domains equally

7For details of feature vector please refer to Appendix C.
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Data Split Domains SQL Construction SQL-to-NL Data Size
seen-domain-train-set 166 train domains Gold Gold 7000
novel-domain-test-set 10 novel dev domains Gold Gold 440
seen-domain-dev-set 10 seen dev domains Gold Gold 594

novel-domain-ours-set 10 novel dev domains Ours Ours 543
novel-domain-oracle-set 10 novel dev domains Gold Ours 466

seen-domain-small-set 166 train domains Gold Gold 543
Zhang et al. (2021) 20 dev domains - - 58691

Table 1: Data splits involved in our experiment. Ours SQL construction refers to method in section 3.1, 3.2, while
Ours SQL-to-NL refers to 3.3, 3.4. Zhang et al. (2021) is a SOTA data augmentation system described in 5.1.

into seen domains and novel domains8. Accord-
ingly, we define the seen-domain-dev-set and novel-
domain-test-set from the SPIDER dev set, along
with the SPIDER train set renamed seen-domain-
train-set.

Additionally, we collect two data sets in the
novel domains, novel-domain-ours-set and novel-
domain-oracle-set. Novel-domain-ours-set is our
target dataset with entries constructed from scratch
with only the databases and our full pipeline.
Novel-domain-oracle-set entries start from the
novel domain gold SQL queries, annotated with
our SQL-to-NL method. Moreover, we create a
new data split called seen-domain-small-set, which
has the same size as novel-domain-ours-set, but is
randomly sampled from the expert-annotated seen-
domain-train-set.

We use a linear regression to derive the number
of SQL queries to construct for each database, w.r.t
the number of TABLES, COLUMNS and FOREIGN-
KEY relations. Each created SQL query is para-
phrased into natural language by 2 annotators as
in SPIDER, paraphrases too short or too long are
filtered out. The resulting data sizes are illustrated
in Table 1.

In total, the paraphrasing and human evaluation
(to be elaborated below) cost us $349.34.

4.2 Human Evaluation

To test the effectiveness of our SQL query con-
struction and SQL-to-NL conversion method re-
spectively, we conduct two experiments of human
evaluation with participants recruited on AMT.

To evaluate the constructed SQL queries, we
use the corresponding computer-generated pseudo-
NL as a proxy for SQL queries to involve crowd-

8The 10 selected novel domains are: orchestra, singer,
real estate properties, tvshow, battle death, voter 1, stu-
dent transcripts tracking, concert singer, world 1, and
course teach.

Queries considered having
following properties (in %)

ours expert

Succinct 75.51 74.46
Sensible 95.95 89.49
Relevant 83.06 76.82
Complex 55.80 37.98

Table 2: Human evaluation results between ours and
expert SQL queries.

sourcing. We present each participant with a
Pseudo-NL question, ask them to indicate whether
the Pseudo-NL is succinct, sensible, relevant and
complex. Each question is randomly chosen either
from our created novel-domain-ours-set or from
expert-annotated SQL queries in novel-domain-
oracle-set, where the choice is hidden from par-
ticipant workers. We evaluate on all entries in the
10 novel domains, with results presented in Table
2.

As shown, compared to expert-annotated ones,
participants considered a larger proportion of our
queries complex, but also a larger proportion con-
cise, sensible and relevant. Although human eval-
uation scores are subjective and could fluctuate
across individuals, this at least shows that from the
annotators’ point of view, our created SQL queries
are comparable to expert annotated ones on some
dimensions.

To evaluate our SQL-to-NL conversion method,
we compare our crowd-sourced questions from
novel-domain-oracle-set with expert annotated NL
questions from novel-domain-test-set. Since both
are aligned to the same set of gold SQL queries, we
show participants pairs of NL questions referring
to the same SQL query. We ask the participants
how similar the question pairs are, and which of
them is smoother in language.

With crowd workers as judges, we cannot di-
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rectly measure how rigorous our NL questions are
in preserving the semantics of SQL queries. How-
ever, by taking expert-annotated questions as the
gold standard of query semantics, and inspecting
the similarity between ours and expert-annotated
questions for the same gold-standard SQL queries,
we can indirectly measure the level of rigorousness
that our conversion method is capable of.

Results show that the average similarity between
our questions and gold questions is scored 3.78 out
of 1 to 5, indicating a good alignment between the
meanings of the question pairs. As for preference,
45% of times our question is preferred, while 39%
of times gold question is preferred and 16% of
times the two are considered equally smooth in
expression. This result verifies the validity of our
SQL-to-NL conversion method.

5 Evaluation by Domain Transfer

5.1 Evaluation Setting
To further evaluate our pipeline’s effectiveness, we
do an extrinsic evaluation in the context of domain
transfer. Namely, we test the capability of our cre-
ated data to help semantic parsers generalize to
novel domains. Below we first define 4 dataset
settings and 2 training scenarios:

Dataset Settings
• PRETRAIN Trains on seen-domain-train-set9,

validates on seen-domain-dev-set, tests on novel-
domain-test-set. This reflects the process of train-
ing a model on seen domains then applying the
trained model to novel domains;

• OURS Trains on novel-domain-ours-set, tests
on novel-domain-test-set. This is our target
setting, which reflects training with our semi-
automatically constructed in-domain data then
test on real-world queries in the same domains;

• GOLD Trains on half (220 entries) of the novel-
domain-test-set, tests on the other half. This set-
ting approximates a theoretical upper bound, re-
flecting how much accuracy gain can be achieved
with gold in-domain data;

• TRAIN(SMALL) Trains on novel-domain-small-
set, tests on novel-domain-test-set. This setting is
an out-of-domain expert-annotated baseline for
OURS setting in RANDOM-INIT scenario, and an-
swers the question “how powerful is our created,
in-domain data compared to the expert-annotated

9For definitions of data splits, please refer to Table 1

but out-of-domain data, in terms of training mod-
els from random initialization”.

Training Scenarios
• RANDOM-INIT Start training from randomly

initialized model parameters. For models with
BERT, initialize BERT parameters with pre-
trained checkpoints10;

• FINETUNE Start training from model check-
points acquired from RANDOM-INIT training on
PRETRAIN data.

We conducted experiments with 3 popular re-
cent Text-to-SQL semantic parsers: lang2logic
(Dong and Lapata, 2016), IRNet-BERT (Guo et al.,
2019), and RAT-SQL-BERT (Wang et al., 2020).
lang2logic is the first semantic parser to employ
Seq2Seq paradigm, IRNet-BERT is the first practi-
cally effective semantic parser on SPIDER chal-
lenge, and RAT-SQL-BERT is the latest repro-
ducible SOTA when using BERT-Large encoder.
The lang2logic models were originally written in
Lua and are re-implemented with PyTorch; to serve
as a vanilla baseline, seq2seq setting is used in-
stead of the more complex seq2tree setting. For
RAT-SQL-BERT models, due to memory limits of
our 1080 TI GPUs and for a fair comparison with
IRNet-BERT, we use the bert-base-uncased version
as in IRNet-BERT, instead of the bert-large-whole-
word-masking version in the original implementa-
tion.

For each parser, we first train them under the
RANDOM-INIT scenario with PRETRAIN data; then
FINETUNE the pretrained model saperately, with
OURS and GOLD data. Additionally, we train each
parser under RANDOM-INIT scenario with OURS

and TRAIN(SMALL) data respectively, to evaluate
our data outside the scope of domain transfer.

For all RANDOM-INIT models we use the same
set of hyper-parameters as in their original settings;
for FINETUNE models, following the intuition that
fine-tuning should have learning rates no larger
than pretrain, we do log-uniform sampling through
1/3, 1/10, 1/30 and 1/100 of the original learning
rates as well as the original learning rates them-
selves; for models with BERT encoders, we further
grid-search both having the BERT learning rates
fixed and aligned with other parameters.

We have attempted to compare with previous
work on semi-automatic dataset construction. How-

10https://huggingface.co/transformers/
pretrained_models.html
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Accuracy (%) lang2logic IRNet-BERT RAT-SQL-BERT
pretrain 3.87 65.60 59.77
finetune-ours 5.00? 66.74† 60.00�

finetune-gold 8.06 71.07 61.13
random-init-ours 1.14 21.79 19.19
random-init-train(small) 1.82 42.66 14.55

Table 3: Exact Match accuracy in percentage points. ? means at learning rate of 1e-4, † means at 3e-4, � means
at 1e-5. To faithfully reproduce a domain transfer setting, the accuracies of PRETRAIN models are reported on
novel-domain-test-set. Therefore, reported accuracies may vary from the ones reported on the development set of
SPIDER.

ever, the method of Wang et al. (2015) is restricted
to LambdaDCS logical forms and not applicable
to our setting of multi-table SQL queries; the data
construction method of Cheng et al. (2018) is not
contained in their open-source codebase, and the
first author was unfortunately not reachable for that
implementation.

Nonetheless, we discuss Zhang et al. (2021) for
comparison, a recent work on large-scale Text-to-
SQL data augmentation, with context-free sam-
pling of SQL queries and hierarchical neural auto-
matic NL generation without human intervention.

5.2 Results and Discussions

Evaluation results are shown in Table 3. Accura-
cies are evaluated on the novel-domain-test-set of
SPIDER. As shown, extra in-domain data collected
with our pipeline improves novel domain accuracy
by more than 1% for both lang2logic and IRNet-
BERT models.

We also tried applying the same fine-tuning to
the IRNet and RAT-SQL parsers without BERT.
However, that did not increase the accuracy. We
attribute this difference to the fact that while our ad-
ditional data provides information on the novel do-
main, its language style is not the same as SPIDER
train set. Our crowd-paraphrased questions are
bound to be different in style to expert-annotated
questions. The conventional recurrent encoders,
trained only on the SPIDER train set, fail to capture
the meaning of questions in our fine-tune dataset.
On the other hand, with BERT contextualizers,
which had been trained on texts at the magnitude of
billions, the language of our questions looks more
familiar to models, and they can more successfully
absorb the domain-related information encoded in
our data. As BERT-Large models are bigger and
more powerful, we would expect the accuracy gain
to be larger with RAT-SQL-BERT-Large, and ex-
pect the same trend for other semantic parsers in

general.
The finetune-gold result provides an approxi-

mate upper bound, from expert-annotated data pairs
at the same magnitude of our size. It is encouraging
that we are able to correct roughly 20% of the cor-
rectable errors by this standard. Further gains could
reasonably be expected from increasing scale.

Comparisons between models trained from
RANDOM-INIT scenario also show interesting find-
ings. Since with both random-init-ours and
random-init-train(small), the data sizes are a mag-
nitude smaller than the SPIDER training set used
for PRETRAIN, parsers trained under these two
settings perform less competitively than their
FINETUNE counterparts. But among themselves,
training from RANDOM-INIT with OURS data is
generally comparable to that of expert-annotated
TRAIN(SMALL) setting of the same size, and in the
case of RAT-SQL-BERT it even exceeds that of
TRAIN(SMALL).

The results in Table 3 are for the best fine-
tuned model checkpoint on our test data, the novel-
domain-test-set. This choice reflects the scenario
of our chosen task: we start with novel domains,
having only the databases available for use. We
semi-automatically create an in-domain fine-tune
dataset and train semantic parsers with it. We envis-
age deploying the fine-tuned models to arrive at the
best model checkpoint by the use of feedback from
users, for which optimizing on the novel-domain-
test-set is used as a proxy.

We are nevertheless interested in knowing if we
can choose the best model checkpoint indepen-
dently of our test. In terms of our hypothetical
scenario, it reflects whether we can achieve good
performance with real queries, by assuming access
to a fixed development set, and choosing the best
model checkpoint according to performance on that
fixed set.

The standard practice here is to validate on a
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set-aside development set, then report the accuracy
on the test set. However, the 440 entries of novel-
domain-test-set is all the expert-annotated data that
we have for our novel domains. In response to
this dilemma, we split the novel-domain-test-set in
half, into two subsets A and B. We then do cross-
validation between them: we use one subset for
picking the model checkpoint with highest accu-
racy, assessing its accuracy on the other (and vice
versa). Under this setting, we still achieve an accu-
racy gain of 0.74% with IRNet-BERT and 1.25%
with lang2logic.

Contemporary with our work, Zhang et al.
(2021) generated a much larger set of 50,000+ syn-
thetic training data (which they were able to do
by not involving human judges). Under the same
evaluation strategy as us in Table 3, and starting
from a different IRNet-BERT pretrained baseline
of 59.5%11, they report an augmented accuracy of
61.7% on the SPIDER development set, obtaining
an increase of 2.2%. However, we achieve half of
that increase with only around 1% their amount
of data. In the absence of access to their code, we
have been unable to determine the performance that
Zhang et al. (2021) would obtain from a compara-
bly small dataset, but we feel confident that gains
comparable to their full dataset could be obtained
from our method with more modest increases in
scale.

6 Conclusion

We have presented a novel approach to construct
in-domain Text-to-SQL data, following the three-
step paradigm of Wang et al. (2015). We ran-
domly select a topic of interest from a table relation
graph prior to building the actual query, and sample
query clauses in a context-dependent manner. We
identify “dominant concept” of the topics to sim-
plify the converted Pseudo-NL, and retrieve person-
alised examples as annotation scaffold for crowd-
paraphrasing. Our experiments show that our in-
domain data is comparable with expert-annotated
data, and capable of increasing the accuracy of
SOTA IRNet-BERT semantic parser by up to 1%.

For future work, we plan to explore more so-
phisticated probabilistic models to control SQL
query construction, and pair our query construction
method with recent work on SQL-to-NL transla-
tion, so as to bring our method to larger scale.

11which is mainly due to their use of SPIDER development
set and our use of novel-domain-test-set.
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A Cross-Domain Differences

The expression for query semantics can vary sig-
nificantly across domains, SQL queries of similar
structure can be mapped to fundamentally different
questions.

For example, the two SQL queries in Table 4
look similar in their sketch, differing only in their
schema tokens. However, their corresponding ques-
tions, when expressed in natural English, are very
different even from the structures. For instance,
the similar ‘where’ clause is a modifier of the sub-
ject ‘brand’ in one domain, and an adjunct of the
predicate ‘held’ in the other.

B Set of Major Heuristic Rules

• Every table in topic is involved in at least one
clause
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Domain: Car Makers
SQL: Select Brand.car maker,

Count(Brands.brand id) from Brands
JOIN Country ON Brands.country id =
Country.country id where Country. name
= ‘Germany’ group by Brand.car maker

Question: How many German brands
does each car maker own?

Domain: Singers and Concerts
SQL: Select Concert.year,

Count(Concert.concert id) from Concert
JOIN Stadium ON Concert.stadium id =
Stadium.id where Stadium.name
= ‘Murrayfield’ group by Concert.year

Question: How many concerts were held
in Murrayfield each year?

Table 4: An example pair of SQL queries with simi-
lar structures in different domains, the corresponding
natural language questions that map to them have very
different structures.

• A column is more likely chosen to ’WHERE’
clause if it has been chosen in the previous
‘WHERE’ clause

• A sub-query nested in ‘WHERE’ clause likely
returns the same column as the subject column
in that ‘WHERE’ clause or is related to it via
foreign-key relation

• Columns present in equality conditions are
likely not chosen in ‘GROUP BY’ clauses.

• Subject columns in ‘GROUP BY’ clauses are
likely to be selected.

• ‘GROUP BY’ clauses always take effect
either by aggregating ‘SELECT’ columns,
‘HAVING’ conditions or ‘ORDER BY’
clauses.

• Columns present in ‘SELECT’ are likely also
present in ‘ORDER BY’

• When two queries are linked together via an
‘UNION’, ‘EXCEPT’ or ‘INTERSECT’, it is
likely that the two queries share similar struc-
ture, only with one or two different structures
such as ‘WHERE’ conditions.

Example: Foreign key
Select avg(T1.killed) from perpetrator as T1
join people as T2 on T1.people id == T2.id
where T2.height < 1.8m
How many people were killed by perpetrators
shorter than 1.8m on average?

Example: Same Name
SELECT T1.id FROM trip AS T1 JOIN
weather AS T2 ON T1.zip code = T2.zip code
GROUP BY T2.zip code HAVING
avg(T2.mean temperature f) > 60
Give me ids for all the trip that took place in a
zip code area with average mean temperature
above 60.

Table 5: Examples of Foreign-Key and Same-Name
conditions, with SQL queries in the first line and paired
questions in the second.

C Feature Vector for Personalized
Examples

In retrieving the personalized examples, the fea-
ture vectors for measuring similarity between SQL
queries involve the following feature values. Fea-
tures related to “SELECT”, “FROM”, “WHERE”,
“GROUP BY”, “ORDER BY” and Set Operation
clauses are listed in Table 6, 7, 8, 9, 10, 11 respec-
tively.

Feature about “SELECT” Weight
Number of “SELECT” clauses 1.0

Wildcard “*” in column 4.0
MAX in column 2.0
MIN in column 2.0

COUNT in column 2.0
SUM in column 2.0
AVG in column 2.0

Table 6: Feature vector values regarding the column
clauses, with weights specified to the right of each fea-
ture.

Feature about “FROM” Weight
Number of tables in “FROM” 1.0

All tables connected by “JOIN ON” 2.0

Table 7: Feature vector values regarding the “FROM”
clauses, with weights specified to the right of each fea-
ture.
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Figure 4: Flowchart illustration of how SQL queries
are split into sequences of computer-generated ques-
tions. Triangle boxes and connection lines indicate
the sequential relationship between these templates, in
rectangle boxes are individual templates. In these tem-
plates, colored red are the slots to fill in. To build a
sequence of Pseudo-NL questions, a program walks
through the chart from start to finish, and lists the re-
sulting instantiated templates iteratively as output.

Feature about “WHERE” Weight
Empty “WHERE” clause 2.0

Number of “WHERE” clauses 1.0
“*” in column 4.0

MAX in column 1.0
MIN in column 1.0

COUNT in column 1.0
SUM in column 1.0
AVG in column 1.0

Sub-query in clauses 4.0
Column-valued clauses 4.0
‘between’ as operator 1.0

‘equal’ as operator 1.0
‘larger than’ as operator 1.0

‘smaller than’ as operator 1.0
‘not larger than’ as operator 1.0

‘not smaller than’ as operator 1.0
‘not equal’ as operator 1.0

‘in’ as operator 1.0
‘like’ as operator 1.0

Table 8: Feature vector values regarding the “WHERE”
clauses, with weights specified to the right of each fea-
ture.

Feature about “GROUP BY” Weight
Number of “GROUP BY” clauses 1.0

Involves “HAVING” clause 2.0
Involves “HAVING” with Sub-query 2.0

Table 9: Feature vector values regarding the “GROUP
BY” clauses, with weights specified to the right of each
feature.

Feature about “ORDER BY” Weight
Number of “ORDER BY” clauses 1.0

Ascending / Descending order 1.0
Involves “LIMIT” clause 1.0

Involves “LIMIT 1” 2.0

Table 10: Feature vector values regarding the “ORDER
BY” clauses, with weights specified to the right of each
feature.

Feature about Set Operations Weight
Involves “UNION” clause 4.0

Involves “EXCEPT” clause 4.0
Involves “INTERSECT” clause 4.0

Table 11: Feature vector values regarding the Set Op-
eration clauses, with weights specified to the right of
each feature.
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Abstract

Coupled with biaffine decoders, transformers
have been effectively adapted to text-to-graph
transduction and achieved state-of-the-art per-
formance on AMR parsing. Many prior works,
however, rely on the biaffine decoder for either
or both arc and label predictions although most
features used by the decoder may be learned by
the transformer already. This paper presents a
novel approach to AMR parsing by combining
heterogeneous data (tokens, concepts, labels)
as one input to a transformer to learn attention,
and use only attention matrices from the trans-
former to predict all elements in AMR graphs
(concepts, arcs, labels). Although our models 1

use significantly fewer parameters than the pre-
vious state-of-the-art graph parser, they show
similar or better accuracy on AMR 2.0 and 3.0.

1 Introduction

Abstract Meaning Representation (AMR) has re-
cently gained lots of interests due to its capability in
capturing abstract concepts (Banarescu et al., 2013).
In the form of directed acyclic graphs (DAGs),
an AMR graph consists of nodes as concepts and
edges as labeled relations. To build such a graph
from plain text, a parser needs to predict concepts
and relations in concord.

While significant research efforts have been con-
ducted to improve concept and arc predictions, la-
bel prediction has been relatively stagnated. Most
previous models have adapted the biaffine decoder
for label prediction (Lyu and Titov, 2018; Zhang
et al., 2019a; Cai and Lam, 2019; Zhou et al., 2020;
Lindemann et al., 2020). These models assign la-
bels from the biaffine decoder to arcs predicted by
another decoder, which can be misled by incorrect
arc predictions during decoding.

1Resources are publicly available at https://github.
com/emorynlp/levi-graph-amr-parser.

The enhancement of message passing between
decoders for arc and label predictions has shown
to be effective. Among these works, Cai and Lam
(2020) emerge with an iterative method to exchange
embeddings between concept and arc predictions
and feed the enhanced embeddings to the biaffine
decoder for label prediction. While this approach
greatly improves accuracy, it complicates the net-
work architecture without structurally avoiding the
error propagation from the arc prediction.

This paper presents an efficient transformer-
based (Vaswani et al., 2017) approach that takes a
mixture of tokens, concepts, and labels as inputs,
and performs concept generation, arc prediction,
and label prediction jointly using only attentions
from the transformer without using a biaffine de-
coder. Its compact structure (§3.3) enables cross-
attention between heterogeneous inputs, providing
a complete view of the partially built graph and a
better representation of the current parsing state. A
novel Levi graph decoder (§3.4) is also proposed
that reduces the number of decoder parameters by
45% (from 5.5 million to 3.0 million) yet gives sim-
ilar or better performance. To the best of our knowl-
edge, this is the first text-to-AMR graph parser that
operates on the heterogeneous data and adapts no
biaffine decoder.

2 Related Work

Recent AMR parsing approaches can be catego-
rized into four classes: (i) transition-based parsing
which casts the parsing process into a sequence of
transitions defined on an abstract machine (e.g.,
a transition system using a buffer and a stack)
(Wang et al., 2016; Damonte et al., 2017; Balles-
teros and Al-Onaizan, 2017; Peng et al., 2017;
Guo and Lu, 2018; Liu et al., 2018; Naseem et al.,
2019; Fernandez Astudillo et al., 2020; Lee et al.,

50



2020), (ii) seq2seq-based parsing 2 which trans-
duces raw sentences into linearized AMR graphs
in text form (Barzdins and Gosko, 2016; Konstas
et al., 2017; van Noord and Bos, 2017; Peng et al.,
2018; Xu et al., 2020; Bevilacqua et al., 2021),
(iii) seq2graph-based parsing which incrementally
and directly builds a semantic graph via expand-
ing graph nodes without resorting to any transition
system (Cai and Lam, 2019; Zhang et al., 2019b;
Lyu et al., 2020). (iv) graph algebra parsing which
translates an intermediate grammar structure into
AMR (Artzi et al., 2015; Groschwitz et al., 2018;
Lindemann et al., 2019, 2020).

Our work is most closely related to seq2graph
paradigm while we extend the definition of node
to accommodate relation labels in a Levi graph.
We generate a Levi graph which is a linearized
form originally used in seq2seq models for AMR-
to-text (Beck et al., 2018; Guo et al., 2019; Ribeiro
et al., 2019). Our Levi graph approach differs from
seq2seq approaches in its attention based arc pre-
diction, where arc is directly predicted by attention
heads instead of brackets in the target sequence.

3 Approach

3.1 Text-to-Graph Transducer

Figure 1 shows the overview of our Text-to-Graph
Transduction model. Let W = {w0, w1, . . . , wn}
be the input sequence where w0 is a special token
representing the target node andwi is the i’th token.
W is fed into a Text Encoder creating embeddings
{ew0 , ew1 , . . . , ewn }. In parallel, NLP Tools produce
several features for wi and pass them to a Feature
Encoder to generate {ef0 , ef1 , . . . , efn}. Embeddings
{ewi ⊕efi : i ∈ [0, n]} are put to a Text Transformer,
which generates Et = {et0, et1, . . . , etn}.3
Let V = {v0, v1, . . . , vm} be the output sequence
where v0 is a special token representing the root and
vi is the i’th predicted node. V is fed into a Graph
Encoder to create Ev = {ev0, ev1, . . . , evm}. Finally,

2Seq2seq-based parsing is sometimes categorized into
“translation-based methods” (Koller et al., 2019) possibly
due to the prevalence of seq2seq model in Neural Machine
Translation, while we believe that translation refers more to
the transduction between languages while AMR is neither a
language nor an interlingua.

3In our case, BERT (Devlin et al., 2019) is used as the Text
Encoder and ∀i.efi = eLEMMA

i ⊕ePOS
i ⊕eNER

i ⊕eCHAR
i is created

by the Feature Encoder using predictions (lemmas, part-
of-speech tags and named-entities) from the NLP Tools and
character level features from a Convolutional Neural Network.
In this work, we use CoreNLP (Manning et al., 2014) for a
fair comparison with existing approaches.

Text Encoder

NLP Tools

Feature Encoder

⋯w1 wnw0

⋯e f
1 e f

ne f
0⋯ew

1 ew
new

0

Text Transformer ⋯et
1 et

net
0

Graph Encoder

⋯v1 vmv0

⋯ev
1 ev

mev
0

Graph Transformer

Figure 1: Overview of our Text-to-Graph Transducer.

Et and Ev are fed into a Graph Transformer that
predicts the target node as well as its relations to all
nodes in V . The target node predicted by the Graph
Transformer gets appended to V afterwards.4

3.2 Concept + Arc-Biaffine + Rel-Biaffine
Our first graph transformer generates {v1, . . . , vm}
where vi is a concept in the target graph, and pre-
dicts both arcs and labels using a biaffine decoder.
Given Et and Ev (§3.1), three matrices are created,
Q = et0 ∈ R1×d,K|V = [et1, .., e

t
n, e

v
0, e

v
1, .., e

v
m]

∈ Rk×d (k = n+m+1). These matrices are put to
multiple layers of multi-head attention (MHA) pro-
ducing {αi : i ∈ [1, h]} and {βi : i ∈ [1, h]} from
the last layer, where h is the total number of heads
in MHA (WQ|K|Vi ∈ Rd×d,W⊕ ∈ R(h·d)×d):

αi = softmax(
(QWQi )(KWKi )

>
√
d

) ∈ R1×k

βi = αi · V ·WVi ∈ R1×d

α� = [α1
j : j ∈ [1, n]] ∈ R1×n

β⊕ = (β1 ⊕ . . .⊕ βh) ·W⊕ ∈ R1×d

α�j indicates the probability of wj being aligned to
the target node, and β⊕ is the embedding represent-
ing the node. Let C be the list of all concepts in
training data and L be the list of lemmas for tokens
in W such that |W | = |L|. Given X = C_W_L,
α� and β⊕ are fed into a Node Decoder estimating
the score of each xi ∈ X being the target node:

g(C|W |L) = softmax(β⊕ ·WC|W |L)

p(xi) = g(C) · [softmax(β⊕ ·WG)]i

+ g(W )
∑

j∈W (xi)

α�j + g(L)
∑

j∈L(xi)

α�j

g(C|W |L) is the gate probability of the target node
being in C|W |L, respectively (WC|W |L ∈ Rd×1).
4Graph Encoder creates ∀i.evi = transformer(eNODE

i ⊕ eCHAR
i ).
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p(xi) is estimated by measuring the probabilities of
xi being the target if xi ∈ C (WG ∈ Rd×|C|), and
if xi ∈ W |L where W |L(xi) = {j : (xi = yj) ∧
yj ∈W |L}, respectively. Finally, the output layer
onode = [p(xi) : xi ∈ X] ∈ R1×(|C|+|W |+|L|) gets
created and argmaxxi

(onode) is taken as the target.

⋯et
1 et

n ⋯ ev
mev

1ev
0et

0

Multi-Head Attention

Node DecoderBiaffine Decoder Arc Decoder

β⊕ α⊘ α⊗⋯ ev
mev

1

oarc orel oarconode

⋯et
1 et

n ⋯ ev
mev

1ev
0

Figure 2: Overview of our Graph Transformer models.
ND/BD/AD: node/biaffine/arc decoder. §3.2: ND for con-
cept generation and BD for arc and label predictions;
§3.3: ND for concept generation, AD for arc prediction,
and BD for label prediction; §3.4: ND for concept and
label generations and AD for arc prediction.

For arc and label predictions, the target embedding
β⊕ is used to represent a head and the embeddings
of previously predicted nodes, {ev1, . . . , evm}, are
used to represent dependents in a Biaffine Decoder,
which creates two output layers, oarc ∈ R1×m and
orel ∈ R1×m×|R|, to predict the target node being a
head of the other nodes, where |R| is the list of all
labels in training data (Dozat and Manning, 2017).

3.3 Concept + Arc-Attention + Rel-Biaffine

Our second graph transformer is similar to the one
in §3.2 except that it uses an Arc Decoder instead of
the Biaffine Decoder for arc prediction. Given A =
{α1, . . . , αh} in §3.2, α⊗ ∈ R1×(m+1) is created
by first applying dimension-wise maxpooling to A
and slicing the last m+ 1 dimensions as follows:

α⊗ = [max(α1
j , . . . , α

h
j ) : j ∈ [n+1, n+m+1]]

Notice that values in α⊗ are derived from multiple
heads; thus, they are not normalized. Each head is
expected to learn different types of arcs. During de-
coding, any vi ∈ V whose α⊗i ≥ 0.5 is predicted to
be a dependent of the target node. During training,
the negative log-likelihood of α⊗ is optimized.5

5This model still uses the Biaffine Decoder for label prediction.

The target node, say vt, may need to be predicted
as a dependent of vi, in which case, the dependency
is reversed (so vt becomes the head of vi), and the
label is concatenated with the special tag _R (e.g.,
ARG0(vi, vt) becomes ARG0_R(vt, vi)).

3.4 Levi Graph + Arc-Attention
Our last graph transformer uses the Node Decoder
for both concept and label generations and the Arc
Decoder for arc prediction. In this model, vi ∈ V ′
can be either a concept or a label such that the orig-
inal AMR graph is transformed into the Levi graph
(Levi, 1942; Beck et al., 2018) (Figure 3).

want ARG1

believe

boygirl

ARG1

ARG0

ARG0 ARG1

want

believe

ARG0 ARG1

girl boy

ARG0

(a) AMR graph

want ARG1

believe

boygirl

ARG1

ARG0

ARG0 ARG1

want

believe

ARG0 ARG1

girl boy

ARG0

(b) Levi graph

Figure 3: AMR and Levi graphs for the input, “The boy
wants the girl to believe him”.

Unlike the node sequence containing only con-
cepts in the AMR graph ordered by breadth-first
traverse, used as the output sequence for the models
in §3.2 and §3.3, the node sequence in this model
is derived by inserting the label of each edge after
head concept during training. This concepts-labels
alternation has two advantages over a strict topo-
logical order: (i) it can handle erroneous cyclic
graphs, (ii) it is easier to restore relations as each
label is connected to its closest concept. The het-
erogeneous nature of node sequences from Levi
graphs allows our Graph Transformer to learn at-
tentions among 3 types of input, tokens, concepts,
and labels, leading to more informed predictions.

Let V ′ be the output sequence consisting of both
predicted concepts and labels. Let C ′ be the set of
all concepts and labels in training data. Compared
to V and C in §3.2, V ′ is about twice larger than V
because every concept has one or more associated
labels that indicate relations to its heads. However,
C ′ is not so much larger than C because the addi-
tion from the labels is insignificant to the number
of concepts that are already in C. By replacing
V |C with V ′|C ′ respectively, the Node Decoder in
§3.2 can generate both concepts and labels. α⊗ in
§3.3 then gives attention scores among concepts
and labels that can be used by the Arc Decoder to
find arcs among them.
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SMATCH Fine-grained Evaluation
Labeled Unlabeled No WSD Concept SRL Reent. Neg. NER Wiki

Lindemann et al. (2019) 75.3 - - - - - - - -
Naseem et al. (2019) 75.5 80 76 86 72 56 67 83 80
Zhang et al. (2019a) 76.3 79.0 76.8 84.8 69.7 60.0 75.2 77.9 85.8
Zhang et al. (2019b) 77.0 80 78 86 71 61 77 79 86
Cai and Lam (2020) 80.2 82.8 80.8 88.1 74.2 64.6 78.9 81.1 86.3
Xu et al. (2020)† 80.2 83.7 80.8 87.4 78.9 66.5 71.5 85.4 75.1
Lee et al. (2020)‡ 81.3 85.3 81.8 88.7 88.7 66.3 79.2 71.9 79.4
Bevilacqua et al. (2021)§ 84.5 86.7 84.9 89.6 79.7 72.3 79.9 83.7 87.3
CL20 80.0±0.2 82.5±0.3 80.5±0.3 88.0±0.1 73.7±0.4 63.8±0.7 79.2±0.3 81.1±0.3 86.2±0.1
ND + BD + BD 79.4±0.1 82.3±0.1 80.0±0.2 87.9±0.2 73.1±0.2 62.5±0.2 79.8±0.3 80.7±1.0 85.8±0.5
ND + AD + BD 80.0±0.1 82.6±0.1 80.5±0.1 88.2±0.1 73.6±0.4 63.3±0.4 79.4±1.0 80.8±0.8 86.2±0.3
ND + AD + LV 80.0±0.1 82.2±0.2 80.5±0.1 87.7±0.2 74.5±0.2 64.1±0.3 78.4±1.0 80.5±0.8 86.2±0.3

(a) Results on AMR 2.0 results. Supervised†/unsupervised§ pre-training and self-learning‡ are orthogonal to our work.

SMATCH Fine-grained Evaluation
Labeled Unlabeled No WSD Concept SRL Reent. Neg. NER Wiki

Lyu et al. (2020) 75.8 - - 88.0 72.6 - - - -
CL20 76.8±0.2 79.9±0.2 77.3±0.2 86.3±0.2 73.2±0.2 63.4±0.2 72.3±1.4 73.0±0.5 79.5±0.2
ND + BD + BD 75.8±0.2 79.0±0.1 76.2±0.1 84.6±0.2 72.1±0.3 61.7±0.4 72.6±0.7 71.6±0.3 78.7±0.2
ND + AD + BD 76.8±0.1 80.1±0.1 77.3±0.1 86.5±0.2 73.1±0.2 63.6±0.2 73.2±0.9 73.0±0.2 79.6±0.1
ND + AD + LV 77.0±0.2 79.8±0.2 77.5±0.2 86.1±0.1 73.6±0.3 62.6±0.6 71.3±0.4 73.3±0.7 79.5±0.3

(b) Results on AMR 3.0.

Table 1: Averages ± standard deviations on AMR 2.0 and 3.0 . CL20: results by running the original implementa-
tion of Cai and Lam (2020) 3 times, ND+BD+BD: §3.2, ND+AD+BD: §3.3, ND+AD+LV: §3.4.

4 Experiments

4.1 Experimental Setup

All models are experimented on both the AMR 2.0
(LDC2017T10) and 3.0 datasets (LDC2020T02).
AMR 2.0 has been well-explored by recent work,
while AMR 3.0 is the latest release about 1.5
times larger than 2.0 that has not yet been ex-
plored much. The detailed data statistics are
shown in Table A.1.2. The training, develop-
ment, and test sets provided in the datasets are
used, and performance is evaluated with the
SMATCH (F1) (Cai and Knight, 2013) as well
as fine-grained metrics (Damonte et al., 2017).
The same pre- and post-processing suggested by
Cai and Lam (2020) are adapted. Section A.2 gives
the hyper-parameter configuration of our models.

4.2 Results

All our models are run three times and their aver-
ages and standard deviations are reported in Table 1.
Compared to CL20 using 2 transformers to decode
arcs & concepts then apply attention across them,
our models use 1 transformer for the Node De-
coder achieving both objectives simultaneously.
All models except for ND+BD reaches the same
SMATCH score of 80% on AMR 2.0. ND+AD+LV
shows a slight improvement over the others on
AMR 3.0, indicating that it has a greater poten-
tial to be robust with a larger dataset. Consid-
ering that this model uses about 3M fewer pa-

rameters than CL20, these results are promising.
ND+BD+BD consistently shows the lowest scores,
implying the significance of modeling concept gen-
eration and arc prediction coherently for structure
learning. ND+AD+LV shows higher scores for SRL
and Reent whereas the other models show advan-
tage on Concept and NER on AMR 2.0, although
the trend is not as noticeable on AMR 3.0, imply-
ing that the Levi graph helps parsing relations but
not necessarily tagging concepts.

Case Study We study the effect of our proposed
two improvements: heterogeneous Graph Trans-
former and Levi graph, from the view of attention
in Figure 4. Figure 4a shows that the core verb
“wants” is heavily attended by every token, suggest-
ing that our Graph Transformer successfully grasps
the core idea. Figure 4b presents the soft alignment
between nodes and tokens, which surprisingly over-
weights “ boy”, “girl” and “believe” possibly due
to their dominance of semantics. Figure 4c illus-
trates the arc prediction, which is a lower triangular
matrix obtained by zeroing out the upper triangle
of stacked α⊗. Its diagonal suggests that self-loop
is crucial for representing each node.

5 Conclusion

We presented two effective approaches which
achieve comparable (or better) performance com-
paring with the state-of-the-art parsers with signifi-
cantly fewer parameters. Our text-to-graph trans-
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(a) Token�token (b) Node�token (c) Node�node

Figure 4: Self- and cross-attention for tokens “The boy
wants the girl to believe him” and nodes “want believe
ARG1 boy ARG1 ARG0 girl ARG0”.

ducer enables self- and cross-attention in one trans-
former, improving both concept and arc prediction.
With a novel Levi graph formalism, our parser de-
mostrates its advantage on relation labeling. An
interesting future work is to preserve benefits from
both approaches in one model. It is also noteworthy
that our Levi graph parser can be applied to a broad
range of labeled graph parsing tasks including de-
pendency trees and many others.
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A Appendix

A.1 Datasets and Pre/Post-Processing
Table 2 describes statistics of the AMR 2.06 and
the AMR 3.07 datasets used in our experiments.

Sentences Tokens Concepts Relations
TRN 36,521 624,750 422,655 426,712
DEV 1,368 27,713 19,890 20,111
TST 1,371 28,279 26,513 27,175

(a) AMR 2.0.
Sentences Tokens Concepts Relations

TRN 55,635 965,468 656,123 667,577
DEV 1,722 34,696 25,171 25,568
TST 1,898 37,225 34,903 35,572

(b) AMR 3.0.

Table 2: Statistics of AMR 2.0 and 3.0. TRN/DEV/TST:
training/development/evaluation set.

Tokenization, lemmatization, part-of-speech and
named entity annotations are generated by the Stan-
ford CoreNLP tool (Manning et al., 2014). Most
frequent word senses are removed and restored dur-
ing pre- and post-processing. The same graph re-
categorization is performed to assign specific sub-
graphs to a single node as in Cai and Lam (2020).
Wikification is done using the DBpedia Spotlight
(Daiber et al., 2013) during post-processing.

A.2 Hyper-Parameter Configuration
The hyper-parameters used in our models are de-
scribed in Table 3.

6AMR 2.0: https://catalog.ldc.upenn.edu/
LDC2017T10

7AMR 3.0: https://catalog.ldc.upenn.edu/
LDC2020T02

Embeddings
lemma 300
POS tag 32
NER tag 16
concept 300
char 32
Char-level CNN
#filters 256
ngram filter size [3]
output size 128
Text Encoder
#transformer layers 4
Graph Encoder
#transformer layers 2
Transformer Layer
#heads 8
hidden size 512
feed-forward hidden size 1024
Graph Transformer
feed-forward hidden size 1024
Biaffine
hidden size 100

Table 3: Hyper-parameters settings.
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Abstract
In cross-lingual Abstract Meaning Representa-
tion (AMR) parsing, researchers develop mod-
els that project sentences from various lan-
guages onto their AMRs to capture their es-
sential semantic structures: given a sentence
in any language, we aim to capture its core
semantic content through concepts connected
by manifold types of semantic relations. Meth-
ods typically leverage large silver training data
to learn a single model that is able to project
non-English sentences to AMRs. However, we
find that a simple baseline tends to be over-
looked: translating the sentences to English
and projecting their AMR with a monolingual
AMR parser (translate+parse, T+P). In
this paper, we revisit this simple two-step base-
line, and enhance it with a strong NMT system
and a strong AMR parser. Our experiments
show that T+P outperforms a recent state-
of-the-art system across all tested languages:
German, Italian, Spanish and Mandarin with
+14.6, +12.6, +14.3 and +16.0 Smatch points.

1 Introduction

Abstract Meaning Representation (AMR), intro-
duced by Banarescu et al. (2013), aims at represent-
ing the meaning of a sentence in a semantic graph
format. Nodes represent entities, events and con-
cepts, while (typed) edges express their relations.

AMR itself, as of now, is English-focused, e.g.,
predicate frames are linked to English PropBank
(Kingsbury and Palmer, 2002). However, the ab-
stract nature of AMR, and the fact that they are
not explicitly linked to syntactic structure, make
it appealing for extracting semantic structure of
sentences in various languages. This insight led
to the recent interest in a new task: cross-lingual
AMR parsing (Damonte and Cohen, 2018). Here,
researchers develop models to project sentences
from different languages onto AMR graphs. Mod-

∗*Equal contribution.

go-01

arg0

arg1

we

recommend-01EN: Let’s go!
IT: Andiamo!
DE: Lasst uns gehen!
ZH: 我们走吧

  xamr

Figure 1: Cross-lingual AMR parsing as introduced by
Damonte and Cohen (2018).

els that have recently been proposed are typically
trained on large-scale silver data and learn to di-
rectly project the non-English sentences onto their
AMR graphs (see Figure 1) (Damonte and Cohen,
2018; Blloshmi et al., 2020). However, there is an
intuitive baseline that we argue has so-far received
too little attention: translate+parse, T+P. It
first translates a sentence to a pivot language and
applies a mono-lingual parser for that language. In
light of the rapid progress of both NMT and AMR
parsing models for English, our hypothesis is that
this baseline has become more effective and thus
more realistic. Moreover, we argue that it could be
beneficial to disentangle two key latent representa-
tions involved in the process of cross-lingual AMR
parsing: i) one that translates between two natural
languages and ii) one that translates between a nat-
ural language and a meaning representation. This
way, the cross-lingual AMR construction process
is more transparent and can be better analyzed.

In our work we test these hypotheses by trans-
lating the source language sentences into English
with a strong NMT system, and parse the result-
ing English sentences using a strong AMR parser.
We show that our baseline delivers strong perfor-
mance in cross-lingual AMR parsing across all
considered languages, outperforming task-focused
state-of-the-art models in all settings. We also
discuss fairer evaluation of cross-lingual AMR
parsing and relevant implications of this work
for research into cross-lingual AMR parsing.
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We will release all code under public license.1

2 Related work

Cross-lingual AMR parsing Cross-lingual
AMR parsing was introduced by Damonte and
Cohen (2018). They trained an alignment-
based AMR parser model that leverages large
amounts of parallel silver AMR data obtained
through annotation projection from a curated
parallel corpus. The authors also discussed
translate+parse (T+P) as a baseline using
either the NMT systems Google translate and
Nematus (Sennrich et al., 2017), or the SMT
system Moses (Koehn et al., 2007), together with
a mono-lingual transition-based parser (Damonte
et al., 2017). However, their best T+P approach
was Google Translate (GT) – which cannot be fully
replicated by other researchers since both training
data and model structure are hidden. Given the
recent advances in NMT (Barrault et al., 2019,
2020) and mono-lingual AMR parsing (Xu et al.,
2020), where parsers now achieve scores on par
with human IAA assessments (c.f. Banarescu et al.
(2013)), we show that time is ripe to put more
spotlight on T+P.

Blloshmi et al. (2020) address the problem from
complementary perspectives: i) they train a sys-
tem that projects AMR graphs from parsed En-
glish sentences to target sentences via a parallel
corpus, yielding gold non-English sentences and
silver AMRs. Conversely, ii) they train a system
that employs an NMT system to translate English
sentences from a human-annotated AMR dataset
to another language, yielding pairs of silver non-
English sentences and gold AMRs. This alleviates
the dependency on external AMR aligners.

(Mono-lingual) AMR parsing Mono-lingual
AMR parsing equally made big strides in recent
years, so that today AMR parsers deliver bench-
mark scores that are on-par with measured human
IAA. The latest step forward was achieved with
neural sequence-to-sequence models pre-trained
on large-scale MT benchmark data (Roberts et al.,
2020; Xu et al., 2020) or are fine-tuning self-
supervised seq-to-seq language models such as T5
or BART (Lewis et al., 2019; Bevilacqua et al.,
2021). Previou models perform parsing based on
different techniques, e.g., predicting latent align-
ments jointly with nodes (Lyu and Titov, 2018), or

1https://github.com/Heidelberg-NLP/
simple-xamr

via an iterative BFS writing traversal (Cai and Lam,
2019, 2020).

3 Translate, then parse!

Our pipeline model contains two components:

Sent-to-Sent: NMT system We use Helsinki-
NLP’s Opus-MT models (Tiedemann and Thottin-
gal, 2020) to translate the sentences to English.
The models are freely accessible2 and provide high
scores on public evaluation benchmarks.3

Sent-to-AMR: AMR parser For parsing En-
glish target sentences to AMR, we use the parser
from amrlib4, which consists of a T5 language
model (Roberts et al., 2020) that has been fine-
tuned on English sentences and their AMRs.

4 Experiments

Data We employ the cross-lingual AMR parsing
benchmark LDC2020T07. It was built from the test
split of the English mono-lingual LDC2017T10
data by translating its sentences to four languages:
German, Spanish, Italian and Mandarin Chinese.
This amounts to a total of 5,484 AMR-sentence
pairs, or 1,371 AMR-sentence pairs per language.

Baselines For all languages (German, Spanish,
Italian and Mandarin Chinese), we compare against
i) AMREAGER (Damonte and Cohen, 2018), and
ii) XL-AMR (Blloshmi et al., 2020).

Evaluation metrics Our main evaluation metric
is Smatch F1 (Cai and Knight, 2013). The Smatch
metric aligns the predicted graph with the gold
graph and computes an F1 score that measures nor-
malized triple overlap. Additionally, we calculate
F1 scores for finer-grained core semantic sub-tasks
Damonte et al. (2017).5 In our analyses (§4.2), we
also study results with S2MATCH (Opitz et al.,
2020), that offers a potentially fairer evaluation in
cross-lingual AMR parsing, since it does not penal-
ize allowed paraphrases that may emerge, e.g., due

2They are implemented in EasyNMT, a SOTA NMT pack-
age: https://github.com/UKPLab/EasyNMT

3See https://huggingface.co/
Helsinki-NLP for scores on benchmarks.

4https://github.com/bjascob/amrlib
5i) Unlabeled: score without node labels, ii) No WSD:

score w/o predicate sense disambiguation; iii) Reentrancies:
score on re-entrant nodes (coreference); iv) Concepts: score
on concept nodes; v) Named Ent.: indicating NER perfor-
mance; vi) negation: polarity detection performance; vii) SRL:
semantic role labeling performance.
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to the non-monotonous nature of translation (e.g.,
huckleberry → Heidelbeere (DE) → blueberry).

4.1 Main results
Results are displayed in Table 1. Overall, our
translate+parse baseline outperforms previ-
ous work by large margins. In all assessed semantic
categories, T+P outperforms XL-AMR models by
more than 10 Smatch points. The smallest improve-
ment obtained is achieved in IT with +12.6 points.

In some key semantic categories, the differences
are extreme. For negation detection we obtain
performance improvements that range from +26.5
points (IT) to +37.3 (DE). The named entity recog-
nition improves by +20.3 points for German, +20.4
points for Spanish, +17.6 points for Italian.

4.2 Studies
Using a graded metric for evaluation When
evaluating predicted AMRs against reference
AMRs in cross-lingual AMR parsing, we are es-
sentially comparing AMRs from sentences that are
not exactly the same. This means that predicted
concepts that are valid may get erroneously pe-
nalized by the evaluation metric. For instance,
consider a German source sentence that contains
Heidelbeere, and our cross-lingual AMR system
predicts i) huckleberry or ii) blueberry. Depend-
ing on which concept is mentioned in the refer-
ence AMR graph (based on the unseen sentence
from which the human SemBank annotator created
this graph), only one of the two options will be
viewed as correct, which results in unfair evalua-
tion. To mitigate this, we propose to conduct the
cross-lingual AMR evaluation using S2MATCH
(Opitz et al., 2020), a metric that admits graded con-
cept similarity. S2MATCH has a hyper-parameter
τ that sets a threshold for sufficiently similar con-
cept nodes across AMRs, using cosine-similarity.
The alignment of similar concepts can increase the
final score. The default τ is 0.5, but we also try 0.0
which is less strict and fosters dense alignment.

The results are displayed in Table 2. Interest-
ingly, most score improvements are obtained for
German (+3.9 points) and Mandarin Chinese (+5.2
points). We conjecture that this is because there is
slightly less variety in EN-{ES, IT} translations,
than for EN-DE, and especially for EN-ZH. This
is also visible from the results of our baseline
XL-AMR, which we reevaluate using S2MATCH:
Most gains are obtained for Mandarin Chinese
with an improvement of more than 7 points F1

posture

mod

arg0

solemn

represent-01

mod

magnificent

expect-01

arg1

arg1

peace

mod

sacred

attitude

mod

arg0

great

represent-01

peace

arg1
hope-01

sacred

mod
attitude

domain

solemn grand

NMT: The solemn and grand attitude 
is a sacred hope for peace.

Sentence: The solemn and magnificent posture 
represents a sacred expectation for peace.

XL
-A

M
R

Ex
pe

ct
: V

er
y 

hi
gh

 p
re

ci
si

on

lo
w

(e
r) 

re
ca

ll

T+P:

near paraphrase m
eaning

Expect: high precision, high recall

GERMAN INPUT: Die feierliche und großartige Haltung 
stellt eine heilige Friedenserwartung dar.

     SM | S2M
P:  58  |  70
R:  50  |  60
F:  58  |  64

     SM | S2M
P:  67  |  87
R:  29  |  37
F:  40  |  52

  X-AMR

EVAL

EVAL

      Original Sentence and ground truth

mod
mod

Figure 2: Evaluation example.

score. Inspecting test cases manually, we find
many cases were S2MATCH made the evaluation
fairer. For instance, the following gold-pred (DE:
[German word]) concept tuples are ignored by
SMATCH but considered by S2MATCH: pledge-
promise (DE: ‘versprechen’); write-compose (DE:

‘verfasst’) strong-resolute (DE: ‘deutlich’); spirit-
ghost (DE: ‘Geist’), etc. In all these cases the cross-
lingual AMR system predicted the correct concept,
but was penalized by SMATCH. A concrete ex-
ample case, with lexical (see colored nodes) and
structural (see dotted nodes) meaning-preserving
divergences, is shown in Fig. 2.

For future work that applies cross-lingual AMR
parsing evaluation, we recommend additional eval-
uation assessment with S2MATCH.

NMT quality The quality of our automatic trans-
lations is evaluated with two metrics: i) BLEU
score (Papineni et al., 2002) and ii) S(entence-
)BERT (Reimers and Gurevych, 2019), in order
to assess surface-oriented as well as semantic simi-
larity. For SBERT, we create sentence embeddings
for both our translations and the English reference
sentences and compute pair-wise cosine similarity.

Looking at the quality of our MT outputs (Table
4), we see that translation quality is generally quite
high. The moderate BLEU scores seem to result
more from variation in surface form than from in-
correct translations, which is backed by the high
cosine similarity scores across languages (and also
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AMREAGER XL-AMR translate+parse

Metric DE ES IT ZH DE ES IT ZH DE ES IT ZH

SMATCH 39.1 42.1 43.2 34.6 53.0 58.0 58.1 43.1 67.6 72.3 70.7 59.1

Unlabeled 45.0 46.6 48.5 41.1 57.7 63.0 63.4 48.9 71.9 76.5 75.1 65.4
No WSD 39.2 42.2 42.5 34.7 53.2 58.4 58.4 43.2 67.9 72.7 71.1 60.4
Reentrancies 18.6 27.2 25.7 15.9 39.9 46.6 46.1 34.7 55.8 60.9 58.2 47.5
Concepts 44.9 53.3 52.3 39.9 58.0 65.9 64.7 48.0 71.4 78.1 75.6 63.3
Named Ent. 63.1 65.7 67.7 67.9 66.0 66.2 70.0 60.6 86.3 86.6 87.6 84.2
Negation 18.6 19.8 22.3 6.8 11.7 23.4 29.2 12.8 49.0 59.5 55.7 38.5
SRL 29.4 35.9 34.3 27.2 47.9 55.2 54.7 41.3 61.7 68.0 65.8 54.1

Table 1: F1 Smatch for two baselines and T+P. Best results in bold. Improvements > 20 points are underlined.

XL-AMR translate+parse

Metric DE ES IT ZH DE ES IT ZH

τ=1
2 S2M P 59.7(4.3) 63.9(+3.9) 64.7(+4.7) 49.2(+4.7) 74.1(+3.1) 78.3(+2.5) 77.0(+2.8) 65.8 (+4.0)

S2M R 54.8(+4.0) 59.9(+3.7) 59.4(+3.7) 47.3(+5.0) 67.3(+2.9) 71.5(+2.4) 70.0(+2.5) 60.4 (+3.7)

S2M F1 57.1 (+4.1) 61.8(+3.1) 62.0(+3.9) 48.2(+5.1) 70.5(+2.9) 74.7(+2.4) 73.4(+2.7) 63.0 (+3.9)

τ=0.0 S2M P 61.5(+6.1) 65.4(+5.4) 66.2(+6.2) 51.3(+6.6) 75.2(+4.2) 79.1(+3.3) 77.9(+3.7) 67.1 (+5.3)
S2M R 56.4(+5.6) 61.2(+5.0) 60.8(+5.1) 49.4(+7.1) 68.2(+3.8) 72.1(+3.0) 70.8(+3.3) 61.6 (+4.9)

S2M F1 58.9(+5.9) 63.2(+5.2) 63.4(+5.3) 50.4(+7.3) 71.5(+3.9) 75.4(+3.1) 74.2(+3.5) 64.3 (+5.2)

Table 2: Evaluation using a graded metric. Bold: Largest improvement of a parser using fairer graded evaluation.

XL-AMR translate+parse
D-ES D-I D-Z ES-I ES-Z I-Z D-ES D-I D-Z ES-I ES-Z I-Z

SMATCH 52.3 52.2 40.9 58.5 42.7 42.8 74.3 73.7 61.6 79.0 63.7 63.1
S2MATCH 58.7 58.6 48.7 63.9 50.2 50.4 77.7 77.2 66.7 81.8 68.6 68.0

Unl. 57.0 57.2 46.6 63.3 48.0 48.7 77.0 76.7 65.7 81.6 67.8 67.1
NoWSD 52.3 52.4 41.0 58.7 42.7 42.8 74.4 73.8 61.7 79.0 63.8 63.1
Conc. 57.7 56.8 45.0 65.4 47.7 47.4 75.1 74.2 63.1 80.0 65.6 64.8
NER 63.9 64.3 56.6 68.2 56.6 57.9 90.1 90.1 83.8 91.2 84.0 84.2
Neg. 7.6 9.7 6.6 44.0 12.8 11.6 61.3 55.4 42.3 69.4 46.2 47.8
Reent. 40.7 41.5 34.6 49.8 36.7 37.2 64.2 63.2 50.4 69.6 51.8 51.0
SRL 47.4 47.5 39.5 55.8 41.7 41.7 69.7 68.9 56.5 75.0 58.3 57.6

Table 3: Semantic consistency over language pairs mea-
sured with SMATCH, S2MATCH (τ=0). Bold/italics :
highest/lowest score for language pairs.

DE ES IT ZH mean

BLEU 0.41 0.49 0.46 0.23 0.40
SBERT (cosim) 0.93 0.95 0.94 0.88 0.92

Table 4: BLEU and SBERT MT quality assessment.

highlights the need for a fairer and graded AMR
evaluation as proposed above.6 Finally, comparing
the different source languages, there seems to be
a higher quality in the translations from German,
Spanish, and Italian, compared to Mandarin Chi-
nese. This is not only reflected in the BLEU scores,
but also in the SBERT cosine scores, which suggest
a higher semantic similarity between our transla-
tions from DE, ES, IT and the reference sentences.

Semantic cross-lingual consistency of cross-
lingual AMR systems A cross-lingual AMR sys-
tem should be expected to deliver the same or
highly similar AMRs for two sentences from dif-

6This is also supported by a manual analysis of samples.

ferent languages, if the sentences carry the same
meaning. We may say that a system is semantically
consistent if it complies to this expectation.

To measure the degree of consistency, we evalu-
ate system outputs of a cross-lingual AMR system
for input language X against the outputs of the same
system when fed sentences in language Y, from a
parallel dataset (X,Y) of sentences in languages
X and Y. In the standard evaluation, we computed
EVAL(system(X), A) and EVAL(system(Y ), A),
where A are target AMRs. In this experiment, we
instead calculate EVAL(system(X), system(Y )),
assessing the degree of consistency of a system.

The results are provided in Table 3, where we see
a very clear picture that holds true both for our joint
baseline (XL-AMR) and our T+P approach and all
examined semantic categories: the highest consis-
tency is achieved for Spanish-Italian (ES-I, XL-
AMR: 63.9 S2MATCH; T+P: 81.8 S2MATCH),
while the lowest consistency is achieved for Ger-
man and Mandarin Chinese (D-Z, XL-AMR: 48.7
S2MATCH; T+P: 66.7 S2MATCH). When directly
comparing the parsing systems, overall T+P ap-
pears to offer better consistency in all categories,
especially negation. However, the substantial vari-
ance between languages may indicate that either i)
there is a great necessity for making cross-lingual
parsers more robust or, ii), that AMR representa-
tions, as constructed from English, may be better
prepared to represent (besides English) Spanish
and Italian language, than, e.g, German or Chinese.
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5 Discussion

We believe that the surprising effectiveness of
translate+parse touches upon a key ques-
tion: to what degree can AMR be considered
an interlingua? On one hand, Banarescu et al.
(2013) explicitly state that AMR ‘is not designed
as an interlingua’. Indeed, AMRs created for En-
glish sentences do have a flavour of English, since
they are partially grounded in English PropBank
(Kingsbury and Palmer, 2002). But linking AMRs
to a PropBank of another language, e.g., Brazil-
ian (Duran and Aluı́sio, 2012) or Arabic (Palmer
et al., 2008), and parsing non-English sentences
into corresponding AMRs, would not solve, but
only displace the problem of being tied to a spe-
cific language’s lexical semantic inventory.7 On the
other hand, AMR does contain abstract meaning
components that represent language phenomena
we may consider as universals: negation, occur-
rence of named entities, semantic events and their
related participants, as well as semantic relations
such as Possession, Purpose or Instrument.8 We
argue that this abstract structure again pushes AMR
more towards an interlingua. Hence, the emergent
interest in cross-lingual (A)MR (Oepen et al., 2020;
Fan and Gardent, 2020; Sheth et al., 2021; Sher-
borne and Lapata, 2021) is well justified. However,
even if AMR’s inventory may favor an interlin-
gual representation, we cannot, in general, expect a
homomorphism of AMRs constructed from seman-
tically equivalent sentences in various languages,
given wide-spread phenomena that can preclude
a uniform AMR representation, such as construc-
tions involving head-switching phenomena or dif-
ferences in lexical meaning.

Such a middle-ground is indicated by our results:
(Too) much divergence may be involved when
mapping non-English sentences to original EN-
AMRs directly, which is penalized by the strict(er)
SMATCH metric. We show that evaluation with the
softer S2MATCH metric admits small deviations
in the conceptual inventory of different languages.
The fact that our indirect two-step approach T+P
shows very strong performance also strengthens
the view that AMR is not fully an interlingua. The
better performance of T+P may in part be due to a
capacity of strong NMT systems to neutralize some
amount of inter-lingual divergence, so that evalu-

7Potentially, this may be mitigated in the future by linking
AMR to x-lingual PropBanks (Akbik et al., 2015)

8C.f. Xue et al. (2014).

ation against EN-AMRs can yield better results in
this setting.

Note that in our T+P approach two important
intermediate (latent) representations are clearly
separated: one in the NMT model (that builds a
bridge between two natural languages) and one in
the parser (that builds a bridge between English
and a language of meaning with a flavor of En-
glish). By analyzing divergences between source
and target in the T step, we can uncover aspects
of semantic representations that are not isomor-
phic between languages, and which – by transfer
via translation – may be neutralized to match the
pivot-flavored AMR structure. Hence, the T+P
approach offers an ideal framework for studying
interlingual similarities and divergences in cross-
lingual AMR parsing, by comparing the structural-
semantic divergences of non-English sentences and
their translated English counterparts (aka transla-
tional divergences), with the aim of identifying
structural-semantic differences between languages
that can affect the cross-lingual mapping of sen-
tences into a uniform interlingual AMR.9

6 Conclusion

We revisited translate+parse, an intuitive
baseline for cross-lingual AMR parsing. Equipped
with a recent NMT system and a monolingual AMR
parser, T+P outperforms other approaches by large
margins across all evaluation settings. We propose
to employ a graded metric for fairer evaluation of
cross-lingual AMR parsing. Our work can serve as
a strong baseline for future development of cross-
lingual AMR parsers. Finally, the T+P approach
provides an ideal platform for deeper assessment,
analysis, and break-down of potential interlingual
aspects of AMR.
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Christian Federmann, Mark Fishel, Yvette Gra-
ham, Barry Haddow, Matthias Huck, Philipp Koehn,
Shervin Malmasi, Christof Monz, Mathias Müller,
Santanu Pal, Matt Post, and Marcos Zampieri. 2019.
Findings of the 2019 conference on machine transla-
tion (WMT19). In Proceedings of the Fourth Con-
ference on Machine Translation (Volume 2: Shared
Task Papers, Day 1), pages 1–61, Florence, Italy. As-
sociation for Computational Linguistics.

Michele Bevilacqua, Rexhina Blloshmi, and Roberto
Navigli. 2021. One SPRING to Rule Them Both:
Symmetric AMR Semantic Parsing and Generation
without a Complex Pipeline. AAAI.

Rexhina Blloshmi, Rocco Tripodi, and Roberto Navigli.
2020. XL-AMR: Enabling cross-lingual AMR pars-
ing with transfer learning techniques. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
2487–2500, Online. Association for Computational
Linguistics.

Deng Cai and Wai Lam. 2019. Core semantic first: A
top-down approach for AMR parsing. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 3799–3809, Hong
Kong, China. Association for Computational Lin-
guistics.

Deng Cai and Wai Lam. 2020. AMR parsing via graph-
sequence iterative inference. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 1290–1301, Online. As-
sociation for Computational Linguistics.

Shu Cai and Kevin Knight. 2013. Smatch: an evalua-
tion metric for semantic feature structures. In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 748–752, Sofia, Bulgaria. Associa-
tion for Computational Linguistics.

Marco Damonte and Shay B. Cohen. 2018. Cross-
lingual Abstract Meaning Representation parsing.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1146–1155, New
Orleans, Louisiana. Association for Computational
Linguistics.

Marco Damonte, Shay B. Cohen, and Giorgio Satta.
2017. An incremental parser for Abstract Mean-
ing Representation. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 1, Long Pa-
pers, pages 536–546, Valencia, Spain. Association
for Computational Linguistics.

Magali Sanches Duran and Sandra Maria Aluı́sio. 2012.
Propbank-br: a Brazilian treebank annotated with se-
mantic role labels. In Proceedings of the Eighth In-
ternational Conference on Language Resources and
Evaluation (LREC’12), pages 1862–1867, Istanbul,
Turkey. European Language Resources Association
(ELRA).

Angela Fan and Claire Gardent. 2020. Multilingual
AMR-to-text generation. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 2889–2901, On-
line. Association for Computational Linguistics.

Paul Kingsbury and Martha Palmer. 2002. From Tree-
Bank to PropBank. In Proceedings of the Third In-
ternational Conference on Language Resources and
Evaluation (LREC’02), Las Palmas, Canary Islands
- Spain. European Language Resources Association
(ELRA).

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
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Abstract

Broad-coverage meaning representations in
NLP mostly focus on explicitly expressed con-
tent. More importantly, the scarcity of datasets
annotating diverse implicit roles limits empir-
ical studies into their linguistic nuances. For
example, in the web review “Great service!”,
the provider and consumer are implicit argu-
ments of different types. We examine an an-
notated corpus of fine-grained implicit argu-
ments (Cui and Hershcovich, 2020) by care-
fully re-annotating it, resolving several incon-
sistencies. Subsequently, we present the first
transition-based neural parser that can handle
implicit arguments dynamically, and experi-
ment with two different transition systems on
the improved dataset. We find that certain
types of implicit arguments are more difficult
to parse than others and that the simpler sys-
tem is more accurate in recovering implicit ar-
guments, despite having a lower overall pars-
ing score, attesting current reasoning limita-
tions of NLP models. This work will facilitate
a better understanding of implicit and under-
specified language, by incorporating it holisti-
cally into meaning representations.

1 Introduction

Studies of form and meaning, the dual perspec-
tives of the language sign, can be traced back
to modern linguistics since de Saussure (1916,
1978). They are relevant to modern NLP, as even
current large neural language models cannot in-
trinsically achieve a human-analogous understand-
ing of natural language (Žabokrtskỳ et al., 2020;
Bender and Koller, 2020). Computational lin-
guists attempt to capture syntactic and semantic
features by means of constructing meaning rep-
resentation frameworks, such as PTG (Böhmová
et al., 2003), EDS (Oepen and Lønning, 2006),
AMR (Banarescu et al., 2013) and UCCA (Abend
and Rappoport, 2013). Through such frameworks,
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Figure 1: Example of a UCCA graph with fine-grained
implicit arguments.

Participant A Linker L
Center C Connector N
Adverbial D Process P
Elaborator E Quantifier Q
Function F Relator R
Ground G State S
Parellel Scene H Time T

Deictic Generic
Genre-based Type-identifiable
Non-specific Iterated-set

Table 1: UCCA Foundational Layer categories (above)
and Implicit Participant Refinement Layer categories
(below).

researchers have been exploring linguistic phe-
nomena such as quantification (Pustejovsky et al.,
2019), coreference (Prange et al., 2019), and word
sense (Schneider et al., 2018).

In recent years, a few studies have been dedi-
cated to annotating and modelling implicit and un-
derspecified language (Roesiger et al., 2018; Elazar
and Goldberg, 2019; McMahan and Stone, 2020).
For example, in the online review “there is no de-
livery”, two of the omitted elements are the busi-
ness agent and delivered items. However, previous
works focus on specific phenomena requiring lin-
guistic and collaborative reasoning, e.g., bridging
resolution, numeric fused-heads identification and
referential communication. Such datasets overex-
pose models to limited linguistic expressions, with-
out leveraging the complete syntactic and semantic
features of the context, regardless of the diversity
of implicit roles.

O’Gorman (2019) and Cui and Hershcovich
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(2020) present works on fine-grained implicit role
typology, incorporating it into the meaning repre-
sentation frameworks AMR and UCCA, respec-
tively. They lay a foundation for the interpretation
of idiosyncratic behaviours of implicit arguments
from a linguistic and cognitive perspective. Never-
theless, neither provided a dataset ready for com-
putational studies of such implicit arguments.

We take the latter as a starting point, addressing
several theoretical inconsistencies, and evaluate its
applicability by carefully re-annotating their pilot
dataset and providing inter-annotator agreement.
Our categorisation set, consisting of six implicit
role types, is compatible with UCCA’s semantic no-
tion of Scene rather than specific linguistic phenom-
ena. Furthermore, as opposed to previous work, it
tackles only essential implicit arguments, salient in
cognitive processing.

We design the first semantic parser, with two
different transition systems, that has the ability to
parse fine-grained implicit arguments for meaning
representations and evaluate its performance on
the revisited dataset. To conclude, we reflect on
this work’s objectives and the challenges to face in
future research on implicit arguments1.

2 Revisiting Implicit Argument
Refinement

Universal Conceptual Cognitive Annotation
(UCCA; Abend and Rappoport, 2013), a
typologically-motivated meaning representation
framework, has been targeted by several parsing
shared tasks (Hershcovich et al., 2019b; Oepen
et al., 2019, 2020). It uses directed acyclic
graphs (DAG) anchored in surface tokens, where
labelled edges represent semantic relations. In
the foundational layer, these are based on the
notion of Scenes (States and Processes), their
Participants and modifiers. UCCA distinguishes
primary edges, corresponding to explicit content,
from remote edges, allowing cross-Scene relations.
Additionally, Implicit units represent entities of
importance to the interpretation of a Scene that
are not explicitly anchored in the text. Several
refinement layers have been proposed beyond the
foundational layer, adding distinctions important
for semantic roles and coreference (Shalev et al.,
2019; Prange et al., 2019).

1Revisited Implicit EWT dataset is available on https://
github.com/ruixiangcui/UCCA-Refined-Implicit-EWT_

English. The code for the implicit parser is on
https://github.com/ruixiangcui/implicit_parser

2.1 Fine-grained Implicit Argument
Refinement for UCCA

Cui and Hershcovich (2020) proposed a fine-
grained implicit argument typology implemented
as a refinement layer of Participants for UCCA, cen-
tering around the semantic notion of Scene. Their
proposed categorisation set consisting of six types,
listed in Table 1, is argued to have low annotation
complexity and ambiguity, thus requiring relatively
low cognitive load for annotation than other fine-
grained implicit argument typologies (O’Gorman,
2019).

For example, the online review “Great service
and awesome price!” is annotated as follows and
visualised as Figure 1:

(1) [GreatD serviceP IMPGeneric

IMPGenre−based]H andL [awesomeS pricesA
IMPGenre−based]H !

There are two Scenes invoked in the sentence.
“Great service” with “service” as a Process, and
“awesome prices” with “awesome” as a State. Who
is serving, who is being served and what is priced
are distinct implicit arguments (IMP), which re-
quire reasoning to resolve.

Genre-based roles refer to conventional omis-
sion in the genre (Ruppenhofer and Michaelis,
2010). The corpus is based on online reviews,
where reviewers typically do not mention what
is under review. Therefore, an implicit argument
in each Scene is marked as Genre-based referring
to the reviewee. Generic roles denote “people in
general” (Lambrecht and Lemoine, 2005). In the
example, the recipient could be anyone, rather than
a specific person.

2.2 Revisiting Inconsistencies
Despite the general soundness of Cui and Hersh-
covich (2020)’s typology, we find multiple incon-
sistencies in it: prominently, the treatment of Pro-
cess and State Scenes and of nominalisation, and
some borderline cases. We propose to revisit these
cases and introduce consistent implicit argument
refinement guidelines.

2.2.1 State Scenes and Process Scenes
UCCA differentiates Scenes according to their per-
sistency in time (Abend and Rappoport, 2013): sta-
tive Scenes are temporally persistent states, while
processual Scenes are evolving events. Cui and
Hershcovich (2020) did not annotate implicit argu-
ments in State Scenes, although they are essentially

66



similar. We, therefore, categorise them using the
same guidelines. This phenomenon is rather perva-
sive in the dataset, as in Example 1 and 2:

(2) VeryD friendlyS [[evenE atC]R weekendsC]T
IMPGenre−based.

2.2.2 The Definition of Prominent Elements
While UCCA only annotates implicit units when
they are “prominent in the interpretation of the
Scene” (Abend and Rappoport, 2013), it is not al-
ways clear what should be regarded as such: the
level of uniqueness plays an essential role in recog-
nising the prominence of an argument. For ex-
ample, even distinguishing definite and indefinite
articles may pose a challenge to semantic analy-
sis (Carlson and Sussman, 2005). There are some
linguistic tests for testing whether an argument is
semantically mandatory (Goldberg, 2001; Hajič
et al., 2012). As for UCCA, we posit that time,
location and instrument modifiers, as a rule, are
ubiquitous to such an extent that no implicit argu-
ment should be annotated unless a Process or State
warrants it. In Example 3 (visualised as the upper
graph in Figure 2a), in the Scene “you leave,” the
departing action demands that the implicit source
location is vital for understanding, unlike the loca-
tion element in Example 1 or 2, where they are of
low prominence.

(3) [(You)A haveD [[aF ... mechanicC] realD]P/A

checkP IMPNon−specific]H beforeL [youA
leaveP IMPNon−specific]H .

2.2.3 Nominalisation as Agent Nouns
An Agent noun derives from another word denoting
an action, and that identifies an entity that perform
that action. In UCCA, such an expression is an-
notated as a single unit with both the Process and
Participant categories. As in Example 3, “a real
mechanic” is marked P/A. Like time or location, it
is subjective whether and how many implicit argu-
ments should be annotated given the possible list
of involved receivers, instruments, etc.

For a profession like “mechanic”, whatever is
being repaired, as well as the repair tools, can be
omitted. While an agent noun can invoke a Scene,
they could also simply serve as a title. Such cases,
e.g. “doctor,” “professor” and “chairman,” are com-
mon. To facilitate consistent annotation, we decide
never to annotate implicit Participants in Scenes
licensed by agent nouns. This means that there is
just one Participant, the person themselves.

2.2.4 Indefinite Deictic Participant
Deictic arguments refer to the implicit speaker or
addressee. They may be confused with Generic
roles when it is ambiguous whether the speaker
or addressee participates in the Scene. As a rule,
we posit that an implicit Participant ought to be
Generic unless it evidently refers to the speaker or
addressee. Example 4 shows an ambiguous case.

(4) [TheF experienceC]P IMPGeneric [withR
everyQ departmentC]A hasF beenF greatD.

3 Fine-grained Implicit Argument
Corpus

As a pilot annotation experiment, Cui and Hersh-
covich (2020) reviewed and refined 116 randomly
selected passages from an UCCA-annotated dataset
of web reviews (UCCA EWT; Hershcovich et al.,
2019a). The dataset was annotated by only one an-
notator. With our revisited guidelines, we ask two
annotators2 to revisit the original dataset, adding
or modifying implicit arguments, and subsequently
refining their categories, using UCCAApp (Abend
et al., 2017).

3.1 Evaluation of Implicit Argument
Annotation

Standard UCCA evaluation compares two graphs
(e.g., created by different annotators, or one be-
ing the gold annotation and the other predicted by
a parser), providing an F1 score by matching the
edges by their terminal span and category (Her-
shcovich et al., 2019b). However, the standard
evaluation completely ignores implicit argument
annotation. To quantify inter-annotator agreement
and later parser performance (§6), we provide an
evaluation metric taking these units into account.

To compare a graph G1 with implicit units I1
to a graph G2 with implicit units I2 over the same
sequence of terminals W = w1, . . . , wn, for each
implicit node i, we identify its parent node p(i),
denoting the set of terminals spanned by it as the
yield y(p(i)) ⊆ W , and its category as the label
`(p(i), i). Define the set of mutual implicit units
between G1 and G2:

M(G1, I1, G2, I2) ={
(i, j) ∈ I1 × I2

∣∣∣∣∣
y1(p1(i)) = y2(p2(j)) ∧
`1(p1(i), i) = `2(p2(j), j)

}

2The annotators have a background in linguistics and cog-
nitive science. One has experience in annotating UCCA’s
Foundational Layer. Training for the other took ~10 hours.
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(a) In the predicted graph, a mismatched and a mislabelled implicit node are shown in red.
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(b) In the gold graph, one implicit node is marked in blue, indicating it is not matched in the predicted
graph.

Figure 2: Evaluation examples. Above: gold graphs. Below: predicted graphs.

The F-score is the harmonic mean of la-
belled precision and recall, defined by dividing
|M(G1, I1, G2, I2)| by |I1| and |I2|, respectively.

In labelled evaluation, it is worth noting that
we require a full match of the two sets of la-
bels/categories rather than just intersection, which
suffices in standard UCCA evaluation (of non-
implicit units). That is, if there are two or more
implicit nodes under one parent, it is only con-
sidered a correct match when both the numbers
of implicit nodes and their labels are equal. We
also introduce unlabelled evaluation, which only
requires that parents’ spans match.

For example, in Figure 2a, the reference graph
has two implicit arguments. The first implicit unit’s
parent spans {have, a, real, mechanic, check} and

the second’s {you, leave}. In the predicted graph,
two implicit units are predicted. The first implicit
unit’s parent spans {a, real, mechanic} while the
second one spans the same terminals as the refer-
ence graph. We can see that the spans of the first
implicit unit do not match—the second matches but
with the wrong label. Therefore, in labelled and
unlabelled implicit unit evaluation, the precision,
recall, and F1 scores are all 0 and 0.5, respectively.

In Figure 2b, the reference graph has three im-
plicit units, labelled Non-specific, Generic and
Genre-based. One spans {The, service, is, over-
rated} while two span {The, service}. Although
the predicted graph has two implicit units with cor-
rect labels (Non-specific and Generic), it misses
both implicit units under the second parent span,
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Deictic Generic Genre-based Type-identifiable Non-specific Iterated-set Total Implicit Arguments
Cui and Hershcovich (2020) 66 65 103 39 100 12 385
Our dataset 107 86 147 6 36 9 391

Table 2: Statistics of Revisited Implicit Corpus compared to the pilot annotation.

viz. the two sets merely intersect but are not equal.
Therefore, the triplet precision, recall and F1 score
for labelled evaluation are all 0.5 and the triplet for
unlabelled evaluation are 1.

3.2 Inter-annotator Agreement
The two annotators separately reviewed and refined
15 out of the 116 passages (taken from the original
test split). Using the evaluation metric proposed
in §3.1, the labelled and unlabelled F1 scores are
73.8% and 91.3% respectively (see Appendix A).
Annotators have a Cohen’s κ (Cohen, 1960) of
69.3% on the six-type fine-grained classification
of the implicit arguments whose parents’ spans
match. For comparison, on the FiGref scheme,
O’Gorman (2019) report a Cohen’s κ of 55.2% on
a 14-way classification and of 58.1% on a four-way
classification. Gerber and Chai (2010) proposed
a relevant task to annotate implicit arguments for
instances of nominal predicates in sentences, which
has a Cohen’s κ of 67%. While we maintain a
comprehensive fine-grained typology, we still see
an improvement in agreement over other corpora.

3.3 Statistics of Revisited Implicit Corpus
Finally, one annotator reviewed and refined all 116
passages. The second reviewed their annotation
after completion. The full revisited dataset contains
393 passages, 3700 tokens and 5475 nodes. Table 2
compares our revisited dataset to the unreviewed
dataset of Cui and Hershcovich (2020).

We see a major decline in Non-specific and
Type-identifiable implicit arguments, because of
the clearer definition of prominent elements and
cases of agent nouns. Deictic, Generic and Genre-
based increase their amount thanks to incorporat-
ing implicit arguments in State Scenes rather than
only Process Scenes. The number of Iterated-set
remains small due to the rareness of aspectual mor-
phology and habitual/iterative constructions in En-
glish and in the corpus. However, it is still nec-
essary to keep the category and separate out its
instances rather than lump into another category or
even ignore them. Since implicit arguments of such
kind could be more common in morphologically
rich languages, we want to keep a clean mapping
of habitual/iterative constructions so as to facilitate

the studies of implicit roles’ diverse behaviours in
languages other than English.

4 Two Transition Systems for Parsing
Implicit Arguments

We build the first neural parser that supports pars-
ing implicit arguments dynamically in meaning
representations, with two different transition sys-
tems. We design a transition-based parser, mod-
elled upon Nivre (2003): a stack S = (. . . , s1, s0)
holds processed words. B = (b0, b1, . . .) is a buffer
containing tokens or nodes to be processed. V is a
set of nodes, and E is a set of labelled edges. We
denote s0 as the first element on S and b0 as the
first element on B. Given a sentence composed by
a sequence of tokens t1, t2, ..., tn, the parser is ini-
tialized to have a Root node on S, and all surface
tokens in B. The parser will at each step deter-
ministically choose the most probable transition
based on its current parsing state. Oracle action se-
quences are generated for training on gold-standard
annotations.

We propose two transition systems, IMPLICIT-
EAGER and IMPLICIT-STANDARD, to deal with
implicit arguments over the architecture of HIT-
SCIR 2019 (Che et al., 2019), which ranked first
in UCCA parsing in the MRP 2019 shared task
(Oepen et al., 2019). The transition system incor-
porates all nine transitions, namely, LEFT-EDGE,
RIGHT-EDGE, SHIFT, REDUCE, NODE, SWAP,
LEFT-REMOTE, RIGHT-REMOTE and FINISH.

SHIFT, together with REDUCE, are standard tran-
sitions. SHIFT moves b0 to S, while REDUCE pops
s0 from S (when it should not be attached to any
element in B).

Following transition-based constituent parsing,
NODEX creates a new non-terminal node (Sagae
and Lavie, 2005). Such node will be created on the
buffer, as a parent of s0 with an X-labelled edge.

LEFT-EDGEX and RIGHT-EDGEX add an X-
labelled primary edge between the first two ele-
ments on S. When the first element is the parent
of the second element on S, LEFT-EDGEX is exe-
cuted; in reverse, RIGHT-EDGEX will be chosen
when the second element has the first element as
its child. The left/right direction is the same as
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Before Transition
Transition

After Transition
Condition

Stack Buffer Nodes Edges Stack Buffer Nodes Edges Terminal?
S x | B V E SHIFT S | x B V E −
S | x B V E REDUCE S B V E −
S | x B V E NODEX S | x y | B V ∪ {y} E | (y, x)X − x 6= root
S | x B V E NODE S | x y | B V ∪ {y} E −
S | x B V E IMPLICITX S | x y | B V ∪ {y} E | (x, y)#X −
S | y, x B V E LEFT-EDGEX S | y, x B V E | (x, y)X −

S | x, y B V E RIGHT-EDGEX S | x, y B V E | (x, y)X −





x /∈ w1:n,
y 6= root ,
y ∧G x

S | y, x B V E LEFT-REMOTEX S | y, x B V E | (x, y)∗X −
S | x, y B V E RIGHT-REMOTEX S | x, y B V E | (x, y)∗X −
S | x, y B V E SWAP S | y x | B V E − i(x) < i(y)
[root] ∅ V E FINISH ∅ ∅ V E +

Table 3: The transition sets of two implicit transition systems. Actions marked in red are for IMPLICIT-EAGER,
blue for IMPLICIT-STANDARD. We write the stack with its top to the right and the buffer with its head to the left.
(·, ·)X denotes a X-labelled edge, (·, ·)∗X a remote X-labelled edge, and (·, ·)#X an X-labelled edge to an implicit
node. i(x) is a running index for the created nodes. The prospective child of the EDGE action cannot have a
primary parent. The newly generated node by IMPLICITX action is prohibited from having any descendant. NODE
generates a concept node on the buffer, but deos not produce an arc. This table is adapted from Hershcovich et al.
(2017).

where the arc points to. LEFT-REMOTEX and
RIGHT-REMOTEX are similar to LEFT-EDGEX

and RIGHT-EDGEX , yet these two transitions cre-
ate remote edges, creating reentrencies. The X-
labelled edge will be assigned a Remote attribute.

SWAP deals with non-planar graphs (a gener-
alisation of non-projective trees), in other words,
discontinuous constituents. It pops the second node
on S and adds it to the top of B. FINISH is the ter-
minal transition, which pops the Root node and
marks the transition state as terminal.

In IMPLICIT-EAGER, we introduce a new tran-
sition IMPLICITX adding an implicit node to the
buffer and attaching it with a labelled edge in one
step. In IMPLICIT-STANDARD, we simplify the ex-
isting NODE transition to only create a node with-
out attaching it, with the purpose of treating im-
plicit units like primary ones and generating them
dynamically. We elaborate their designs in Sec-
tion 4.1 and Section 4.2. Table 3 shows the transi-
tion set.

4.1 IMPLICIT-EAGER

Besides the nine transitions described above,
IMPLICIT-EAGER introduces the IMPLICITX tran-
sition, which creates a new unit onB as the child of
s0, with an X-labelled edge. The IMPLICIT action
is different from the NODE action of IMPLICIT-
STANDARD in the sense that the integrally gener-
ated edge makes the new node a child of s0 rather
than its parent, as in NODEX . Equally importantly,
the new node is prohibited to have any child in con-
trast to the primary nodes that the NODEX action

generates.

4.2 IMPLICIT-STANDARD

IMPLICIT-STANDARD adopts a more modular ap-
proach. Rather than complicating the transition
systems, it treats primary non-terminal nodes and
implicit nodes equally by simplifying the NODEX

action, making it generate a new unit on the buffer
without attaching it with any (labelled) edge. We
assume primary non-terminal nodes and implicit
nodes are identical in essence, thus handling them
without discrimination. Whenever an ungenerated
child or parent of s0 is found, NODE is executed so
that a concept node will be created on B. This ac-
tion does not cope with edge generation; the work
is left to LEFT-EDGEX or RIGHT-EDGEX . In the
oracle, we can tell whether the node is primary or
implicit by observing its relations. If the newly
created node is the child of s0 and does not have
any descendants, it is an implicit node; otherwise,
a primary node.

5 Experiments

5.1 Data Preprocessing

We convert UCCA XML data to MRP format using
the open-source mtool software.3 As the UCCA
data provided in MRP 2019 shared task did not
contain implicit information, HIT-SCIR 2019 is not
designed to read this information in our dataset. We
modify the parser to read node properties, and to

3https://github.com/cfmrp/mtool
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Data # Sentences # Tokens # Nodes # Edges # Deictic # Generic # Genre-based # Type-i # Non-s # Iterated-s # Implicit sum
EWT Train 2723 44751 59654 97561
EWT Dev 554 5394 7534 11987
EWT Eval 535 5381 7431 11907
Overall not refined not refined not refined not refined not refined not refined 153
IMP Train 285 2671 3936 6146 87 59 103 3 18 4 274
IMP Dev 59 540 781 1217 11 15 19 1 10 0 56
IMP Eval 49 489 709 1106 9 12 25 2 8 5 61
Overall 107 86 147 6 36 9 391

Table 4: Statistics of train, dev and evaluation set in Original EWT and Revisited Implicit EWT. For each set,
number of sentences, number of tokens, number of nodes, number of instances of 6 implicit categories and their
sum are listed.

Primary Remote Implicit
LP LR LF LP LR LF LP LR LF UP UR UF

Baseline 0.495 0.467 0.480 0.538 0.304 0.389 1 0 0 1 0 0
IMPLICIT-EAGER 0.503 0.472 0.487 0.333 0.100 0.154 0.333

(7/21)
0.140
(7/50)

0.197 0.428
(9/21)

0.180
(9/50)

0.254

IMPLICIT-STANDARD 0.474 0.431 0.451 0.438 0.280 0.341 0.409
(9/22)

0.180
(9/50)

0.250 0.500
(11/22)

0.220
(11/50)

0.306

Table 5: Experiment results on Revisited Implicit EWT in percents. For primary edges, remote edges, and im-
plicit prediction, listed are Labelled Precision(LP), Labelled Recall (LR) and Labelled F-score (LF). In addition,
Unlabelled precision (UL), Unlabelled Recall (UR) and Unlabelled F-score are also listed for implicit evaluation.

convert UCCA data from and to MRP format. The
updated version of mtool is available on GitHub.4

5.2 Experimental Setup

Our parsers use stack LSTM to stabilize gradi-
ent descent process and speed up training; we en-
rich contextual information by employing the pre-
trained language model BERT as a feature input
(Graves, 2013; Devlin et al., 2018). The model is
implemented in AllenNLP (Gardner et al., 2018).
We use the HIT-SCIR 2019 parser as the baseline
for comparison. We keep the same hyperparame-
ters as Che et al. (2019) except batch size, adjusted
from 8 to 4 due to resource constraints. We do
not tune hyperparameters on either the original or
revisited dataset.5

We use the train, validation and evaluation split
from Hershcovich et al. (2019b), which was origi-
nally from UD EWT, with the ratio of 0.75, 0.125
and 0.125. The evaluation set has been validated
as the gold standard. Table 4 shows detailed statis-
tics of train, dev and eval set of both the origi-
nal and revisited dataset, on which we trained the
baseline parser, IMPLICIT-EAGER and IMPLICIT-
STANDARD.6

6 Results

Table 5 presents experimental results on Revis-
ited Implicit EWT by three parsers, the base-

4https://github.com/ruixiangcui/mtool
5Hyperparameter settings are listed in Appendix B.
6See training details in Appendix C.

line HIT-SCIR 2019 parser, IMPLICIT-EAGER and
IMPLICIT-STANDARD on Revisited Implicit EWT.
Regarding performance on the dataset, the base-
line is not able to predict implicit argument as
expected. However, both IMPLICIT-EAGER and
IMPLICIT-STANDARD managed to predict implicit
arguments.

Based on the evaluation method mentioned in
section 3.1, IMPLICIT-EAGER’s labelled precision
and labelled recall on Revisited Implicit EWT are
0.333 and 0.14; the unlabelled precision and un-
labelled recall are 0.428 and 0.18. For the pri-
mary edge and remote edge evaluation, noticeably,
IMPLICIT-EAGER also outperforms the baseline on
primary edges by 0.007 in F-score on the revisited
dataset.

Even though IMPLICIT-STANDARD has the
worse results in terms of primary parsing, it gains
boosted performance on all targets in implicit evalu-
ation. Its unlabelled implicit precision, recall and F-
score are 0.5, 0.22 and 0.306, defeating IMPLICIT-
EAGER by 0.072, 0.04 and 0.052, respectively.

For labelled evaluation, IMPLICIT-STANDARD

surpasses IMPLICIT-EAGER even further; the la-
belled precion, recall and F-score are 0.419,
0.180 and 0.250, respectively exceeding IMPLICIT-
EAGER by 0.076, 0.04 and 0.053.

Table 6 presents the three parsers’ performances
on Original EWT. The baseline produced better
results on primary edges and remote edges on Orig-
inal EWT.

The reason why IMPLICIT-STANDARD outper-
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Primary Remote
LP LR LF LP LR LF

Baseline 0.710 0.701 0.706 0.547 0.365 0.438
IMPLICIT-EAGER 0.675 0.597 0.634 0.527 0.344 0.416
IMPLICIT-STANDARD 0.656 0.571 0.610 0.458 0.225 0.302

Table 6: Experiment results on Original EWT in per-
cents. As there is no implicit argument in the dataset,
only performances on primary edges and remote edges
are listed.

forms IMPLICIT-EAGER on implicit evaluation but
decrease in accuracy on primary evaluation might
be attributed to its equal treatment of primary nodes
and implicit nodes.

7 Discussion

As is indicated in Table 5, IMPLICIT-EAGER and
IMPLICIT-STANDARD successfully predicted re-
spectively seven and nine implicit arguments with
the correct fine-grained implicit labels. In the unla-
belled evaluation, nine and 11 implicit arguments
were predicted each.

Table 7 shows the confusion matrix of the per-
formances of IMPLICIT-EAGER and IMPLICIT-
STANDARD on the evaluation set of Revisited Im-
plicit EWT. Both parsers have predicted roughly
the same amount of implicit arguments, 22 and 21,
respectively.

Noticeably, IMPLICIT-EAGER has emitted 12
Deictic implicit arguments, accounting for 57.1%
of all predictions, 14 and 66.7% if including par-
tial matches as Deictic & Generic and Deictic &
Genre-based. While IMPLICIT-STANDARD has
a more uniform distribution over prediction cat-
egories. Deictic, Generic and Genre-based are the
most predicted ones. Moreover, one Non-specific
implicit argument, despite being wrongly labelled,
is also predicted by IMPLICIT-STANDARD, while
IMPLICIT-EAGER has never predicted labels other
than Deictic, Generic and Genre-based, which have
significantly more instances in the training set.

Both implicit parsers have predicted correctly
four Deictic and three Generic & Genre-based im-
plicit arguments. Besides, IMPLICIT-STANDARD

managed to predict two more correct Genre-based
while IMPLICIT-EAGER has never predicted suc-
cessfully stand-alone Genre-based implicit argu-
ment. IMPLICIT-STANDARD has a remarkably
higher labelled precision of 66.7% in Deictic than
IMPLICIT-EAGER of 33.3%, while the latter has a
higher precision of 75% in Generic & Genre-based
than IMPLICIT-STANDARD of 50%. Lamentably,
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UNMATCHED 0 5 1 1 4 1 1 7 14 4 1 2 41
Deictic 6 1 0 0 4 0 0 0 1 0 0 0 12
Deictic & Generic 1 0 0 0 0 0 0 0 0 0 0 0 1
Deictic & Genre-based 1 0 0 0 0 0 0 0 0 0 0 0 1
Generic & Genre-based 1 0 0 0 0 0 0 3 0 0 0 0 4
Genre-based 3 0 0 0 0 0 0 0 0 0 0 0 3

IMPLICIT-STANDARD
UNMATCHED 0 6 1 1 4 1 1 6 12 4 1 2 39
Non-specific 1 0 0 0 0 0 0 0 0 0 0 0 1
Deictic 2 0 0 0 4 0 0 0 0 0 0 0 6
Deictic & Genre-based 0 0 0 0 0 0 0 1 0 0 0 0 1
Generic 2 0 0 0 0 0 0 0 0 0 0 0 2
Generic & Genre-based 3 0 0 0 0 0 0 3 0 0 0 0 6
Genre-based 3 0 0 0 0 0 0 0 2 0 0 0 5
Genre-based & P 0 0 0 0 0 0 0 0 1 0 0 0 1

Table 7: Confusion matrix on the Revisited Implicit
EWT evaluation set: The column is the predicted la-
bels while the row is the actual labels. Noticeably, the
parsers are able to predict implicit elements of other
categories in theory, such as Process (P). If not clari-
fied otherwise, the fine-grained implicit categories are
Participant by default.

neither of the implicit parsers has emitted predic-
tion for Type-identifiable nor Iterated-set. It is nec-
essarily expected as both categories have less than
five instances in the training set.

Although this paper focuses on fine-grained im-
plicit Participants, there are already some implicit
arguments of other categories annotated in the foun-
dational layer, especially Process and Center. In-
terestingly, in the sentence “Fresh and excellent
quality,” IMPLICIT-STANDARD generated two im-
plicit arguments, Genre-based and Process in the
Scene “Fresh.” It means not only that it infers the
Scene misses a Genre-based Participant, but also a
Process, i.e., the main relation that evolves in time.

8 Related Work

Parsing implicit argument was introduced into NLP
by Ruppenhofer et al. (2009); Gerber and Chai
(2010, 2012), but has been coarse-grained and an-
notated within Nombank (Meyers et al., 2004), lim-
ited to ten nominal predicates.

Bender et al. (2011) identified ten relevant lin-
guistic phenomena, ran several parsers and associ-
ated their output with target dependencies. Roth
and Frank (2015) used a rule-based method for
identifying implicit arguments, which depends on
semantic role labelling and coreference resolution.
Similarly, Silberer and Frank (2012); Chiarcos and
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Schenk (2015); Schenk and Chiarcos (2016) pro-
posed parsing methods for SemEval 2010 data, but
they are only able to parse implicit arguments on
a coarse level as well. Cheng and Erk (2018) built
a narrative cloze model and evaluated it on Gerber
and Chai (2010)’s dataset.

9 Conclusion

Implicit arguments are pervasive in the text but
have not been well studied from a general per-
spective in NLP. In this work, we revisited a re-
cently proposed fine-grained implicit argument ty-
pology by addressing its current deficiencies. We
annotated a corpus based on the revised guidelines
and designed an evaluation metric for measuring
implicit argument parsing performance, demon-
strating the annotation’s reliability with a superior
inter-annotator agreement comparing to other fine-
grained implicit argument studies. The dataset will
be available to facilitate relevant research.

We introduced the first semantic parser, with two
different transition systems, that can handle and
predict implicit nodes dynamically, and label them
with promising accuracy as part of the meaning
representations. We evaluated it on the new dataset
and found that some types of implicit arguments
are harder to parse than others and that a simpler
transition system performs better on parsing im-
plicit arguments at the cost of primary parsing. The
fine-grained implicit argument task is challenging
and calls for further research.

In future work, we plan to create a large resource
of implicit arguments by automatically extracting
them from various linguistic constructions in unla-
belled text, use it for pre-training of language mod-
els, and evaluate them on our and other datasets to
gain more insights into this linguistic phenomenon.
A post-processing baseline to find implicit argu-
ments after parsing the whole graph would also be
interesting for future investigation.

10 Acknowledgments

The authors thank Miryam de Lhoneux and the
anonymous reviewers for their helpful feedback.

References
Omri Abend and Ari Rappoport. 2013. Universal Con-

ceptual Cognitive Annotation (UCCA). In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-

pers), pages 228–238, Sofia, Bulgaria. Association
for Computational Linguistics.

Omri Abend, Shai Yerushalmi, and Ari Rappoport.
2017. UCCAApp: Web-application for syntactic
and semantic phrase-based annotation. In Proceed-
ings of ACL 2017, System Demonstrations, pages
109–114, Vancouver, Canada. Association for Com-
putational Linguistics.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178–186, Sofia, Bulgaria. Associa-
tion for Computational Linguistics.

Emily M. Bender, Dan Flickinger, Stephan Oepen, and
Yi Zhang. 2011. Parser evaluation over local and
non-local deep dependencies in a large corpus. In
Proceedings of the 2011 Conference on Empirical
Methods in Natural Language Processing, pages
397–408, Edinburgh, Scotland, UK. Association for
Computational Linguistics.

Emily M. Bender and Alexander Koller. 2020. Climb-
ing towards NLU: On meaning, form, and under-
standing in the age of data. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 5185–5198, Online. As-
sociation for Computational Linguistics.
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Ondřej Bojar, Silvie Cinková, Eva Fučíková, Marie
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Appendices

A Inter-annotator Confusion Matrix

Tabel 8 shows the confusion matrix for measuring inter-annotator agreement on the evaluation set. The
unlabelled F-score is 91.3%, and the labelled F1-score is 73.8%. The Cohen’s κ between two annotators
is 69.3%.

UNMATCHED Nonspecific Nonspecific|Generic Nonspecific|Type-identifiable Deictic Deictic|Iterated-set Generic Generic|Genre-based Genre-based Iterated/repeated/set Type-identifiable P
UNMATCHED 0 1 0 0 0 0 1 0 1 1 1 0
Nonspecific 0 4 0 0 0 0 0 0 4 0 0 0
Nonspecific|Deictic 0 0 0 0 0 1 0 0 0 0 0 0
Nonspecific|Generic 0 0 1 0 0 0 0 0 0 0 0 0
Nonspecific|Genre-based 0 0 0 0 0 0 0 1 0 0 0 0
Nonspecific|Type-identifiable 0 0 0 1 0 0 0 0 0 0 0 0
Deictic 2 0 0 0 8 0 0 0 0 0 0 0
Deictic|Genre-based 0 0 0 0 0 0 0 1 0 0 0 0
Generic|Genre-based 0 0 0 0 0 0 0 8 0 0 0 0
Genre-based 0 2 0 0 0 0 0 0 11 0 0 0
Type-identifiable 1 0 0 0 0 0 0 0 0 0 0 0
Iterated-set 1 0 0 0 0 0 0 0 0 3 0 0
P 0 0 0 0 0 0 0 0 0 0 0 2

Table 8: Confusion matrix of the evaluation set for measuring inter-annotator agreement

B Hyperparameter Settings

Our parsers use stack LSTM to stabilize gradient descent process and speed up training; we enrich
contextual information by employing the pre-trained language model BERT as a feature input. We keep
the same hyperparameter setting for all three parsers, the baseline parser HIT-SCIR 2019, IMPLICIT-
EAGER and IMPLICIT-STANDARD. The setting is shown as the Table 9.

Hyperparameter Value
Hidden dimension 20
Action dimension 50
Optimizer Adam
β1, β2 0.9, 0.99
Dropout 0.5
Layer dropout 0.2
Recurrent dropout 0.2
Input dropout 0.2
Batch size 4
Epochs 50
Base learning rate 1× 10−3

BERT learning rate 5× 10−5

Gradient clipping 5.0
Gradient norm 5.0
Learning rate scheduler slanted triangular
Gradual Unfreezing True
Cut Frac 0.1
Ratio 32

Table 9: Implicit Parser hyperparameters.

C Training Details

As Table 10 shows, the training time is 2 days 22 hours for the baseline on Original UCCA EWT (50
epochs). Best epoch is 3rd; 3 hours for the baseline on Revisted Implicit EWT (30 epochs). Best epoch is
22nd; 1 day 8 hours and 1 day 19 hours for IMPLICIT-EAGER and IMPLICIT-STANDARD on Original
UCCA EWT (10 epochs, 13 epochs), respectively, with the best epoch being the 3rd and 2nd; And finally,
6 hours and 8 hours for IMPLICIT-EAGER and IMPLICIT-STANDARD on Revisited Implicit EWT (50
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epochs). The best epoch is 21st and 37th, respectively. One can see that all parsers achieved the best
performance at an early stage on Original UCCA EWT. However, both implicit parsers took longer time
to train on Original UCCA EWT than the baseline.

Original Full UCCA EWT Revisited Implicit Dataset
Training time # Epochs # Best Epoch Training time # Epochs # Best Epoch

Baseline 2 days 22 h 50 3 3 h 30 22
IMPLICIT-EAGER 1 day 8 h 10 3 6 h 50 21
IMPLICIT-STANDARD 1 day 19 h 13 2 8 h 50 37

Table 10: Training details of the baseline, IMPLICIT-EAGER and IMPLICIT-STANDARD on orignial UCCA EWT
and Revisited Implicit EWT., including training times, the number of best epoch and total epochs.
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Abstract

We evaluate the efficacy of predicted UPOS
tags as input features for dependency parsers
in lower resource settings to evaluate how tree-
bank size affects the impact tagging accuracy
has on parsing performance. We do this for
real low resource universal dependency tree-
banks, artificially low resource data with vary-
ing treebank sizes, and for very small tree-
banks with varying amounts of augmented
data. We find that predicted UPOS tags are
somewhat helpful for low resource treebanks,
especially when fewer fully-annotated trees
are available. We also find that this positive
impact diminishes as the amount of data in-
creases.

1 Introduction

Low resource parsing is a long-standing problem
in NLP and many techniques have been introduced
to tackle it (Hwa et al., 2005; Zeman and Resnik,
2008; Ganchev et al., 2009; McDonald et al., 2011;
Agić et al., 2016). For an extensive review and com-
parison of techniques see Vania et al. (2019). Here
we focus on the utility of part-of-speech (POS) tags
as features for low resource dependency parsers.

POS tags are a common feature for dependency
parsers. Tiedemann (2015) highlighted the unre-
alistic performance of low resource parsers when
using gold POS tags in a simulated low resource
setting. The performance difference was stark de-
spite using fairly accurate taggers, which is not a
reasonable assumption for low resource languages.
Tagging performance in low resource settings is
still very weak even when utilising cross-lingual
techniques and other forms of weak supervision
(Kann et al., 2020). Even when more annotated
data is available, it isn’t clear how useful POS tags

∗Lacking yeast-proven bread, a flatbread alternative will
suffice, i.e. if you can’t get more fully-annotated dependency
trees, annotating UPOS tags can still be helpful.

are for neural dependency parsers, especially when
utilising character embeddings (Ballesteros et al.,
2015; de Lhoneux et al., 2017). Work investigating
the utility of POS tags typically observe a small
increase in performance or no impact when used as
features for neural dependency parsers. Smith et al.
(2018) found that universal POS (UPOS) tags offer
a marginal improvement for their transition based
parser for multi-lingual universal dependency (UD)
parsing. Dozat et al. (2017) also observed an im-
provement in parsing performance for graph-based
parsers when the predicted UPOS tags came from
sufficiently accurate taggers.

Zhang et al. (2020) only found POS tags to be
useful for English and Chinese when utilising them
as an auxiliary task in a multi-task system. An-
derson and Gómez-Rodrı́guez (2020) found that a
prohibitively high accuracy was needed to utilise
predicted UPOS tags for both graph- and transition-
based parsers for UD parsing. They also obtained
results that suggested smaller treebanks might be
able to directly utilise less accurate UPOS tags. We
evaluate this further by analysing the impact of
tagging accuracy on UD parsing in low resource
contexts, with regards to the amount of data avail-
able to train taggers and parsers.

2 Methodology

We performed three experiments. The first is an
evaluation of predicted tags as features for biaffine
parsers for real low resource treebanks. It also
includes parsers trained with UPOS tagging as an
auxiliary task similar to the experiments in Zhang
et al. (2020). The second experiment evaluates the
impact of different tagging accuracies on different
dataset sizes using artificial low resource treebanks
by sampling from high resource treebanks. The last
experiment utilises a data augmentation technique
to investigate the efficacy of predicted UPOS tags
for very small treebanks (∼20 sentences) when
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augmented with varying amounts of data.

Low resource data We take all UD v2.6 tree-
banks (Zeman et al., 2020) with less than 750 sen-
tences in both its training dataset and development
dataset. We cluster these treebanks into two groups,
very low with less than 50 sentences and low with
less than 750. The very low resource treebanks
consist of Buryat BDT (bxr), Kazakh KTB (kk),
Kurmanji MG (kmr), Livvi KKPP (olo), and Upper
Sorbian UFAL (hsb). The low resource set is made
up of Belarusian HSE (be), Galician TreeGal (gl),
Lithuanian HSE (lt), Marathi UFAL (mr), Old Rus-
sian RNC (orv), Tamil TTB (ta), and Welsh CCG
(cy). We combined the training and development
data (when available) to then split them 80|20. The
statistics for the resulting splits are shown in Table
1. We use the original test data for analysis.

Artificial low resource data We use Indonesian
GSD (id), Irish IDT (ga), Japanese GSD (ja), and
Wolof WTB (wo) to create artificially low resource
treebanks. We take a sample of 100, 232, and 541
sentences from the training and development data.
These are then split 80|20 for training and develop-
ment data. We do this three times for each treebank
size so we have multiple samples to verify our re-
sults. We use the original test data for analysis.

Augmented data For the experiment using aug-
mented data we use a subset of the smallest tree-
banks, namely Kazakh, Kurmanji, and Upper Sor-
bian. We then generate data using the subtree swap-
ping data augmentation technique of Dehouck and
Gómez-Rodrı́guez (2020). We generate 10, 25, and
50 trees for each and we then split them 80|20. We
do this three times for each number of generated
trees. We use the original test data for analysis.

Subtree swapping We gather all the sub-trees
with a continuous span which has a NOUN, VERB,
ADJ or PROPN as its root node. Other UPOS tags
are not used due the likelihood of generating un-
grammatical structures. With regards to the permit-
ted relation of the root nodes, we consider all core
arguments, all nominal dependents, and most non-
core dependents (excluding discourse, expl
and dislocated). Then given a tree, we swap
one of its sub-trees with one from another tree
given that their respective roots have the same
UPOS tag, dependency relation and morphological
features and given that the sub-trees are lexically
different. We repeat the process a second time us-
ing a third tree. During this second swap, we do not

allow the previously swapped subtree to be altered
again so as to avoid redundancy. For a more de-
tailed description of this process see Dehouck and
Gómez-Rodrı́guez (2020). We create all possible
trees generated from the three original trees given
the constraints described above, repeat this for each
triplet of trees, and finally take a sample from this
set of augmented data.

Train Dev
sents tokens sents tokens

bxr 15 120 4 33
kk 24 395 7 134
kmr 16 192 4 50
olo 15 114 4 30
hsb 18 310 5 150

be 307 6,441 77 1,449
gl 480 12,317 120 3,119
lt 166 3,444 42 852
mr 335 2,751 84 686
orv 256 8,253 64 1903
ta 383 6,082 96 1,254
cy 491 10,719 123 2,616

Table 1: Number of trees in training and development
splits as used for low resource UD treebanks.

Controlling UPOS accuracy For each treebank
size and split for the artificial low resource tree-
banks we trained taggers with varying accuracies
(60, 66, 72, 78, 85, 89). We allowed a small win-
dow around the accuracy for each bin of ±0.25.
Following a similar methodology to Anderson and
Gómez-Rodrı́guez (2020) to obtain taggers with
varying accuracies, we train the taggers as normal
and save models when they reach a desired accu-
racy. We then train parsers using predicted tags
from each of the taggers and use predicted tags at
inference. For the data augmentation experiment
we used accuracy bins of 41, 44, 48, and 51.

Network details Both the taggers and parsers
use word embeddings and character embeddings.
The parsers use UPOS tag embeddings except for
the MTL setup and the baseline models without
tags. The embeddings are randomly initialised.
The parsers consist of the embedding layer fol-
lowed by BiLSTM layers and then a biaffine mech-
anism (Dozat and Manning, 2017). The taggers are
similar but with an MLP following the BiLSTMs
instead. We ran a hyperparameter search evaluated
on the development data of Irish and Wolof. This
resulted in 3 BiLSTM layers with 200 nodes, 100
dimensions for each embedding type with 100 di-
mensions for input to the character LSTM. The arc
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Figure 1: Impact of tagging accuracy for varying amounts of data for both taggers and parsers using artificial low
resource data. The standard error of UPOS accuracy is not shown as it is very small (< 0.1% relative error for all
bins). Horizontal lines and corresponding shaded area show the mean parsing performance and the standard error
for the baseline parsers trained without UPOS tags.

MLP of the biaffine structure has 100 dimensions,
whereas the relation MLP has 50.

3 Results and discussion

Table 2 shows the real low resource treebank re-
sults. Table 2a shows the results for the treebanks
with less than 50 sentences. The performance is
very low across the board so it is difficult to draw
any substantial conclusions, however, using gold
tags has a large impact over not using any, almost
doubling the labeled attachment score. Also, using
predicted tags does result in an increase on aver-
age, but Kazakh and Kurmanji lose almost a point.
Further those two treebanks and also Buryat have
reasonable gains when using the multi-task frame-
work. The average multi-task score is strongly
affected by the large drop seen for Upper Sorbian,
which also suffers with respect to tagging accuracy
when using the multi-task setup.

Table 2b shows the results for the low resource
treebanks with less than 750 sentences. On average
using predicted UPOS tags achieves a sizeable in-
crease over not using any tags of about 1.2, despite
the average tagging accuracy only being 85.89%.
This suggests that in a lower resource setting the
tagging accuracy doesn’t have to be quite so high
as is needed for high resource settings. Increases
in performance are seen for all treebanks except
Lithuanian and Tamil. While Lithuanian has the
second lowest tagging score, Tamil has a fairly
high score, so it seems that the accuracy needed
is somewhat language-specific or at the very least
data-dependent. The difference for the treebanks
in Table 2b is almost 9 points higher for using
gold tags. The multi-task performance is about 1.4
points less than using predicted tags on average.
However, Lithuanian and Tamil obtain an increase
in performance using the multi-task system in com-

parison to using predicted tags.
Figure 1 shows the average LAS performance

for the parsers trained with the artificial low re-
source data. When the parsers have sufficient data,
using UPOS tags doesn’t offer any improvement in
performance. For the parsers trained with 232 sam-
ples, there is a slight upward trend when using tags
predicted from taggers trained with 541 samples.
The improvement increases with respect to UPOS
tag accuracy and exceeds the performance of the
parsers trained with no UPOS tags. The most no-

UPOS LAS
Single Multi None Pred Gold Multi

bxr 48.72 48.34 10.45 12.36 20.31 14.41
kk 53.37 52.14 22.48 21.63 36.66 23.50
kmr 50.56 53.73 19.16 18.31 35.54 21.58
olo 37.84 37.37 09.74 10.89 17.54 07.59
hsb 53.44 47.28 18.36 20.03 41.88 14.66

avg 48.79 47.77 16.04 16.64 30.39 16.25

(a) Very low resource: less than 50 sentences.

UPOS LAS
Single Multi None Pred Gold Multi

be 92.82 87.29 61.82 64.91 68.87 62.28
gl 93.54 88.56 70.60 72.73 79.06 70.54
lt 79.25 71.51 37.17 35.94 48.30 38.96
mr 80.58 76.46 57.04 58.74 64.32 56.31
orv 87.77 81.60 49.53 51.34 60.24 50.33
ta 86.88 79.23 63.85 62.75 74.31 63.15
cy 91.77 86.41 72.10 72.93 80.71 73.00

avg 85.89 77.77 55.24 56.52 64.13 55.10

(b) Low resource: less than 750 sentences.

Table 2: Performance of different low resource parsers:
using predicted UPOS tags as features (Pred), multi-
task system where tagging is an auxiliary task to pars-
ing (Multi), using gold UPOS tags as features (Gold),
and without using UPOS tags as features (None). The
accuracies of the predicted UPOS tags (Single) and that
of the multi-task (Multi) are also reported.
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Figure 2: Impact of tagging accuracy for varying amounts of data for both taggers and parsers using augmented
data (0, 10, 25, and 50 augmented trees) on top of the original gold data. The standard error of UPOS accuracy
is not shown as it is very small (< 0.1% relative error for all bins). Horizontal lines show the mean parsing
performance for the baseline parsers trained without UPOS tags (standard error not shown due to too much overlap
between augmented data sample sizes).

ticeable improvement is for the parsers trained with
only 100 samples. The impact of UPOS accuracy is
clearer as the tagger sample size increases as higher
accuracies can be obtained. The best performance
is with the most accurate taggers (89%).

This is a potentially useful finding if annotators
have little time, as annotating UPOS tags is much
less time-sensitive and can help improve parsing
performance if a limited number of tree-annotated
sentences are available. However, taking parsers us-
ing only 100 fully-annotated training sentences as a
baseline, the average performance using 232 parsed
sentences without UPOS tags is over 10 points
higher, whereas the increase gained training the
taggers with 541 tagged sentences is only 5 points.
So it is clear that if time permits such that annota-
tors can increase the number of tree annotations,
they will likely prove to be more useful. But UPOS
tags could be obtained using projection methods
and/or active learning techniques (Baldridge and
Palmer, 2009; Das and Petrov, 2011; Garrette et al.,
2013; Täckström et al., 2013). Also, multilingual
projection methods could be used, but they typi-
cally generate trees as well as POS tags (Agić et al.,
2016; Johannsen et al., 2016).

Figure 2 shows the impact of predicted UPOS
accuracy when using data generated with subtree
swapping augmentation. The first result worth not-
ing is that the augmented data increases perfor-
mance in this very low resource context. Across
the board, the best performing parsers using aug-

mented data outperform the parsers trained only
on gold data by 3-6 points which corroborates the
findings in previous work. However, it appears that
there is a limit to how much augmented data helps
as the performance of the parsers which use 25 and
50 augmented instances is similar.

It also appears that this upper limit is even lower
for training taggers with the best performance com-
ing when using predicted tags from taggers utilising
only 10 augmented samples or none at all. Using
more invariably hurts performance no matter what
accuracy the taggers obtained, as can be seen in
the subplots showing the performance for parsers
trained with predicted tags from taggers using 25
and 50 augmented samples. Also, there is no clear
trend showing the impact of UPOS accuracy in this
very low resource context.

4 Conclusion

We have presented results which suggest that lower
accuracy taggers can still be beneficial when lit-
tle data is available for training parsers, but this
requires a high ratio of UPOS annotated data to
tree annotated data. Experiments using artificial
low resource treebanks highlight that this utility di-
minishes if the number of samples reaches a fairly
small amount. We have also shown that very small
treebanks can benefit from augmented data and
utilise predicted UPOS tags even when they come
from taggers with very low accuracy. Our experi-
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ments haven’t considered pretrained multilingual
language models (LMs) which could potentially
offset the small benefits of using POS tags. It would
be interesting to develop this analysis further by
testing whether the implicit information encoded
in these LMs are more useful than explicit but po-
tentially erroneous POS tag information. Finally,
as one reviewer highlighted, the set of POS tags
in the UD framework might just not be sufficiently
informative in this setting. While this might be
true, the greater contributing factor is surely the
low accuracy of the taggers.
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Abstract

This paper describes a methodology for
syntactic knowledge transfer between high-
resource languages to extremely low-resource
languages. The methodology consists in lever-
aging multilingual BERT self-attention model
pretrained on large datasets to develop a
multilingual multi-task model that can pre-
dict Universal Dependencies annotations for
three African low-resource languages. The UD
annotations include universal part-of-speech,
morphological features, lemmas, and depen-
dency trees. In our experiments, we used
multilingual word embeddings and a total of
11 Universal Dependencies treebanks drawn
from three high-resource languages (English,
French, Norwegian) and three low-resource
languages (Bambara, Wolof and Yoruba). We
developed various models to test specific
language combinations involving contempo-
rary contact languages or genetically related
languages. The results of the experiments
show that multilingual models that involve
high-resource languages and low-resource lan-
guages with contemporary contact between
each other can provide better results than
combinations that only include unrelated lan-
guages. As far as genetic relationships are con-
cerned, we could not draw any conclusion re-
garding the impact of language combinations
involving the selected low-resource languages,
namely Wolof and Yoruba.

1 Introduction

Treebanks constitute valuable resources for many
Natural Language Processing (NLP) applications.
They can be used as training and testing data for
a wide range of NLP algorithms as well as to in-
duce robust parsing models (Manning and Schütze,
1999). Unfortunately, developing treebanks in form
of large annotated data used to be a very time- and
resource-consuming task. As a consequence, an-
notated data (in particular the type required for

parsing) is lacking for most languages, especially
for low-resource languages.

To help speed up the treebank development pro-
cess, various supervised learning techniques (Weiss
et al., 2015; Straka and Straková, 2017; Straka,
2018) have been developed in recent past. The su-
pervised monolingual approach based on syntac-
tically annotated corpora has long been the most
common approach to parsing. However, thanks to
recent developments involving feature representa-
tion methods and neural network models, the idea
of combining treebanks for multilingual UD pars-
ing has become a more common approach. Mul-
tilingual modeling constitute a very attractive ap-
proach to circumvent the low-resource limitation,
as it allows one to create models that can parse
the language’s text quite accurately in the absence
of annotated data for the given language. This oc-
curs through syntactic knowledge transfer across
multiple languages. The multilingual approach has
yielded encouraging results for both low-resource
(Guo et al., 2015) as well as for high-resource (Am-
mar et al., 2016) languages.

The idea of combining treebanks for trans-
fer learning was first introduced in Vilares et al.
(2016), which train bilingual parsers on pairs of
UD treebanks, showing similar improvements. Sub-
sequently, in the CoNLL 2018 Shared Task, Smith
et al. (2018) presented the Uppsala system, which
follows the same idea. That system combines tree-
banks of one language or closely related languages
together over 82 treebanks and parses all UD an-
notations in a multi-task pipeline architecture for
a total of 34 models. This approach provides two
main advantages. First, it reduces the number of
models required to parse each language. Second,
it can provide results that are no worse than train-
ing on each treebank individually, and in especially
low-resource cases, significantly improved. In the
same spirit, Kondratyuk and Straka (2019) con-
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ducted a multilingual multi-task parsing study for
124 Universal Dependencies (Nivre et al., 2016)
treebanks across 75 languages, and demonstrated
that a multilingual model can yield better results
than monolingual models for different languages.

In this paper, we use the approach described by
Kondratyuk and Straka (2019) to produce a cross-
lingual transfer model that can predict UD anno-
tations for three extremely low-resource African
languages by using knowledge from medium- to
high-resource European languages. The UD anno-
tations include universal part-of-speech (UPOS),
morphological features (FEATS), lemmas (LEM),
and dependency trees (DEPS).

The structure of the paper is as follows. Sec-
tion 2 first provides a brief description of the low-
resource languages used as case studies in this re-
search work. Section 3 provides an overview of our
approach, and section 4 details the neural network-
based parsing model. Section 5 describes a series
of experiments conducted on high-resource and
low-resource languages to verify our assumptions.
Section 6 presents an analysis of our results. Sec-
tion 7 concludes the discussion.

2 Languages used as our case studies

The low-resource languages selected for this study
are Bambara, Wolof and Yoruba. Bambara is spo-
ken in Mali, Ivory Coast, Upper Guinea, in the
western part of Burkina Faso and in eastern Sene-
gal. Wolof is spoken in Senegal, in The Gambia
and in Mauritania. Yoruba is spoken in West Africa,
most prominently in Southwestern Nigeria.

These West African languages belong to two
different subgroups of the larger Niger-Congo fam-
ily of languages. Bambara is part of the Mande
subgroup, while Wolof and Yoruba are Atlantic-
Congo languages. While the ultimate genetic unity
of Atlantic-Congo languages is widely accepted,
the internal cladistic structure is not well estab-
lished (Dixon et al., 1997), especially with respect
to the connection of the Mande languages, which
has never been demonstrated. For instance, the
Mande languages lack the noun-class morphol-
ogy that is the primary identifying feature of the
Atlantic-Congo languages. Wolof and Yoruba are
genetically related to each other, but not closely re-
lated to Bambara. Interestingly, while Wolof does
not have much language contact with Yoruba (if
any), it actually may share areal features with Bam-
bara, since their common geographic location al-

lowed for a long history of contact between these
two languages.

Bambara is highly isolating and has a very strict
word order: Subject AUX / TAM (tense-aspect-
mood markers) Object Verb (Creissels, 2007). It
is a tone language, with two tones: high and low.
Wolof is an agglutinative language with an SVO
and head-modifier basic word order (Robert, 2018).
Unlike many other languages of the Niger-Congo
family, Wolof is not a tonal language. Yoruba is a
highly isolating language and the sentence structure
follows Subject Verb Object (Adelani et al., 2021).
In addition, Yoruba is a tonal language with three
tones: low, middle (optional) and high.

The three low-resource languages are fairly well
documented. For Bambara, there exist hundreds of
linguistic papers and few recent reference gram-
mars published about that language (Dumestre,
2003; Vydrin, 2019). There are also some dictionar-
ies available, including the Bamadaba online dictio-
nary1 and a 15k print dictionary (Dumestre, 2011).
Likewise, Wolof has several descriptive grammars
and few dictionaries, e.g. the French-Wolof print
dictionaries (Diouf, 2003; Cisse, 1998) and an on-
line Wolof dictionary.2 Similarly, for Yoruba, there
are many literary texts, newspapers, religious kinds
of literature, and some blogs in the language. There
are also academic papers, print dictionaries, e.g. the
Yoruba-English dictionary by Odoje (2019), and
online dictionary3 published in the language.

Although these languages are well-documented,
until very recently, they did not or still do not really
have a Universal Dependency corpus. Bambara has
a 12k tokens UD treebank (Aplonova and Tyers,
2017). Yoruba has a 8k tokens UD treebank.4 For
these two languages, only test set data are available
(no training data), making them good candidates
for zero-shot learning. Wolof has a 44k tokens UD
treebank (Dione, 2019) that consists of a training, a
development and a test set. As these numbers show,
the sizes of these UD treebanks are extremely small.
This alone does not make them low-resource lan-
guages, but they are poorly equipped with regard to
NLP tools as well. For instance, while Yoruba and
Bambara are documented with huge written cor-
pora,5 these are mostly not achieved for research

1http://cormand.huma-num.fr/bamadaba.html
2https://www.lexilogos.com/wolof_dictionnaire.htm
3https://www.lexilogos.com/english/yoruba_dictionary.htm
4https://universaldependencies.org/

treebanks/yo_ytb/index.html
5For instance, Bambara has an 11 million corpus of writ-
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and NLP purposes. For Wolof, resources and tools
have only very recently begun to emerge, includ-
ing a finite-state morphological analyzer (Dione,
2012), a small treebank (Dione, 2014) and com-
putational grammar/parser (Dione, 2020) based on
the Lexical-Functional Grammar (LFG) framework
(Bresnan, 2001; Dalrymple, 2001). We chose to fo-
cus on three languages due to the availability of
UD treebanks for these languages, even though for
two of these languages only test data are available.

3 Approach

Our approach consists in developing several multi-
lingual parsing models using different language
combinations of medium- to high-resource lan-
guages (English, French, Norwegian) and low-
resource languages (Bambara, Wolof, Yoruba) that
have had some contemporary language contact.
The languages used for training the models have
been selected with the assumption that contempo-
rary contact languages, at least in certain scenarios,
share (structural) similarities with the low-resource
languages in question. English has a long history
of contact with Yoruba, leading to a variety of mor-
phosyntactic changes and lexical borrowings in the
latter language (Ogundepo, 2015). Our expectation
is that the match rate between English and Yoruba
should be somewhat high. Likewise, we expect to
see similar patterns between French and the Bam-
bara and Wolof languages with which it has had
a long contact. For instance, through French in-
fluence there exists two varieties of Wolof: urban
Wolof, used especially in cities, and Kajoor Wolof
(also referred to as ‘pure’ Wolof), which is spoken
mostly in rural areas (Ngom, 2003). In addition,
we include Norwegian as a control language with
no direct contact or genetic relation with any of the
selected low-resource languages.

Recents studies, including (Lim et al., 2018) con-
ducted similar experiments to explore the impact
of using contemporary contact languages or ge-
netically related languages (e.g. Finnish) in multi-
lingual parsing scenarios involving low-resource
languages (e.g. North Saami and Komi-Zyrian).
Their findings showed that specific language com-
binations of contemporary contact languages or
genetically related languages may enable improved
dependency parsing.

ten texts: http://cormand.huma-num.fr/index.
html

4 Method

Parsing approaches can be divided into two
main types: transition-based (Nivre, 2004) vs.
graph-based (McDonald et al., 2005) models. In
transition-based dependency parsing, the parser
starts in an initial configuration and, at each step,
asks a guide to choose between one of several
transitions (actions) into new configurations. The
parser stops if it reaches a terminal configuration,
returning the dependency tree associated with that
configuration. In relatively recent past, transition-
based dependency parsing using neural networks
has enjoyed increasing success, starting with the
fast and accurate parser presented by Chen and
Manning (2014). Subsequently, many other neural
network transition-based models have been devel-
oped using different techniques, including stack
LSTM (Dyer et al., 2015), biaffine attention (Dozat
and Manning, 2016), and recurrent neural networks
(Kuncoro et al., 2017).

The basic idea of graph-based dependency pars-
ing is to produce a dependency tree in form of a
directed graph with some constraints by first gen-
erating all possible candidate dependency graphs
for a given sentence. Subsequently, each tree is
scored and the parser picks the one with the highest
score. During training, the parser induces a model
for scoring an entire dependency graph for a sen-
tence. During parsing, it finds the highest scoring
dependency graph, given the induced model. More
recently, graph-based approaches have shown to
outperform transition-based approaches when it
comes to UD-type corpora, notably with the neu-
ral graph-based parser of Dozat et al. (2017), who
won the CoNLL 2017 UD Shared Task by a wide
margin.

In this study, we chose UDify (Kondratyuk and
Straka, 2019), a neural model which uses the graph-
based biaffine attention parser developed by Dozat
and Manning (2016); Dozat et al. (2017). UDify is
a single multitask model that produces UD anno-
tations (UPOS, FEATS, LEM, DEPS) jointly. In a
first step, UDify generates contextual embeddings
for any input sentence by using the cased6 pre-
trained multilingual BERT network (Devlin et al.,
2018), a self-attention (Vaswani et al., 2017) net-
work of 12 layers, 12 attention heads per layer,
and hidden dimensions of 768. The BERT model
was trained by predicting randomly masked input

6https://github.com/google-
research/bert/blob/master/multilingual.md
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words on the entirety of the top 104 languages
with the largest Wikipedias, including two African
languages: Swahili and Yoruba. BERT segments
texts into (unnormalized) sub-word units using the
wordpiece tokenizer (Wu et al., 2016). In a sec-
ond step, the UDify model integrates task-specific
layer-wise attention similar to ELMo (Peters et al.,
2018). Finally, each UD task is decoded simultane-
ously using softmax classifiers. During training,
various regularization techniques are applied to
the BERT network, including input masking, in-
creased dropout, weight freezing, discriminative
fine-tuning, and layer dropout.

5 Experiments

We conducted a series of experiments on Bam-
bara, Wolof and Yoruba. For these languages, we
tested different language combinations for the
cross-lingual model.

The dataset used in our experiments are provided
in Table 1. This consist of a total of 11 UD v2.3 tree-
banks drawn from three medium- to high-resource
languages (English, French, Norwegian) and three
low-resource languages (Bambara, Wolof, Yoruba).
Table 1 shows the selected treebank(s) used for
each language. For English and French, we used
several treebanks. For Norwegian, we only selected
the Bokmål treebank, leaving out the Nynorsk one
in order to reduce computational expenses.7

The percentage distribution of the individual lan-
guages in our training corpus is shown in Figure
1. As can be seen, ca. 95,5% of the data used in
our experiments are drawn from the high-resource
languages’ treebanks.

Table 2 displays information about the vocabu-
lary of the combined treebanks, including the to-
tal number of tokens, BERT wordpieces, UPOS,
XPOS, UD Features, lemmas and dependency re-
lations (Deps). To tackle the issue related to a bal-
looning vocabulary, we use BERT’s wordpiece tok-
enizer directly for all inputs.

For multilingual training with UDify, the 11 UD
treebanks are concatenated into a single treebank,
similar to McDonald et al. (2011); Kondratyuk and
Straka (2019). This single treebank consists of a
training, a development and a test set. For each
epoch, sample input sentences were drawn ran-
domly from the training data and fed to the neural

7In fact, we have tried to include the Nynorsk treebank
as well, but this led to quite computationally expensive costs
when training the multilingual model.

network in form of mixed batches, i.e. each batch
may contain sentences from any language or tree-
bank. The sentences are shuffled and bundled into
batches of 8 sentences each. We employ a base
learning rate of 1e−3 that is kept constant until we
unfreeze BERT in the second epoch. We then lin-
early warm up the learning rate for the next 1,000
batches. Next, we apply inverse square root learn-
ing rate decay for the remaining epochs. Following
Kondratyuk and Straka (2019), training was done
for a total of 80 epochs (ca. 3 days) on a single
GPU (RTX 2080). The hyperparameters used for
our model are given in Table 3.

6 Results and analysis

For comparison, we show in Table 4 UDify scores
obtained for Bambara and Yoruba as reported by
Kondratyuk and Straka (2019). These scores are ob-
tained by evaluating UDify on 124 treebanks with
the official CoNLL 2018 Shared Task evaluation
script.

The experiments reported by Kondratyuk and
Straka (2019) did not include Wolof, since no UD
treebank was available for that language at that
time. For this purpose, we trained a customized
monolingual UDify model on the Wolof training
data and applied that model on the Wolof test set.
The results of this monolingual training are shown
in Table 5. These scores are used as a baseline to
compare the impact of the monolingual and the
multilingual models.

For multilingual dependency parsing, we run
several experiments in which we keep the settings
described in section 5, excluding only one language
at a time. In an initial experiment, we used all the
treebanks presented in section 5 for which training
data are available. This consists of a total of 9 out
of the 11 UD treebanks.8 Then, the created multi-
lingual model has been used to parse the test data
of the selected low-resource languages. The results
are given in Table 6 and indicate an improvement
of ca. 5% and 4,38% in terms of UAS and LAS,
respectively for Bambara. Likewise, a significant
increase of 11,37% and 12,34% in UAS and LAS,
respectively, has been observed for Yoruba. Also,
for Wolof, we compared the scores displayed in Ta-
ble 5 (i.e. monolingual model) with those presented
in Table 6 (i.e. multilingual model). Such a compar-
ison reveals that parsing quality increases by 2.23%

8Recall that the Bambara and Yoruba treebanks contain
only test data.
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Language Treebank Name # Tokens # Sentences
Bambara Bambara CRB 13.82k 1.03k

English
UD_English_EWT 254.83k 16.62k
UD_English-GUM 80.18k 4.40k
UD_English-ParTUT 49.62k 2.09k

French

UD_French-FTB 556.06k 18.53k
UD_French-ParTUT 27.67k 1.02k
UD_French-Sequoia 68.64k 3.10k
UD_French-Spoken 34.98k 2.79k

Norwegian UD_Norwegian-Bokmaal 310.22k 20.04k
Wolof Wolof WTB 42.83k 2.11k
Yoruba Yoruba YTB 2.67k 0.10k

Table 1: UD treebanks used in the experiments

Figure 1
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TOKEN VOCAB SIZE
Word Form 178,214
BERT Wordpieces 119,547
UPOS 17
XPOS 206
UFeats 1300
Lemmas (tags) 3,834
Deps 86

Table 2: Vocabulary sizes of words and tags over the 11
UD v2.3 treebanks

hyperparameter
Dependency tag dimension 256
Dependency arc dimension 768
Optimizer Adam
β1, β2 0.9, 0.99
Weight decay 0.01
Label Smoothing 0.03
Dropout 0.5
BERT dropout 0.2
Mask probability 0.2
Layer dropout 0.1
Batch size 8
Epochs 80
Base learning rate 1e−3

BERT learning rate 5e−5
Learning rate warmup steps 1000
Gradient clipping 5.0

Table 3: Our model hyperparameters.

Treebank UPOS FEATS LEM UAS LAS
Bambara 30.86 57.96 20.42 30.28 8.60
Yoruba 50.86 78.32 85.56 37.62 19.09

Table 4: The full test results on Bambara and Yoruba
when training UDify on the 124 UD treebanks (Kon-
dratyuk and Straka, 2019).

Language UPOS FEATS LEM UAS LAS
Wolof 87.90 69.97 87.86 73.48 63.84

Table 5: The test results on Wolof when training UDify
on monolingual Wolof data.

and 3.19% in terms of UAS and LAS, respectively.
This provides a good indication that a transfer learn-
ing approach in a multilingual dependency parsing
context seems to have positive impact (at least for
Wolof), outperforming the monolingual model.

To assess the impact of some language combina-

Treebank UPOS FEATS LEM UAS LAS
Bambara 36.29 45.18 23.89 34.28 12.98
Wolof 89.64 75.06 89.95 75.71 67.03
Yoruba 60.73 60.43 93.59 48.99 31.43

Table 6: The full test results on Bambara, Wolof and
Yoruba when training UDify on the 9 UD treebanks
(the Bambara and Yoruba treebanks are only used for
testing).

Treebank UPOS FEATS LEM UAS LAS
Bambara 35.05 44.32 23.84 33.83 12.94
Wolof 90.49 77.25 90.82 76.14 67.86
Yoruba 59.19 60.18 93.21 45.19 28.53

Table 7: The full test results on Bambara, Wolof and
Yoruba when training UDify on the 8 UD treebanks,
excluding the English treebanks.

tions, we run several additional experiments where
we keep the same setting and language data as de-
scribed above, excluding only one language at a
time. Accordingly, we run a similar experiment as
the previous one, excluding the English treebanks
from the training. The results of this experiment
are displayed in Table 7. For Bambara, exclud-
ing the English treebank did cause a very slight
drop of parsing quality. In contrast, for Yoruba, we
could observe a substantial decrease of 3.8% and
2.9% UAS and LAS, respectively. Interestingly, for
Wolof, this actually led to a slight improvement in
UAS (0.43%) and LAS (0.83%).

In the same way, we run a similar experiment
where we exclude only the French treebanks to
assess their impact on the overal results for the se-
lected low-resource African languages. The results
of this experiment are shown in Table 8. For Bam-
bara, this caused a decrease of 3.78% and 2.85%
UAS and LAS, respectively. Parsing quality also
drops for Wolof in terms of UAS (-2.28%) and LAS
(-1.74%). For Yoruba, no real impact on parsing
quality could be observed.

Treebank UPOS FEATS LEM UAS LAS
Bambara 33.89 42.86 23.66 30.50 10.13
Wolof 89.61 82.33 91.53 73.43 65.29
Yoruba 60.32 55.78 91.19 48.69 30.87

Table 8: The full test results on Bambara, Wolof and
Yoruba when training UDify on the 7 UD treebanks,
excluding the French treebanks.

As mentioned above, we used Norwegian as a
control language to verify our assumption with re-
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Treebank UPOS FEATS LEM UAS LAS
Bambara 36.02 45.08 23.87 33.94 11.94
Wolof 90.76 83.55 90.91 75.35 67.25
Yoruba 59.94 58.68 88.30 48.09 30.87

Table 9: The full test results on Bambara, Wolof and
Yoruba when training UDify on the 10 UD treebanks,
excluding the Norwegian treebank.

spect to the impact of using genetic or geographical
relation. Norwegian is selected, as it is a language
with no direct contact or genetic relation with any
of the studied low-resource languages. To verify
our assumption, we run an additional experiment
where we removed the Norwegian data from the
training, keeping the remaining 10 UD treebanks as
before. The results of this experiment are provided
in Table 9. This operation does not seem to have
a substantial impact on parsing quality for any of
the three low-resource languages. For instance, for
both Bambara and Yoruba, a slight drop in UAS
and LAS could be observe, but the decrease is less
than 1% in all these cases. For Wolof, even a slight
improvement could be observed of ca. 0.22% in
LAS only (compared with -0.36% drop in UAS).

In a final experiment, we wanted to test the im-
pact of not using the Wolof data during training.
Thus, we trained a model using the 10 treebanks,
excluding the Wolof UD training set and applied
the model to the three test sets of the studied low-
resource languages (this means that we evaluated
Wolof for zero-shot learning). The results of this
experiment are given in Table 10. Interestingly, for
Bambara, this operation caused a decrease of pars-
ing quality of 3.37% UAS and 1.77% LAS. For
Wolof, as expected, we noted parsing accuracy
dropped drastically by 48.2% UAS and 56.88%
LAS. This large drop in parsing result can be ex-
plained by the fact that the Wolof test set is rel-
atively large (e.g. compared to the test sets for
Bambara and Yoruba). Surprisingly, for Yoruba,
removing the Wolof data in the training had a posi-
tive impact. Parsing quality for Yoruba increased
by ca. 3.75% UAS and 2.37% LAS. At first glance,
this seems to contradict our expectation that ge-
netically related languages may enable improved
dependency parsing, at least for our case study. But
a crucial question to consider is whether the genetic
relationship between these two languages is just a
classification issue and that, from the language char-

Treebank UPOS FEATS LEM UAS LAS
Bambara 29.44 69.08 13.36 30.91 11.21
Wolof 23.02 45.78 65.95 27.51 10.15
Yoruba 67.44 59.26 78.39 52.74 33.80

Table 10: The full test results on Bambara, Wolof and
Yoruba when training UDify on the 10 UD treebanks,
excluding the Wolof training treebank.

acteristics, these two languages are not so closely
related as the classification would suggest. Based
on our data and experiments, we could not draw
any conclusion as to whether the obtained results
emerge from an issue related to the data used or
to the language classification or to something else.
This might need further investigation.

7 Conclusion

In this paper, we have presented a multilingual ap-
proach to parsing that is effective for languages
with few resources and no syntactically annotated
corpora available for training. We have shown that
specific language combinations involving contem-
porary contact languages can provide better results
than combinations that only include unrelated lan-
guages. We should note, however, that for Wolof
and Yoruba, which are supposed to be genetically
related languages, we rather observed a decrease
of parsing results from the Yoruba side when using
the Wolof training data. It remains a question for
further study whether this decrease observed here
are actually attributable to a lack of real genetic
relationship between the language or to the lack of
(large) training data for Yoruba.
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Abstract
Domain adaption in syntactic parsing is still
a significant challenge. We address the issue
of data imbalance between the in-domain and
out-of-domain treebank typically used for the
problem. We define domain adaptation as a
Multi-task learning (MTL) problem, which al-
lows us to train two parsers, one for each do-
main. Our results show that the MTL approach
is beneficial for the smaller treebank. For the
larger treebank, we need to use loss weighting
in order to avoid a decrease in performance be-
low the single task. In order to determine to
what degree the data imbalance between two
domains and the domain differences affect re-
sults, we also carry out an experiment with
two imbalanced in-domain treebanks and show
that loss weighting also improves performance
in an in-domain setting. Given loss weight-
ing in MTL, we can improve results for both
parsers.

1 Introduction

Domain adaption in syntactic parsing is still a sig-
nificant challenge. While recent work has shown
steady improvements, we have not necessarily
achieved proportionally better results as expected
with neural models (Fried et al., 2019). One simple
reason can be attributed to the fact that we have se-
vere limitations in terms of existing data, data sizes,
and the imbalance between the two treebanks typi-
cally present in domain adaptation settings.

Multi-task learning (MTL; Caruana, 1997) al-
lows for joint learning, which can help facilitate
cross information sharing between tasks. This has
proven particularly beneficial for tasks that have
large data imbalances, with the smaller data tasks
benefiting substantially more (Johansson, 2013;
Benton et al., 2017; Ruder et al., 2019), and should
thus also be useful in domain adaptation.

We define domain adaptation as an MTL prob-
lem where the two tasks correspond to training on

two treebanks from different domains. Note that
in this setting, we do not have a primary and a sec-
ondary task, but instead we can interpret both tasks
as primary.

One of the inherent difficulties we face in cross-
domain parsing are large discrepancies in the size
of the treebanks. This creates a default training sce-
nario of imbalance across the domains that should
benefit the smaller domain, but it may inversely
impact the larger domain, resulting in a degrada-
tion in performance due to negative transfer in a
multi-task learning model, compared to their single
task (STL) baselines. We investigate here whether
it is possible to control the negative impact of the
smaller domain on the larger one, and how the im-
balance factor impacts this balance. This means
that in all cases, we evaluate on both domains.

More specifically, we investigate the following
questions:

1. How does the MTL parser handle different
levels of data imbalance? This assumes that
in a domain adaptation setting, normally a
small in-domain treebank is combined with a
large out-of-domain treebank.

2. How effective is loss weighting in addressing
the data imbalance? Can we optimize both
MTL tasks given the data imbalance?

3. Is it more important to address the data imbal-
ance or the differences between domains for
successful domain adaptation?

2 Related Work

2.1 MTL in Parsing

MTL inherently allows for the joint learning of
tasks. Learning related tasks, such as POS tagging
and dependency parsing, has been shown to be ben-
eficial (Bohnet and Nivre, 2012; Zhang and Weiss,
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2016). A practical assumption is that there is shared
information that can be beneficial, particularly if
the tasks are closely related.

Neural networks have increased the ability and
ease by which models can exploit information
sharing. Much recent parsing research has exam-
ined the impact of parameter sharing across tree-
banks and languages (Ammar et al., 2016; Kitaev
et al., 2019), though often not explicitly within an
MTL setup, where different treebanks/languages
are treated as multiple tasks. Soft sharing of param-
eters has proven effective on treebanks of the same
annotation style in lower resource settings (Duong
et al., 2015) as well as for multiple treebanks of the
same language when hard sharing all other param-
eters (Stymne et al., 2018). However, sharing too
many parameters between unrelated languages has
been shown not to be beneficial (de Lhoneux et al.,
2018).

More explicit MTL settings with treebanks rep-
resenting different individual tasks have proven
successful in array of settings across languages
and architectures (Guo et al., 2016; Johansson and
Adesam, 2020; Kankanampati et al., 2020).

2.2 MTL in Domain Adaptation

Much recent work has resulted in significant gains
in domain adaptation across several languages via
the direct or indirect transfer of parameters and em-
beddings for languages such as Chinese (Li et al.,
2019, 2020), English (Joshi et al., 2018; Fried et al.,
2019), Finnish (Virtanen et al., 2019), and French
(Martin et al., 2020).

More explicit MTL work by Søgaard and Gold-
berg (2016) found that lower level tasks are best
kept at lower layers, as the shared representations
benefit from the sequence of information learned,
with the approach demonstrating success in domain
adaption for chunking for English. Using hyper-
links as a form of weak supervision was used by
Søgaard (2017) to improve several NLP tasks both
in-domain and out-of-domain, including chunking,
for both English and Quechua. Peng and Dredze
(2017) use an MTL setting to leverage Chinese
word segmentation and NER across two domains,
news and social media. They share lower levels
but retain domain specific projection layers with
task specific models. Results outperform disjoint
adaption methods and suffer less from diminishing
returns as training sizes increase.

2.3 MTL Performance

While MTL has resulted in improvements across
many tasks and settings, an STL can still outper-
form an MTL model (Martı́nez Alonso and Plank,
2017; Bingel and Søgaard, 2017; Liang et al.,
2020). Reasons for such a lack of increase or even
degradation in performance for a certain task may
be found in negative transfer as tasks may learn at
different rates, and a single task may dominate the
learning (Lee et al., 2016), or poor scheduling may
result in catastrophic forgetting (French, 1999).

Another key fact is the correct choice of tasks.
However, it is not clear how to best select tasks.
Auxiliary task label distributions (Martı́nez Alonso
and Plank, 2017), the learning curve of the primary
task (Bingel and Søgaard, 2017), the difficulty of
the auxiliary task (Liebel and Körner, 2018), the
relationship between the data of the tasks in terms
of size (Luong et al., 2015; Benton et al., 2017;
Augenstein and Søgaard, 2017; Schulz et al., 2018)
and properties (Wu et al., 2020), among other find-
ings1, have all shown to influence the effectiveness
of MTL.

One way to mitigate the negative transfer is to
give different weights to the tasks, helping to maxi-
mize the contributions for the more pertinent tasks
and lessen the impact of sub-optimal tasks (Lee
et al., 2016, 2018). Such strategies have shown
promise in computer vision, where optimal loss
weights can allow an MTL model to improve over a
corresponding STL when it would otherwise show
a degradation in performance (Kendall et al., 2018).

Winata et al. (2018) weighted losses for lan-
guage modeling and POS tagging in an MTL set-
ting, finding a lower weight to language modeling
yielded a reduction in perplexity in modeling code-
switching between Chinese and English. A multi-
task supervised pretraining adaption strategy using
a hierarchical architecture that learns multiple tasks
on a source domain before fine-tuning them on the
target was implemented by Meftah et al. (2020).
By using different weights for the different level
tasks, starting with higher weights for lower tasks
before incrementally increasing weights to higher
level tasks during training, they achieve a notice-
able error reduction in POS tagging, dependency
parsing, and chunking.

Our experiments focus on improving parsing in a
domain adaptation setting using MTL plus separate

1See (Søgaard and Goldberg, 2016; Guo et al., 2019;
Schröder and Biemann, 2020) for more discussion.
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Train Dev Test
German GSD 13 814 799 977

tweeDe 1 000 150 151
Italian ISDT 13 121 564 482

TWITTIRÒ 1 000 144 142
PoSTWITA 1 000 150 150
ParTUT 1 000 150 150

Table 1: Treebank sizes (number of sentences).

loss weighting to improve both tasks.

3 Methodology

3.1 Treebanks
For our experiments, we focus on German and Ital-
ian, since both languages have smaller treebanks
based on Twitter data, which will allow us to avoid
domain differences in the smaller domain. We use
treebanks annotated with Universal Dependencies
V2.7 (Nivre et al., 2020). For German, we use GSD,
which is based on news, reviews, and Wikipedia
pages, and tweeDe (Rehbein et al., 2019) as the
Twitter treebank. For Italian, we use ISDT and Par-
TUT, which consist of legal, news, and Wikipedia
texts, plus TWITTIRÒ (Cignarella et al., 2019) and
PoSTWITA (Sanguinetti et al., 2018) as the Twitter
treebanks.

Table 1 shows the sizes of the treebanks used
in our experiments. For tweeDe we used the first
1 000 sentences for train, and the following 150
and 151 sentences for dev and test respectively.
In order to account for treebank size variations of
the Twitter treebanks, we limit the maximal sizes
of train and dev for TWITTIRÒ and PoSTWITA
to the first 1 000 train sentences and 150 dev and
test sentences respectively, but we do not reduce
the GSD or ISDT treebanks. For the in-domain
experiments in section 6, we also use the ParTUT
treebank, since it covers domains similar to ISDT.
We reduce the treebank size in the manner in which
we reduce the Twitter treebanks.

3.2 Parser
We use the graph-based neural dependency parser
by Dozat and Manning (2017) as our base parser
and extend it to an MTL architecture using hard pa-
rameter sharing. Our MTL parser treats the parsing
of each treebank as a separate MTL task, where the
tasks share the BiLSTM layers which encode the
input embeddings, which are calculated by concate-
nating all the different types of embeddings that are

Hyperparameters Value
Embedding Dimensions 300
POS Tag Embedding Dimension 100
Bert Mapping Dimenstion 100
Number of BERT Layers Used 4
Number of LSTM Layers 3
LSTM Hidden Layer Dimension 400
Optimizer Adam
Patience 50
Batch Size 20k tokens
Learning Rate 2e-3

Table 2: Hyperparameter settings for MTL parser.

used. These BiLSTM encodings are then passed
through a dimension-reducing Multi-layered Per-
ceptrons (MLP) to strip away arc and relationship
information deemed irrelevant for the task at hand.
We implement two MLP schemes, one in which we
share the MLP layers across tasks (shared-MLP;
left part of Figure 1 ) and the other in which each
task has its own MLP layers (unshared; right part
of Figure 1). Finally, in order for the model to learn
task specific information, we apply task-specific bi-
affine attention layers to the MLP output to produce
scores for both arcs and labels. A more detailed
description of the parser architecture can be found
in Sayyed and Dakota (2021).

We modify the PyTorch (Paszke et al., 2019)
implementation of the biaffine parser provided
by Zhang et al. (2020)2, to implement our MTL
parser3. We retain many of the default hyperparam-
eters used in the original base parser. Table 2 lists
the parameters which we have changed. Word and
POS embeddings are initialized randomly. For the
BERT embeddings (Devlin et al., 2019), a scalar
mixture of the last four layers of BERT is passed
through a linear layer to produce BERT embed-
dings of the specified dimension.

3.3 Loss Weighting
We train the MTL parser by having a different ob-
jective function for each task, and we optimize
for each task separately. We do this by randomly
choosing a task from the given tasks and then ran-
domly choosing a batch of sentences along with
their annotations from that task before calculating
the loss for that batch, backpropagating the errors,
and updating all the model parameters (shared and

2https://github.com/yzhangcs/parser
3Our code is available from https://github.com/

zeeshansayyed/multiparser
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Figure 1: Multi-task model architecture.

unshared). In a given epoch, we chose sentences
without replacement.

The task specific objective function is given by:

Lt(Xt; Θ) = La(Xt; Θ) + Ll(Xt; Θ) (1)

where t is the task number, Xt represents the input
batch for task t, Θ denotes all model parameters,
La and Ll represent the cross entropy losses for arc
and label scores in batch Xt respectively.

In the loss weighting experiments in section 5,
in order to compensate for the varying difficulty of
tasks, we weigh each objective function differently
and then optimize for it, as follows:

Lt(Xt; Θ) = wt · (La(Xt; Θ) + Ll(Xt; Θ)) (2)

where wt is the weight for task t and
∑

wt = 1.

3.4 Experimental Setup
Our focus is on comparing the performance of the
MTL parser against that of an STL baseline. This
means that we need a better understanding of the in-
teractions between treebank sizes, learning curves,
and weighting. For this reason, we show learning
curves comparing corresponding MTL and STL
models or different MTL weight settings.

For the learning curves, we start with 1 000 sen-
tences from each treebank and then double the train-
ing size for the large treebank until the max. size is
reached, while the Twitter treebanks remain fixed.

We experiment with three different input em-
beddings: We train word and POS embeddings
(using gold POS tags as input). We then use the

word embeddings, POS embeddings, and the com-
bination of word and POS embeddings plus BERT
embeddings (Devlin et al., 2019). For the BERT
embeddings, German and Italian language specific
BERT embeddings are used4.

We report the average LAS score over three
seeds (10, 20, 30)5 using the CoNLL 2018 shared
task scorer (Zeman et al., 2018). All reported exper-
iments are on the development set unless otherwise
stated.

4 STL vs. MTL Learning Curves

Our first set of experiments concerns the ques-
tion how different levels of size imbalance in the
training data from the two domains affect an MTL
parser.

Figure 2 presents learning curves comparing the
German treebanks, Figures 3 and 4 compare the
two Italian Twitter treebanks to ISDT. Across all
settings, we see that using only word embeddings
gives the lowest results, followed by word plus
POS tag embeddings, with word plus POS tag plus
BERT embeddings resulting in the highest LAS.
Lt(Xt; Θ) = wt · (La;t + Ll;t)

Also across all experiments, we see that sharing
the MLP layers (in green) is slightly more benefi-
cial to the smaller Twitter treebanks than having
separate layers (in blue). The differences between
the shared and unshared model are even smaller for

4https://github.com/stefan-it/
fine-tuned-berts-seq

5For a small number of settings, one of the seeds produced
results that were >30 points lower than for the other seeds.
For those cases, we used seed 40 as a replacement.

96



Figure 2: Results on German (GSD and tweeDe) when adding GSD training sentences (using word, word+POS,
and word+POS+BERT embeddings respectively).

Figure 3: Results on Italian TWITTIRÒ when adding ISDT training sentences (word, word+POS, and
word+POS+BERT embeddings). For legend, see Figure 2.

the large treebanks.
The two German treebanks have very similar

performance at 1k while there is a considerable
difference between the Italian trebanks, with the
Twitter treebanks being more difficult to parse than
ISDT.

When looking at the results on German in Fig-
ure 2, we see that in all settings, the MTL setup
is beneficial for the tweeDe treebank, independent
of the amount of out of domain training data. The
same holds initially for the GSD treebank.

However, as more GSD data becomes avail-
able, the MTL setup starts to be detrimental for
the GSD parser, and the results stay below the
STL baseline. Additionally, the type of embed-
dings plays a factor in the overall improvement:
While the curves flatten out quickly for word+POS
and word+POS+BERT embeddings, the curve for
word embeddings indicates that adding the full set
still results in gains. It is also concerning that for

the word+POS and word+POS+BERT embeddings,
the results on GSD start decreasing after 4k GSD
sentences. We attribute this to negative transfer, i.e.,
the MTL setting is more focused on finding an opti-
mal solution between the non-Twitter and the Twit-
ter task, resulting in a degradation in performance
of the non-Twitter task from the equally prioritized
Twitter signals. Note that while this makes sense
from a MTL point of view, it is counter-intuitive
from a domain adaptation perspective: For the GSD
task, this means that adding more in-domain data
results in lower in-domain performance.

The results for the Italian treebanks in Figures 3
and 4 exhibit similar, but not identical trends to the
German experiments. One noticeable difference is
that the ISDT improvements tend to be far more
linear, where we only begin to see a flattening of
the curve at the full training size. Another more
interesting difference concerns the point where the
STL on the large treebank (GSD or ISDT) improves
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Figure 4: Results on Italian PoSTWITA when adding ISDT training sentences (word, word+POS, and
word+POS+BERT embeddings). For legend, see Figure 2.

Figure 5: Effect of loss weighting in German; all experiments use 1k tweeDe and range from 1k, 2k (upper), 4k to
all GSD data (lower) for training.

over the MTL model: For German, this happens
systematically at 4k, for Italian, it ranges from 4-8k
for TWITTIRÒ and 2-8k for PoSTWITA depend-
ing on the type of embeddings. We see that for
word+POS+BERT, the STL is already on par with
the MTL model at 2k, but the word embeddings
model needs closer to 8k.

5 Loss Weighting

We now turn to the question of loss weighing, i.e.,
can we address the data imbalance problem if we
assign higher weights to one or the other task in
the loss function? Using loss weighting would give
us a principled way of handling the data imbal-
ance. For a description of the weighting scheme,
see section 3.3. For the experiments in this sec-
tion, all MTL tasks are learned using the shared
MLP setting (as it performed better in most set-

tings of section 4) and word+POS embeddings (as
it performed better than word-only embeddings but
does not require pretraining on external sources,
such as BERT), and we vary the training size of the
large treebank between 1k, 2k, 4k, and all available
training data.

Figure 5 shows the results for the German tree-
banks, Figure 6 shows the combination of the Ital-
ian ISDT and TWITTIRÒ, and Figure 7 the combi-
nation of ISDT and PoSTWITA. Each graph shows
the results for the two tasks per setting.

All experiments in section 4 are based on stan-
dard alternating loss for both tasks, i.e., the loss
for each task is used as is, which is equivalent to
having a weight of 1. For the experiments here, the
X-axis denotes the weights applied to the large tree-
bank task, ranging from 0 to 1. The corresponding
weight applied to the second task is 1 − x, i.e., it
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Figure 6: Effect of loss weighting in Italian; all experiments use 1k TWITTIRÒ and range from 1k, 2k (upper), 4k
to all ISDT data (lower) for training.

decreases from 1 to 0. For each weight, we report
the LAS for either task, blue denoting the large tree-
bank and orange the Twitter treebank. The vertical
dotted lines mark the 0.5 weight setting, where both
tasks are weighted equally, and the horizontal dot-
ted lines denote the performance of the MTL parser
in this setting. The diamond markers in each line
denote the best performance achieved by weighted
MTL parser for that task.

Looking at the German results in Figure 5, we
see that in the 1k setting, the optimal performance
for GSD is reached when each task is assigned
a weight of 0.5. For tweeDe, the optimal perfor-
mance is reached in the same area, namely for a
weight setting of 0.45:0.55 for GSD:tweeDe. In the
2k setting, even though the optimal performance
shifts towards higher weights for the large treebank
(0.85 for GSD and 0.4 for tweeDe), the actual in-
crease in performance is minimal compared to the
balanced weight setting. This trend continues as
we add more data to GSD (for 4k and full settings):
The optimal weights move closer to the maximal
weight for the large treebank. This shows that as
the treebank sizes become more imbalanced, the op-
timal performance is reached by applying a higher
weight to the large treebank and consequently a
lower weight to the small Twitter treebank.

It is also interesting to see that for the 1k set-
ting, the tweeDe results surpass the GSD results.
This suggests that the tweeDe data are syntactically

easier than the GSD ones. We also see that the
performance for tweeDe starts plateauing once it
reaches the 0.5 weight setting for imbalanced sce-
narios (2k, 4k and full). Hence, for tweeDe, the
performance gain in the optimal setting beyond 0.5
is smaller than for GSD. Moreover, while the MTL
models using balanced weights (section 4) do not
always improve over the STL baselines, weighted
MTL improves in all settings and all tasks. For
GSD, the highest gain over the STL occurs in the
1k setting. The more data we add, the smaller the
improvement. For the full GSD set, the improve-
ment is minimal.

The results for the two Italian experiments, in
Figure 6 for the combination of ISDT and TWIT-
TIRÒ, and in Figure 7 for the combination of ISDT
and PoSTWITA, show similar trends with some
differences. For both experiments, the Twitter task
shows slightly concave curves for 1k and 2k respec-
tively. Starting from 4k, we see an upward trend
for ISDT as the weight for the large task increases.
For German, this only occurs with the full GSD
training set.

These results show that for smaller data sizes,
i.e., when the two treebanks are closer to balanced,
weighting does not matter that much: For most
settings, the optimal results are close to a 0.5
weight. As the data imbalance increases, it be-
comes more important to slide the weights towards
the larger task in order to avoid negative transfer.
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Figure 7: Effect of loss weighting in Italian; all experiments use 1k PoSTWITA and range from 1k, 2k (upper), 4k
to all ISDT data (lower) for training.

The weighted MTL models allow us to use the max-
imum data for the larger treebank and even reach
a slight gain in performance over the STL. The
Twitter treebanks show even more improvement
than in the standard MTL setup, suggesting that
they benefit from a reduction of their own signal
along with a more powerful signal from the large
treebank.

Weighting the different losses is akin to having
different learning rates for each task (i.e., treebank),
impacting the contribution each has on the step
sizes derived from the loss in finding an optimal
solution (Sébastien et al., 2018). When the data
sizes of the two domains are closer, the steps taken
by each benefit each other. As the non-Twitter
data increases however, the Twitter data have too
much influence on the step sizes, resulting in a
degradation on the non-Twitter treebank since stan-
dard MTL optimizes both equally. While MTL is
thought to help overcome local optima that can oc-
cur in an STL (Bingel and Søgaard, 2017), in our
case, we assume that the weights have a similar
effect: They help both the non-Twitter and Twitter
models overcome local optima encountered in a
standard MTL setup.

6 Controlling Data Imbalance Vs.
Domain Differences

So far, we have treated domain adaptation as a data
imbalance problem. This is certainly a factor since

we mostly use a large scale out-of-domain treebank
to improve results in-domain. However, there are
also genuine differences between the domains, and
it is unclear to what degree they individually con-
tribute to the difficulty. For this reason we conduct
two additional experiments on Italian, in which we
pair a larger treebank with its smaller counterpart
from the same domain. In other words, we now
focus on an in-domain comparison of a small and
a large treebank. The more these results deviate
from the previous results, the more influence the
domain differences have on parser performance.

In the first experiment, we compare Twitter tree-
banks, i.e., we pair the smaller TWITTIRÒ tree-
bank with the larger PoSTWITA treebank. In the
second experiment, we compare the more gen-
eral treebanks, i.e., we pair the smaller ParTUT
treebank with the larger ISDT. For the Twitter in-
domain experiments, we simply double the PoS-
TWITA data as we did with the ISDT reaching the
full size (at about 5.3k sentences). For ISDT and
ParTUT we follow the same methodology.

Figure 8 shows non-weighted MTL curves for
Twitter and non-Twitter in-domain data sets respec-
tively. The curves in both settings exhibit similar
trends to the trends in Figure 3 in that the STL
system begins to outperform the MTL system at
the end of the curves, but that the small in-domain
treebanks reach a very similar performance to their
larger counterparts. This suggests that while do-
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Figure 8: Results on Italian TWITTIRÒ when adding PoSTWITA training sentences on left and Italian ParTUT
when adding ISDT on the right, both using word+POS.

STL MTL weighted MTL wMTL weights
PoSTWITA 83.60 83.46 83.66 0.65
TWITTIRÒ 78.17 83.65 84.14 0.35

ISDT 91.31 90.71 91.27 0.90
ParTUT 85.35 91.05 91.34 0.10

Table 3: LAS Results Word+POS for STL, shared MTL, and weighted shared MTL using the full data sets. ISDT
paired with ParTUT.

main differences play a role in negative transfer,
they appear to be less important than the data im-
balance between treebanks, thus validating our de-
cision to approach domain adaptation as an MTL
task.

We conduct a single weighted experiment, using
the best weights from Figures 5-7 and the best re-
sults reported in section 7. The results are shown
in Table 3. We see a similar trend as in the out-of-
domain experiments where the MTL setting shows
a degradation for ISDT compared to its STL set-
ting while ParTUT shows an increase at higher
imbalances. For the Twitter treebanks, the differ-
ences are minimal. The weighted MTL increases
the performance on ISDT over the MTL setting
but does not quite match the STL setting, while
the weighted MTL setting further increases the per-
formance of the ParTUT treebank. The weighted
MTL for PoSTWITA shows a slight increase over
the STL and over the non-weighted MTL setting
for TWITTIRÒ. Such findings suggest that even
in-domain data imbalances can benefit from weight-
ing, but may not benefit as much as treebank pairs
in a domain adaptation setting.

7 Best Results

In Table 4, we show the highest LAS scores for the
STL and shared MTL models, on dev and test using
Word+POS embeddings. While the unweighted

MTL settings result in noticeable lower LAS for
both large treebanks, we see slight gains in the
weighted MTL experiments, when given upwards
of 0.9 loss weights. For all Twitter treebanks, the
MTL setting shows considerable gains between 3-
5% absolute. The weighted MTL setting improves
over MTL by another 1-1.5%. We see the same
developments across the dev and test sets.

8 Conclusion & Future Work

We have investigated the use of MTL for domain
adaptation in parsing to address the data imbal-
ance. The effectiveness of MTL depends on many
interacting factors as laid out in section 2.3. Impor-
tant factors we directly examine in our experiments
are data size imbalances, difficulty of tasks, and
task learning rates. Our learning curves for Ger-
man and Italian show that MTL underperforms an
STL when the data size imbalances become too
great, due to negative transfer in optimizing for
two tasks. Additionally, both our out-of-domain
and in-domain experiments demonstrate that task
learning difficulty affects both setups, even with
balanced data. By using loss weighting, we are able
to influence the learning rates of individual tasks,
which helps reduce the negative transfer caused by
both the data size imbalances and tasks difficul-
ties. This allows us to train weighted MTL models
where both parsers are able to outperform both STL

101



Test Lg. Treebank STL MTL weighted MTL wMTL weights
dev German GSD 84.63 83.76 84.74 0.90

tweeDe 74.69 79.01 79.99 0.10
Italian ISDT 91.31 T: 90.59; P: 90.31 T: 91.54; P: 91.45 0.95; 0.90

TWITTIRÒ 78.17 82.83 84.11 0.15
PoSTWITA 77.22 80.48 81.58 0.05

test German GSD 81.35 80.70 81.56 0.90
tweeDe 76.18 81.77 82.52 0.10

Italian ISDT 91.80 T: 91.18; P:90.92 T: 92.07; P: 91.79 0.95; 0.90
TWITTIRÒ 78.07 81.64 82.28 0.15
PoSTWITA 75.46 78.57 79.24 0.05

Table 4: LAS Results Word+POS for STL, shared MTL, and weighted shared MTL using the full data sets. T:
paired with TWITTIRÒ, P: with PoSTWITA.

and non-weighted MTL models on both treebanks
at the same time, even when highly imbalanced,
for in-domain and out-of-domain experiments for
both German and Italian. We conclude that while
domain differences certainly play a factor, data im-
balance appears to have more influence on parser
performance.

In the future, our experiments need to be ex-
tended to a wider range of languages and target
domains. Additionally, we will investigate strate-
gies for dynamic learning of weights (Guo et al.,
2019; Liu et al., 2019; Ming et al., 2019; Yim and
Kim, 2020) for determining optimal loss weighting
automatically, as well as more complex scheduling
approaches (Kiperwasser and Ballesteros, 2018;
Guo et al., 2018; Sébastien et al., 2018) to further
improve performance.
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Abstract
We review two features of mixture of ex-
perts (MoE) models which we call averag-
ing and clustering effects in the context of
graph-based dependency parsers learned in a
supervised probabilistic framework. Averag-
ing corresponds to the ensemble combination
of parsers and is responsible for variance re-
duction which helps stabilizing and improving
parsing accuracy. Clustering describes the ca-
pacity of MoE models to give more credit to
experts believed to be more accurate given an
input. Although promising, this is difficult to
achieve, especially without additional data.

We design an experimental set-up to study the
impact of these effects.Whereas averaging is
always beneficial, clustering requires good ini-
tialization and stabilization techniques, but its
advantages over mere averaging seem to even-
tually vanish when enough experts are present.

As a by product, we show how this leads
to state-of-the-art results on the PTB and the
CoNLL09 Chinese treebank, with low vari-
ance across experiments.

1 Introduction

Combinations of elementary parsers are known to
improve accuracy. Sometimes called joint systems,
they often use different representations, i.e. lexi-
calized constituents and dependencies (Rush et al.,
2010; Green and Žabokrtský, 2012; Le Roux et al.,
2019; Zhou et al., 2020). These approaches have
been devised to join the strengths and overcome
the weaknesses of elementary systems.

In this work, however, we follow another line
of research consisting of mixtures and products
of similar experts (Jacobs et al., 1991; Brown and
Hinton, 2001), instantiated for parsing in (Petrov
et al., 2006; Petrov, 2010) and especially appealing
when individual experts have high variance, typi-
cally when training involves neural networks. In-
deed Petrov (2010) used products of experts trained

via Expectation-Maximization (a non-convex func-
tion minimization) converging to local minima.

In this work we propose to study the combina-
tion of parsers, from a probabilistic point of view,
as a mixture model, i.e. a learnable convex inter-
polation of probabilities. This has previously been
studied in (Petrov et al., 2006) for PCFGs with the
goal of overcoming the locality assumptions, and
we want to see if neural graph-based dependency
parsers, with non-markovian feature extractors, can
also benefit from this framework. It has several
advantages: it is conceptually simple and easy to
implement, it is not restricted to projective depen-
dency parsing (although we only experiment this
case), and while the time and space complexity in-
creases with the number of systems, this is hardly a
problem in practice thanks to GPU parallelization.

Simple averaging models, or ensembles, can also
be framed as mixture models where mixture coeffi-
cients are equal. We are able to quantify the vari-
ance reduction, both theoretically and empirically
and show that this simple model of graph-based
parser combinations perform better on average, and
achieve a higher accuracy than single systems.

While the full mixture model is appealing, since
it could in principle both decrease variance and find
the optimal interpolation weights to better combine
parser predictions, the non-convexity of the learn-
ing objective is a major issue that, when added
to the non-convexity of potential functions, can
prevent parameterization to converge to a good so-
lution. By trying to specialize parsers to specific
input, the variance is not decreased. More impor-
tantly, experiments indicate that useful data, that is
data with an effect on parameterization, becomes
too scarce to train the clustering device.

Another drawback of finite mixture models is
that inference, i.e. finding the optimal tree, be-
comes intractable. We tackle this issue by using
an alternative objective similar to Minimal Bayes-
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Risk (Goel and Byrne, 2000) and PCFG-LA combi-
nation (Petrov, 2010) for which decoding is exact.

Our contribution can be summarized as follows:
• We frame dependency parser combinations as

finite mixture models (§2) and discuss two
properties: averaging and clustering. We de-
rive an efficient decoder (LMBR) merging pre-
dictions at the arc level (§3).

• When isolating the averaging effect, we show
that resulting systems exhibit an empirical
variance reduction which corroborates theoret-
ical predictions, and are more accurate (§4).

• We study the causes of instability in mix-
ture learning, outline why simple regulariza-
tion is unhelpful and give an EM-inspired
learning method preventing detrimental over-
specialization (§5). Still, improvement over
mere averaging is difficult to achieve.

• These methods obtain state-of-the-art results
on two standard datasets, the PTB and the
CoNLL09 Chinese dataset (§6), with low vari-
ance making it robust to initial conditions.

2 Mixture of Experts

2.1 Notations

We write a sentence as x = x0, x1, . . . , xn, with
x0 a dummy root symbol, and otherwise xi the ith

word, and n the number of words. For h, d ∈ [n]
with [n] = {0, . . . , n}, (h, d) is the directed arc
from head xh to dependent xd. We note the set of
all parse trees (arborescences) for x asY(x) and the
elements in this set as y ∈ Y(x), with (h, d) ∈ y
if (h, d) is an arc in y. L stands for the set of arc
labels. The vector of arc labels in tree y is noted as
l(y) ∈ Ln. We note l(y)hd the label for arc (h, d)
in y, or lhd when y is clear from the context.

2.2 Parsers as Experts

Experts can be any probabilistic graph-based de-
pendency parser, provided that we can efficiently
compute the energy of a parse tree, the global en-
ergy of a sentence (the sum of all parse tree ener-
gies, called the partition function) and the marginal
probability of an arc in a sentence. In the remain-
ing we focus on projective first- and second-order
parsers, where these quantities are computed via
tabular methods or backpropagation1.

1Matrix-tree theorem could be used to adapt this work to
non-projective first-order models (Smith and Smith, 2007)

Tree structure For a graph-based dependency
parser, the tree probability is defined as:

p(y|x) =
exp(s(x, y))

Z(x) ≡∑y′∈Y(x) exp(s(x, y′))

with s(x, y) the tree energy giving the correctness
of y for x, and Z(x) the partition function.

In first-order models (Eisner, 1996), tree scores
are sums of arc scores:

s(x, y) =
∑

(h,d)∈y
s(h, d)

Eisner (1997) generalizes scores to the second-
order by considering pairs of adjacent siblings:

s(x, y) =
∑

(h,d)∈y
s(h, d) +

∑

(h,d1)
(h,d2)∈y

s(h, d1, d2)

with h < d1 < d2 or d2 < d1 < h. For projec-
tive first- or second-order models, Z(x) and p(y|x)
are efficiently calculated (Zhang et al., 2020b).
Moreover marginal arc probability p

(
(h, d)|x

)
can

be efficiently calculated from the partition func-
tion by applying backpropagation from logZ(x)
to s(h, d), see (Eisner, 2016; Zmigrod et al., 2020;
Zhang et al., 2020a):

p((h, d)|x) =
∑

y∈Y(x)
(h,d)∈y

p(y|x) =
∂ logZ(x)

∂s(h, d)

Tree Labelling The labelling model is also a
Boltzmann distribution:

p(l|(h, d), x) =
exp(s(l, h, d))∑

l′∈L exp(s(l′ , h, d))

where s(l, h, d) is the score for label l on (h, d).
Following (Dozat and Manning, 2017; Zhang

et al., 2020a), label predictions are independent:

p(l(y)|y, x) =
∏

(h,d)∈y
p(lhd|(h, d), x) (1)

Parse Probability Given the structure y and its
labelling l(y), the parse probability is:

p
(
l(y), y|x

)
= p(y|x)× p

(
l(y)|y, x

)
(2)

Learning Potential functions s can be imple-
mented by feed-forward neural networks or biaffine
functions (Dozat and Manning, 2017), and parame-
terized by maximizing a log-likelihood.
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2.3 Mixture and Averaging
For arborescence probabilities a finite mixture
model (MoE) is a weighted sum of the probabilities
given by all experts:

p(y|x) =
K∑

k=1

ωk(x)pk(y|x) (3)

where mixture weights verify ∀x, ωk(x) ≥ 0 and∑K
k=1 ωk(x) = 1 and can be adjusted by a gating

network (Jacobs et al., 1991). We can interpret
ω as a device whose role is to cluster input in K
categories and assign each category to an expert.

By forcing ωk(x) = 1
K , ∀x, we have a simpler

averaging model, sometimes called ensemble:

p(y|x) =
1

K

K∑

k=1

pk(y|x)

Note that MoEs combine elementary probabil-
ities, not tree scores: each expert energy is first
normalized before the combination.

A similar mixture is applied to labelling, i.e.:

p(l(y)|y, x) =

K∑

k=1

λk(x)pk(l(y)|y, x)

3 Decoding with a Mixture Model

Learning MoEs will be covered in Section 5 and we
first turn to the problem of finding an appropriate
tree, for instance the most probable parse tree:

y∗ = argmax
y∈Y(x)

p(y|x) = argmax
y∈Y(x)

K∑

k=1

ωk(x)pk(y|x)

This maximization is difficult, even in the ab-
sence of labels, since this isn’t a log-linear function
of the arc scores anymore: y∗ cannot be searched
in the log-space among unnormalized arc scores.

3.1 MBR Decoding
In this case, a more attractive alternative is Mini-
mum Bayesian Risk (MBR) decoding (Smith and
Smith, 2007), because it decomposes error in a
way similar to the metrics used in dependency pars-
ing (UAS/LAS) and is tractable. MBR requires to
compute marginal arc probabilities which are the
weighted sums of elementary marginals:

p
(
(h, d)|x

)
=

K∑

k=1

ωk(x)pk
(
(h, d)|x

)

The intuition behind MBR is that instead of max-
imizing the probability of the parse tree, we try to
minimize the risk of choosing wrong arcs, i.e. to
maximize the arc marginals in the parse tree:

y∗ = argmax
y∈Y(x)

∏

(h,d)∈y
p
(
(h, d)|x

)
= MBR(x)

Once computed marginal log-probabilities, Eis-
ner algorithm (Eisner, 1996), (Eisner, 1997) or
Chu-Liu-Edmonds (McDonald et al., 2005) can
be applied to solve MBR.

3.2 MBR Decoding with Labels

In many dependency parsing models, decoding of
arcs and labels is pipelined, see for instance (Dozat
and Manning, 2017; Zhang et al., 2020a; Fossum
and Knight, 2009): first arcs are decoded and then,
with the decoded arcs, maximization is performed
over labels:

y∗ = argmax
y∈Y(x)

p(y|x) then l∗ = argmax
l=l(y∗)

p(l|y∗, x)

However, solutions found this way are not the
maximizers for p(l, y|x), as defined in Eq. 2. The
problem is that the effect of labelling is not consid-
ered in arc decoding: a high probability arc can get
picked up even with a low label score.

First we remark that each label in l∗ is the most
probable label l for a pair (h, d), denoted by Lhd =
argmaxl∈L p(l|(h, d), x) . Decoding becomes:

y∗ = argmax
y

p(y|x)
∏

(h,d)∈y
p(Lhd|(h, d), x)

This way l∗ is deterministic wrt to y∗ and (y∗, l∗)
are maximizers for Eq. 2. We note labelling L(y)
where l(y)hd = Lhd,∀(h, d) ∈ y. This can be
combined with MBR without changing decoding
algorithms, and we call this variant LMBR:

y∗ = argmax
(y,l=L(y))

∏

(h,d)∈y
p
(
(h, d)|x

)
p
(
Lhd|(h, d), x

)

i.e. we can apply MBR with arc probabilities repa-
rameterized with label probabilities. Experiments
show that LMBR exhibits a small but consistent
accuracy increase over MBR.
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4 Averaging and Variance Reduction

In this section we assume all experts to be equally
weighted. We define the variance of the system on
T as the average variance of marginal arc probabil-
ity:

σ2 =

∑
(x,y)∈T

∑
(h,d)∈y σ

2
(
p
(
(h, d)|x

))

∑
(x,y)∈T |y|

with σ2(p((h, d)|x)) the variance of the marginal
probability.

We show how the variance of the MoE is smaller
than the variance of experts. We focus on structure
prediction p(y|x), but definitions are applicable to
the labelling model as well. This is an already
known result for mixture models in general, but the
proof is here instantiated for a mixture of graph-
based parsers. Moreover, we will recover this result
experimentally in Section 6.

Assuming we have a mixture of K elementary
systems, we will estimate the marginal probability
variance with:

σ2
(
p
(
(h, d)|x

))
=

1

K

K∑

k=1

(π(k)− π̄)2

with π(k) the probability pk
(
(h, d)|x

)
given by

the kth elementary system and average π̄ =
1
K

∑K
k=1 π(k)

Increasing the number of experts in the MoE
will decrease variance of the system. To see this,
we assume that the marginal probability for a well
trained expert, over a fixed sentence and a fixed
arc, is a measurable function f(h,d),x : R → R of
a random seed Sk ∈ R, which represents the fact
that pk is the result of a learning process with many
sources of randomization2 (initialization, stochastic
batches, dropout. . . ):

pk((h, d)|x) = f(h,d),x(Sk)

with Sk ∈ R a random seed assigned to kth ex-
pert at the beginning of training, assumed to be
independent for different experts.

Since in practice a pseudo-random generator is
used, the value of marginal probability for partic-
ular sentence and arc is deterministic when the
random seed is fixed. Thus, it is sufficient to use
a deterministic function to represent pk((h, d), x),

2f should also be indexed by the training set, but we omit
this for the sake of readability.

with random seed Sk as input. Moreover, we just
need the function to be measurable.

We can now view f(h,d),x(S) as a random vari-
able and we note its variance as σ2(h,d),x. It is in fact
the variance of the marginal arc probability given
by this expert, for (h, d) given x. For an averaging
MoE, the marginal probability becomes:

p((h, d)|x) =
1

K

K∑

k=1

f(h,d),x(Sk)

with K number of experts in the mixture model.
If random variables {Sk}k∈K are independent,
{f(h,d),x((Sk)}k∈K also are independent (Baldi,
2017). Thus, the variance of the mixture model
for particular sentence and arc should be 1

K times
the variance of experts:

Σ2
(h,d),x =

σ2(h,d),x

K
(4)

with Σ the variance of the mixture model. In other
words, the log-variance of a mixture model de-
creases linearly with logK, with slope −1, i.e.:

log Σ2
(h,d),x = log σ2(h,d),x − logK

Experiments in Section 6 Figure 1 show that
the estimated log-variance of the averaging system
decreases when the number of experts increases
and that this relation is close to linear with a slope
approaching −1, comforting our independence as-
sumption.

5 Training with Clustering

When mixture weights are adjustable, MoE models
are able to give more credit to experts believed
to perform better on specific input. This can be
exploited during parameterization. The role of ω is
thus to learn how to cluster input into K categories,
each category being assigned to an expert.3

For input sentence x and corresponding tree y,
assuming parameterization is performed by max-
imizing the log-likelihood of the training set via
SGD, the objective of mixture model learning with
gating network ω can be written as:

L(φ, θ) = log

K∑

k=1

ωk(x;φ)pk(y|x; θk) (5)

3We note that averaging MoE models do not require a
specific training: experts can be trained separately and the
ensemble is gathered at decoding time only.
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where φ are the parameters of the gating network,
and θk are the parameters of the kth expert.

Partial derivatives to the gating network are:

∂L(φ, θ)

∂φ
=

K∑

k=1

ωk(φ)pk(θk)∑K
k′=1

ωk′ (φ)pk′ (θk′ )

∂ logωk(φ)

∂φ

(6)
while for expert parameters we have:

∂L(φ, θ)

∂θk
=

ωk(φ)pk(θk)∑K
k′=1

ωk′ (φ)pk′ (θk′ )

∂ log pk(θk)

∂θk
.

(7)
We found that optimizing directly with equa-

tions (6) and (7) causes degeneration, i.e. one ωk
approaches 1 while the other ωk′ decrease to almost
0. Indeed, gradient ascent with (6) will increase
ωk for an expert k that gives high weight to train-
ing samples while gradient ascent with (7) will
generate increased gradient, and in turn increased
probabilities, for experts with high value of ωk.
The two processes re-enforce each other and result
quickly in an extreme partition between experts.

One may think that the degeneration problem can
be alleviated with a smoothing prior or regulariza-
tion. In practice, we tried entropy as regularization
to force towards a uniform distribution on ωk. We
found that a heavy entropy penalization is required
to avoid the degeneration problem, which makes
ωk too uniform to be an accurate clustering device.

Avoid Extreme Partition Thus, to alleviate the
degeneration problem without forcing a strong
smoothing constraint, we propose to modify Eq.
(6) into:

∂L
′
(φ, θ)

∂φ
=

K∑

k=1

pk(θk)∑K
k′=1

pk′ (θk′ )

∂ logωk(φ)

∂φ

(8)
i.e. we force the weight update to be proportional
to the relative probability. The advantage of Eq.
(8) is that gradient are weighted by a more objec-
tive quantity pk(θk)∑K

k
′
=1

p
k
′ (θ

k
′ )

. For an example where

pk(x) is close to uniform, we can benefit from the
averaging effect, while for an example which shows
strong preference for a particular expert, we can
also learn the partition coefficients proportional to
their correctness.

Stabilize Training Neuron dropout (Srivastava
et al., 2014) is a common technique to avoid over-
fitting which unfortunately proved difficult in this
setting. The problem is that sk(x, y) gives very dif-
ferent results with or without dropout which reflects

on pk(y|x) causing drastic changes from one eval-
uation to the other. To mitigate this problem, we
use probabilities without dropout (noted as p̃k(θ))
to calculate the weighted coefficients of gradient.

The final optimization process can be separated
into two alternate parts, (i) optimization of the gat-
ing parameters:

∂L
′
(φ, θ)

∂φ
=

K∑

k=1

p̃k(θk)∑K
k′=1

p̃k′ (θk′ )

∂ logωk(φ)

∂φ

and (ii) optimization of experts:

∂L(φ, θ)

∂θk
=

K∑

k=1

ω(φ)p̃k(θk)∑K
k′=1

ωk′ p̃k′ (θk′ )

∂ log pk(θk)

∂θk

In practice, this permitted reaching a lower loss
value after training.

6 Experiments

Data We run experiments over two datasets for
projective dependency parsing: The English Penn
Treebank (PTB) data with Stanford Dependencies
(Marcus et al., 1993) and CoNLL09 Chinese data
(Hajič et al., 2009). We use standard train/dev/test
splits and evaluate with UAS/LAS metrics. Cus-
tomarily, punctuation is ignored on PTB evaluation.

Experts We run tests with first-order (FOP) and
second-order parsers (SOP) as mixture model ex-
perts, with re-implemented versions of the CRF
and CRF2o parsers of Zhang et al. (2020a).4 For
decoding, we use the LMBR decoding presented
in Section 3.2, which guarantees a small but con-
sistent improvement over pipeline MBR decoding.

For each input word, these systems use 3 em-
beddings: the first is a fixed pretrained vector5, the
second is trainable and looked-up in a table, and
the third is computed by a BiLSTM at the character
level (CharLSTM). The first two embeddings are
summed and concatenated with the char sequence
embedding. For FOP and SOP, contextual lexical
features are the results of 3-layer BiLSTMs applied
to word embedding sequences. The scoring of arcs
is then similar to (Dozat and Manning, 2017): lex-
ical features are transformed for head or modifier
roles by two feed-forward networks and combined
to score arcs via a biaffine transformation.

4https://github.com/kidlestar/MOE.git.
5For English we used Glove embeddings (Pennington et al.,

2014), while for Chinese we extracted pretrained embeddings
from the publicly available model of Zhang et al. (2020b).
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On PTB, in order to compare with recent pars-
ing results, we set up BFOP and BSOP (B for
Bert), variants of the FOP and SOP settings: we
follow Fonseca and Martins (2020) and concate-
nate an additional BERT embedding (Devlin et al.,
2019) (the average of the 4 last layers of the bert-
base-uncased model) to the embedding vector fed
to the BiLSTM layers.

Gating (mixture weights ω) is implemented by
a K-class softmax over a feed-forward network
whose input are the concatenation of initial and
final contextual lexical feature vectors returned by
the 3-layer BiLSTM. Hyper-parameters are set sim-
ilarly to Zhang et al. (2020a), with the exception
of the learning rate decreased to 10−4 and patience
(that is the maximum number of epochs without
LAS increase on the development set) set to 20.

We train 12 independent models for each expert
type, with random seed set to system time.

6.1 Averaging Effect Analysis

The experimental procedure is shown in Experi-
mental Setup 1, with M1, . . . ,M12 denoting the
trained experts, K number of experts in the mix-
ture model and r the number of repetitions.

Models: M1, . . . ,M12;
Initialization: K, r;
repeat r times

1. Shuffle the order of M1, . . . ,M12;
2. Combine sequentially every K

models together, creating 12/K
mixture averaging models;

3. Compute UAS, LAS of models;
4. Calculate system variance for models;

end
Experimental Setup 1: Averaging Effect

We set K from 1 to 6 with r always set to 5. We
show results for PTB and CoNLL09 Chinese on
dev data for each type of mixture of experts, and
different number of experts in Table 1 and Table 3.
For UAS and LAS, each entry is given as:

Averagemax
min ± std

where average is the average score for all trials
in this setting and max (resp. min) is the highest
(resp. lowest) score obtained by an experiment in
this setting. We also give standard deviation std as
a way to see the effects of variance reduction.

Finally the last row gives the average relative
error reduction (R.E.R) from single expert mode
(K = 1) to ensemble mode with K = 6.

6.2 Clustering Effect Analysis

We conduct clustering effect analysis over the mix-
ture model with 6 experts. Preliminary experi-
ments showed that, like in most non-convex prob-
lems, good initialization is very important. For that
reason we use already trained experts as starting
points6 although the mixture could benefit from
more diversely trained experts. We leave this for
future work. The procedure is described in Ex-
perimental Setup 2 and this whole procedure is
repeated 5 times to compute average performance.

Models: M1, . . .M12;
Initialization: K = 6;
repeat r times

1. Select randomly K models, creating
mixture models;

2. Do fine tuning of mixture models
with gating network;

3. Calculating UAS, LAS of mixture
model after fine tuning;

end
Experimental Setup 2: Clustering Effect

Scores on development set before and after fine
tuning are shown in Table 4. Note that because
shuffling might give different candidate sets than
in the averaging experiments UAS and LAS results
are not exactly the same as K = 6 results in Ta-
ble 1, Table 2 and Table 3.

6.3 Discussion

Averaging Tables 1 to 3 show that UAS and LAS
generally increase on average with the number of
models in the mixture model, and that ensemble
performs often on average better than the best sin-
gle systems in each category (notable exceptions:
UAS for FOP and models with BERT on PTB).

Averaging generally decreases the standard devi-
ation, which is evident for (B)FOP. For (B)SOP the
decrease trend is less clear. However, we still found
that the smallest standard deviation is usually given
by high number of experts (K = 5, 6).

6We tried deterministic annealing with both randomly ini-
tialized experts and already trained experts. While it helped
in the former case, the latter was more accurate, but still less
accurate than systems trained without.
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K FOP SOP
UAS LAS UAS LAS

1 95.83 96.04
95.72 ±0.08 94.06 94.24

93.91±0.08 95.87 95.94
95.77±0.06 94.07 94.16

93.97±0.05

2 95.88 96.04
95.76 ±0.06 94.15 94.32

94.05±0.07 95.92 96.05
95.85±0.05 94.15 94.27

94.08±0.04

3 95.93 96.03
95.84±0.05 94.22 94.32

94.11±0.05 95.94 96.04
95.85±0.06 94.18 94.27

94.08±0.06

4 95.95 96.04
95.90 ±0.04 94.24 94.35

94.16 ±0.05 95.98 96.07
95.91 ±0.05 94.22 94.31

94.15 ±0.04

5 95.93 96.00
95.84±0.04 94.24 94.33

94.14±0.05 95.98 96.04
95.92±0.04 94.24 94.29

94.18±0.03

6 95.95 95.98
95.91±0.02 94.24 94.30

94.21±0.03 95.98 96.01
95.94±0.02 94.24 94.28

94.18±0.03

R.E.R. 2.88% 3.03% 2.66% 2.87%

Table 1: PTB dev results, with First-Order (FOP) and Second-Order (SOP) parsers as experts.

K BFOP BSOP
UAS LAS UAS LAS

1 96.31 96.46
96.23±0.06 94.60 94.77

94.53±0.06 96.35 96.42
96.23±0.04 94.63 94.68

94.55±0.04

2 96.37 96.48
96.26±0.05 94.69 94.79

94.61±0.05 96.38 96.51
96.26±0.06 94.71 94.79

95.60±0.05

3 96.40 96.49
96.33±0.04 94.74 94.82

94.68±0.04 96.39 96.50
96.29±0.06 94.71 94.79

94.61±0.04

4 96.43 96.53
96.38 ±0.04 94.77 94.89

94.72 ±0.04 96.38 96.47
96.28±0.05 94.72 94.79

94.62±0.05

5 96.45 96.51
96.38±0.04 94.79 94.85

94.74±0.04 96.41 96.52
96.29 ±0.06 94.73 94.82

94.65 ±0.05

6 96.44 96.51
96.40±0.03 94.79 94.85

94.74±0.03 96.39 96.46
96.32±0.04 94.73 94.82

94.67±0.04

R.E.R. 3.52% 3.52% 1.64% 1.86%

Table 2: PTB dev results, with Bert-First-Order (BFOP) and Bert-Second-Order (BSOP) parsers as experts.

K FOP SOP
UAS LAS UAS LAS

1 89.20 89.42
89.04±0.12 86.28 86.49

86.10±0.12 89.40 89.48
89.31±0.06 86.45 86.52

86.28±0.07

2 89.44 89.60
89.32±0.08 86.59 86.74

86.45±0.08 89.65 89.78
89.51±0.07 86.76 86.89

86.57±0.07

3 89.55 89.66
89.39±0.07 86.71 86.82

86.54±0.07 89.74 89.86
89.62±0.07 86.86 86.98

86.72±0.08

4 89.62 89.68
89.52±0.04 86.80 86.87

86.70±0.05 89.83 89.94
89.70±0.08 86.96 87.08

86.86±0.07

5 89.66 89.71
89.57±0.04 86.83 86.89

86.75±0.04 89.87 89.98
89.75 ±0.07 87.00 87.11

86.87 ±0.07

6 89.66 89.77
89.61±0.05 86.85 86.93

86.81±0.04 89.87 89.93
89.79±0.05 87.00 87.08

86.92±0.04

R.E.R. 4.26% 4.15% 4.43% 4.06%

Table 3: CoNLL09 dev results, with First-Order (FOP) and Second-Order (SOP) parsers as experts.

Method PTB CoNLL09 Chinese
UAS LAS UAS LAS

FOP 95.94 95.96
95.91±0.02 94.23 94.26

94.21±0.02 89.67 89.71
89.62±0.03 86.86 86.91

86.81±0.04

CFOP 95.98 96.00
95.94±0.02 94.29 94.31

94.27±0.02 89.68 89.72
89.62±0.04 86.86 86.90

86.80±0.04

SOP 95.98 96.00
95.95±0.02 94.23 94.28

94.20±0.03 89.85 89.92
89.81±0.04 86.98 87.06

86.93±0.06

CSOP 95.99 96.01
95.97±0.01 94.25 94.28

94.22±0.02 89.89 89.95
89.82±0.04 87.03 87.12

86.95±0.06

BFOP 96.43 96.46
96.42±0.02 94.79 94.82

94.76±0.02 - -

CBFOP 96.42 96.46
96.39±0.03 94.78 94.81

94.72±0.03 - -

BSOP 96.41 96.46
96.37±0.04 94.75 94.82

94.67±0.05 - -

CBSOP 96.42 96.46
96.38±0.04 94.76 94.82

94.70±0.05 - -

Table 4: Clustering Effect with K = 6 on dev, where CFOP, CSOP, CBSOP represent models after training

We remark that on PTB similar performance on
dev was achieved by FOP and SOP, with a slightly
better UAS for SOP, which is expected by the ca-
pacity of the model to better represent structures.
This corroborates findings of (Falenska and Kuhn,
2019). But this contradicts results for CoNLL09
where SOP always gives best results, in line with
observations of Fonseca and Martins (2020). For

BERT experiments on PTB, BSOP achieves better
performance than BFOP with one or two experts.
However, when the number of experts increases,
BFOP outperforms BSOP.

We complement our discussion with Figure 17

which depicts variance reduction by the number of
7For CoNLL09, we found similar results. The figure is not

shown for space limitation.
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experts in log-scale: almost linear of for all models,
as predicted by our independence assumption.

We note that UAS and LAS improves little or not
at all from K = 5 to K = 6. This is in accordance
with the variance analysis for that the decrease
of variance will become smaller when number of
experts becomes higher. Indeed, applying Eq. ( 4),
the decrease of variance from K = 1 to K = 2 is
1
2σ

2
(h,d),x, while from K = 5 to K = 6 it is only

1
30σ

2
(h,d),x, 15 times lower. This correponds to the

observation the improvements of UAS and LAS
tend to decrease with the number of experts until it
reaches a plateau.
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Figure 1: Variance by experts on PTB Dev Data.

Clustering We found that a modest improve-
ment on UAS and LAS (0.01%-0.06% absolute)
can be achieved by clustering (except for FOP on
CoNLL09 Chinese). The average performance ben-
efits generally from clustering while a tiny decrease
(0.01%) is observed for BFOP on PTB.

Since FOP, SOP, BFOP and BSOP are all strong
learners for PTB and CoNLL09 Chinese, i.e. UAS
and LAS approaches 99% for both PTB and
CoNLL09 on training data for all models, we can
assume that an expert belonging to one of these
models can learn efficiently most of the training
data, as opposed to just a portion of it. Thus, only a
a few of training instances can significantly be bet-
ter covered by clustering. Moreover, as averaging
has already achieved a considerable improvement
(around 0.2%-0.6% absolute), a biased ωk obtained
from clustering may harm the gain from averaging.

6.4 Results on Test

Tables 5 and 6 show test results on PTB and
CoNLL09, comparisons with recent models. We
show test results of SOP and CSOP with 6 experts
for PTB and CoNLL09. Additionally for PTB, we
show BFOP, CBFOP, BSOP and CBSOP with 6

experts to make comparison with recent parsers,
often more sophisticated than our approach, with
BERT. We give the results with the same typograph-
ical system as Zhang et al. (2020a) Please note that,
while average results keep the same semantics, max
and min give test results of the LAS highest- and
lowest- (resp.) scoring systems on the development
set. We note that results of Zhang et al. (2020a)
would correspond our model with K = 1.

For averaging models, we apply significance t-
tests (Dror et al., 2018) with level α = 0.05 to FOP,
BFOP, SOP, BSOP with K = 6 against K = 1.
For PTB and CoNLL09, p-value is always smaller
than 0.005. We note that for parsers without BERT,
averaging can achieve a considerable improvement
with SOP and gives new SOTA. We also point out
that, if FOP and SOP could find equivalently good
models on dev, SOP models seem to better general-
ize. For parsers with BERT, with a simple averag-
ing of BSOP, we achieve comparable performances
(or even better in case of LAS) when comparing to
more involved methods such as (Li et al., 2020; Mo-
hammadshahi and Henderson, 2021). It remains to
be seen whether they can also benefit from MoEs.

Regarding clustering, even if we obtained an av-
erage improvement on dev, test data hardly benefits
from it. Still, we note a small improvement of UAS
on SOP CoNLL09. Finally we stress that best per-
forming settings on PTB test, namely BSOP and
CBSOP, were not better performing than BFOP and
CBFOP on development data on average (although
max systems were similar): second-order models
seem to slightly better handle unseen data.

6.5 Parallel Training and Decoding

Training averaging ensembles can be paralleled
with sufficient GPUs, since each expert is trained in-
dependently. For fine tuning with clustering, most
of the training could in principle be paralleled as
well, although for the sake of simplicity we didn’t
implement such a training procedure: the training
time of clustering model increases linearly with
number of experts. As we only need a few epochs
for fine tuning, the overall training time is compa-
rable to training a single expert.

For decoding, calculations are performed in par-
allel as well. First marginal probabilities for arcs
and labels are computed for every expert in parallel.
Then they are combined either as a simple average
or as a weighted sum. Finally, we apply the de-
coding algorithm (LMBR) once over the combined
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Method PTB CoNLL09 Chinese
UAS LAS UAS LAS

(Dozat and Manning, 2017) 95.74 94.08 88.90 85.38

(Li et al., 2019) 95.93 94.19 88.77 85.58

(Ji et al., 2019) 95.97 94.31 - -
(Zhang et al., 2020a) 96.14 94.49 89.63 86.52

FOP,K = 6 96.20 96.19
96.20±0.02 94.64 94.63

94.64±0.02 89.91 89.84
89.99±0.06 87.00 86.94

87.09±0.07

CFOP,K = 6 96.20 96.18
96.18±0.02 94.65 94.62

94.63±0.02 89.94 89.92
89.93±0.04 87.03 87.02

87.00±0.04

SOP,K = 6 96.29 96.30
96.29±0.02 94.71 94.72

94.73±0.02 90.06 90.14
89.97±0.07 87.12 87.19

87.00±0.07

CSOP,K = 6 96.27 96.27
96.32±0.03 94.69 94.70

94.72±0.03 90.07 90.00
89.99±0.08 87.12 87.24

87.02±0.09

Table 5: Comparison on test sets without BERT.

Method PTB
UAS LAS

(Li et al., 2020) 96.44 94.63

(Mohammadshahi and Henderson, 2021) 96.66 95.01

BFOP,K = 6 96.58 96.60
96.57±0.02 95.06 95.07

95.02±0.02

CBFOP,K = 6 96.58 96.59
96.54±0.02 95.06 95.07

95.02±0.02

BSOP,K = 6 96.64 96.66
96.58 ±0.02 95.09 95.11

95.12±0.03

CBSOP,K = 6 96.62 96.66
96.64 ±0.03 95.07 95.12

95.07 ±0.03

Table 6: Comparison of BERT models on PTB test set.

probability. The overhead is thus quite limited, for
instance with K = 6 the overall decoding time is
only around 10% higher than with a single expert.

7 Related Work

Ensembling parsers showed good results in shared
tasks (Che et al., 2018)8 and were framed as a
combination of experts in (Petrov, 2010). In this
work we show how this is related to mixtures and
distinguish averaging and clustering effects.

The use of mixture model for syntactic parsing
was introduced in (Petrov et al., 2006) for PCFG
models, where it provided an access to non-local
features unreachable to mere PCFGs. However,
now that powerful non-Markovian feature extrac-
tors (i.e. BiLSTMs or Transformers) are widely
used, the expected gain is more difficult to charac-
terize, but we hypothesize that it is related to the
softmax bottleneck (Yang et al., 2018) implied by
using different exponential models in all predic-
tions, even when richly parameterized.

We modelled parser combinations with finite
mixture models, but more sophisticated parsing
models (Kim et al., 2019) use infinite mixture mod-
els. In this case it might be more difficult to dis-
criminate between averaging and clustering. Our
mixture is essentially a latent variable model where

8Ensembling is widely used in Machine Translation shared
tasks, such as WMT.

the latent variables range over experts. Although
inspired from EM with neural networks, similarly
to (Nishida and Nakayama, 2020), other methods
based on ELBo and sampling could also be uti-
lized (Corro and Titov, 2019; Zhu et al., 2020).

8 Conclusion

We framed dependency parser combination as
a finite mixture model, showed that this model
presents two distinct properties –an averaging ef-
fect and a clustering effect– and devised an effi-
cient decoding method. Moreover, we studied the
impact of the averaging effect, namely variance
reduction during training, and consequently better
accuracy. We investigated the reasons of instability
when learning mixture models, and proposed an
EM-inspired method to avoid over-specialization.
When used as fine-tuning, this method may im-
prove accuracy over averaging. As a by-product,
this method gives state-of-the-art results when com-
bined with first-order and second-order projective
parsers on two standard datasets.

This work can be further expanded in future re-
search: the increase of parameters can be seen as
overparameterization, and many parameters must
be redundant. A potentially fruitful avenue of re-
search could be the investigation of the subnetwork
hypothesis, i.e. whether distillation could give a
smaller network with similar performance.
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A Marginal Probability of Arc for
Mixture Model

With Eq. (3). The marginal probability of mixture
model can be written as:

p((h, d)|x) =
∑

y∈Y(x)
(h,d)∈y

K∑

k=1

ωkpk(y|x)

By changing the order of sum, we can have:

p((h, d)|x) =

K∑

k=1

ωk
∑

y∈Y(x)
(h,d)∈y

pk(y|x)

The inner part is exactly pk((h, d)|x). Thus, we
have:

p((h, d)|x) =
K∑

k=1

ωkpk((h, d)|x)

B Quick Gradient Analysis of Gating
Network

We start from Eq. (6).
For mixture model with well trained experts,

most of the data are equivalent for all experts,
which means pk(y|x) have similar value for all
experts. To see quickly why gradient approaches
0 in this case, we assume further that pk(y|x) has
the same value for equivalent data. Thus, Eq. (6)
becomes:

∂L(φ, θ)

∂φ
=

K∑

k=1

ωk(φ)
∂ logωk(φ)

∂φ

With a little more deduction, we have:

∂L(φ, θ)

∂φ
=

K∑

k=1

ωk(φ)
1

ωk(φ)

∂ωk(φ)

∂φ

=

K∑

k=1

∂ωk(φ)

∂φ

=
∂
∑K

k=1 ωk(φ)

∂φ

=
∂1

∂φ

= 0

As the function is continuous w.r.t. pk, for data
which provides similar value of probability on all
experts, the gradient will approaches zero. Thus,
for training with Eq. (6), only a small part of data,
which shows strong preference of particular ex-
perts, is used to train the gating network.

For training with Eq. (8), all the data is useful
for training the gating network. In fact, the gradient
of Eq. (8) becomes zero when:

ωk(φ) =
pk(θk)∑K

k′=1
pk′ (θk′ )

Thus for data which are equivalent for all experts,
a uniform weight will be learnt while for data with
strong preference of particular experts, a biased
weight proportional to the probability correctness
on each expert can also be learnt.

C Gating Network Structure,
hyper-parameters of training

The gating network structure is similar to the struc-
ture of parse model.

Embedding Word embedding for word xi is an
concatenation of two parts: normal word embed-
ding and CharLSTM embedding:

ei = emb(xi)
⊕

CharLSTM(xi)

when there is pre-trained embedding, the first item
is the sum of word embedding calculated by neural
network, and the exterior pretrained embedding:

emb(xi) = WordEMB(xi) + PreEMB(xi)

We suppose that PreEMB has the same size as
WordEMB

BiLSTM The embedding vectors are then
passed to 3 layers of BiLSTM, with the output
at position i is noted as hi.

Coefficient Extractor The coefficient extractor
part is constructed of one layer of LSTM (Hochre-
iter and Schmidhuber, 1997) and one layer of MLP.
The last hidden state of LSTM is passed to MLP,
which compress the vector size to the number of
experts in the mixture model. Two groups of coef-
ficient extractor are used to calculate separately the
weight of combination for arc and label. We note
the output of MLP as C ∈ RK , with:

Carc = MLParc(LSTMarc(h0, ..., hn))

Clabel = MLPlabel(LSTMlabel(h0, ..., hn))
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The output of MLP is passed to Softmax to cal-
culate the weight for each expert:

[ω1, ..., ωK ] = Softmax(Carc)

[ωl1, ..., ω
l
K ] = Softmax(Clabel)

Model hyper-parameters of fine tuning is shown
in Table 7. We use also Adam (Reddi et al., 2018)
for training, with learning rate set to 2e−4 (10 times
smaller than learning rate used for training experts).
The patience is set to 20 instead of the original
value 100. For fine tuning, we found that best score
is usually achieved in less than 20 epochs and does
not increase later.

Param Value Param Value
WordEMB size 100 Embedding dropout 0.33

CharLSTM size 50 CharLSTM dropout 0.00

BiLSTM size 400 BiLSTM dropout 0.33

LSTMarc size 400 LSTMarc dropout 0.00

LSTMlabel size 400 LSTMlabel dropout 0.00

MLParc size K MLParc dropout 0.00

MLPlabel size K MLPlabel dropout 0.00

Learning Rate 2e−4 β1, β2 0.90

Annealing 0.75
t

5000 Patience 20

Table 7: Hyper-parameters of Fine Tuning

D Implementation Differences

We implement Zhang et al. (2020a) CRF model and
CRF2o model with two tiny technical differences.

The first one is that the CharLSTM (Lample
et al., 2016) part in Zhang et al. (2020a) treats
the beginning of the sentence <bos> (the special
token to represent the beginning of the sentence)
as five separate characters: <,b,o,s,>.

Our implementation treats the beginning of sen-
tence as one special character for CharLSTM.

Another difference is that Zhang et al. (2020a)
treats the lengths of every sentence as n + 2 by
considering two special tokens <bos> and <eos>
(although in practice, only <bos> was added to
every sentence). In our implementation, we keep
the length of sentence as the number of words n.
This is because the log probability of arc and label
only considers the words in the sentence without
special tokens. Thus our batch size should be a
little bit higher than Zhang et al. (2020a).

One final difference is that for MBR decod-
ing, (Zhang et al., 2020a) maximizes the sum of
marginal arc probability. While in our implementa-
tion of MBR, we maximize the product of marginal
arc probability.

E Variance Reduction on CoNLL09

We note that the label variance for FOP and SOP
are quite similar that they overlap together for
CoNLL09 Chinese.
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Figure 2: Variance of System to CoNLL09 Chinese
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Abstract
We evaluate three leading dependency parser
systems from different paradigms on a small
yet diverse subset of languages in terms of
their accuracy-efficiency Pareto front. As
we are interested in efficiency, we evaluate
core parsers without pretrained language mod-
els (as these are typically huge networks and
would constitute most of the compute time)
or other augmentations that can be transver-
sally applied to any of them. Biaffine pars-
ing emerges as a well-balanced default choice,
with sequence-labelling parsing being prefer-
able if inference speed (but not training energy
cost) is the priority.

1 Introduction
The inefficiency of modern NLP systems has re-
cently come under scrutiny, especially regarding
their large energy consumption (Strubell et al.,
2019). This hasn’t started a revolution, but there
is some NLP work where efficiency is considered.
Zhang and Duh (2020) studied different settings for
neural machine translation systems, evaluating not
only accuracy but also certain costs such as infer-
ence time, training time, and model size. Zhou et al.
(2021) analysed the fine-tuning and inference time
for pretrained LMs, and estimated the cost of pre-
training. Jacobsen et al. (2021) presented a Pareto
optimisation analysis for POS taggers, considering
accuracy and model size.

In parsing in particular, Strzyz et al. (2019) eval-
uated dependency parsing as sequence labelling
specifically to increase inference efficiency and
also undertook a Pareto optimisation analysis. Oth-
ers used model compression via distillation to in-
crease inference speed of neural parsers with a
mixed bag of results (Dehouck et al., 2020; Ander-
son and Gómez-Rodrı́guez, 2020a). Dehouck et al.
(2020) also took into consideration the training en-
ergy costs of distilling models, which highlighted
the high energy cost of this technique.

We present a Pareto optimisation analysis on
modern dependency parsing systems. We cover
three systems which are broadly representative of
current approaches. We analyse their efficiency
with respect to inference speed and also their train-
ing cost, measured in energy consumption.

Contribution: A simple, modest analysis on the
merits of different parser systems that cover three
current paradigms. Our goal is not to provide sur-
prising results, but a realistic snapshot of the cur-
rent state of affairs of a representative sample of
modern parsing systems on linguistically diverse
data. This analysis runs the systems in a consis-
tent way with respect to software, hardware, and
network settings. We also offer a brief overview
of self-reported performance on PTB for systems
that have a published speed. We add to this mea-
surements for a subset of these systems which we
ran locally for a more consistent comparison, i.e.
something of a reproducibility effort.

Disclaimer We make a practical comparison for
practitioners, so we focus on publicly available
systems on typical hardware that doesn’t require a
huge budget. We are not making general claims that
technique X is always more efficient than technique
Y in the abstract or that this will hold in any hard-
ware. Also, the extent to which an implementation
has been engineered will impact performance, so
we have referenced the original repositories used.1

2 PTB performance

For historical reasons, it is common practice for
parsers to report performance results on the English
Penn Treebank (PTB) (Marcus and Marcinkiewicz,
1993). While such results at best provide a partial
picture on a single language, they are by far the

1The moderately edited code is available at
http://www.grupolys.org/software/
iwpt2021/parsers-code.zip.
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speed (sent/s)
GPU CPU UAS LAS

HPSG (Zhou and Zhao, 2019) 159∗ - 96.09∗ 94.68∗

Biaffine w CRF (Zhang et al., 2020a) 400∗ 96.14∗ 94.49∗

Pointer-LR (Fernández-González and Gómez-Rodrı́guez, 2019) 23∗ - 96.04∗ 94.43∗

GNN (Ji et al., 2019) 416∗ - 95.97∗ 94.31∗

Pointer-TD (Ma et al., 2018) 10.2† - 95.87∗ 94.19∗

Biaffine (Dozat and Manning, 2017) 411∗ - 95.74∗ 94.08∗

Distilled-Ensemble (Kuncoro et al., 2016) - 20∗ 94.26∗ 92.06∗

BIST - Transition (Kiperwasser and Goldberg, 2016) - 76±1‡ 93.9∗ 91.9∗

SeqLab (Strzyz et al., 2019) 648±20∗ 101±2∗ 93.67∗ 91.72∗

BIST - Graph (Kiperwasser and Goldberg, 2016) - 80±0‡ 93.1∗ 91.0∗

CM (Chen and Manning, 2014) - 654∗ 91.80∗ 89.60∗

Pointer-LR 95±1 8±0 96.02 94.47
Biaffine (PyTorch) 1003±3 53±0 95.74 94.07
UUParser (Smith et al., 2018) - 42±1 94.63 92.77
Distilled-Biaffine (Anderson and Gómez-Rodrı́guez, 2020a) 1153±3 96±0 94.59 92.64
SeqLab 1064±13 99±1 93.46 91.49
MaltParser 1.9.2 w/ Stack lazy (Nivre et al., 2007) - 473±11 89.29 86.95

Table 1: Performance for current leading parsers for the English PTB with POS tags predicted from the Stanford
POS tagger. ∗ denotes values taken from the original paper, † from Fernández-González and Gómez-Rodrı́guez
(2019), and ‡ from Strzyz et al. (2019). Values with no superscript are from running the models on our system
locally (speeds averaged over 5 runs) and with a batch size of 256 (excluding UUParser which doesn’t support
batching) with GloVe 100 dimension embeddings. Table is extended from one in Anderson and Gómez-Rodrı́guez
(2020a).

most comprehensive source of results provided in
the literature under a consistent context (at least in
terms of data and splits, although not hardware),
so they are useful to see high-level trends and as a
starting point to choose parsers for our experiment.

In Table 1 we report performance of modern
parsing systems for which speeds have been re-
ported. We couldn’t find a reported speed of Clark
et al. (2018) which currently has the highest re-
ported performance on PTB (UAS 96.61 and LAS
95.02) when not using BERT. However, its main
contribution is semi-supervised augmentations that
could be utilised by any parsing system, with their
core parser being the Biaffine parser. Zhou and
Zhao (2019)’s system leverages constituency and
dependency parsing and when not using training
data with both constituency and dependency anno-
tations (often not available) the system achieves
UAS 95.82 LAS 94.43 (i.e. very similar in LAS
to the other top-performing sytems). Zhang et al.
(2020a) use a Biaffine parser but with a moderate
beam search, which is obviously less efficient than
the original. It results in a small increase in perfor-
mance. Ji et al. (2019) use graph neural networks
to learn enriched high-order information from par-
tial parses. It again only gains small increases over
Biaffine, but is more computationally complex and
code is not available.

We report results for UUParser of Smith et al.

(2018) that we ran locally (refreshingly the original
paper didn’t use PTB). While the results show a
reasonable speed-accuracy trade-off, we opted not
to use this for the current analysis as the original
code is implemented in DyNet which doesn’t prop-
erly support CUDA, and is a different framework
from that of the other parsers we opted to choose.

Based on this, we opted to use the basic Bi-
affine parser to represent graph-based parsers,
the Pointer-LR network as the representative of
transition-based algorithms,2 and the sequence-
labelling parser to represent SL systems. They all
have the added benefit of working under the same
software and having code available.

Note that, as we make emphasis on efficiency,
we focus on reasonably bare-bones versions of the
parsers. The impact of pretrained language models,
or other augmentations that are transversal to the
parsing system, is outside the scope of this paper.

3 Pareto optimisation analysis
Here we detail the parsing systems, the data we
used, and how model structures were altered.

3.1 Parsers
All the parsers use BiLSTMs, but have additional
structures which set them apart from one another

2Some might argue that it isn’t a clear cut case of a
transition-based parser, but it transitions from state to state
like more traditonal algorithms.
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and use one of three paradigms broadly speaking:
one is a transition-based parser, one is a sequence-
labelling parser, and the last is a graph-based parser.
For space reasons, we only very briefly outline
them here, but give more details in Appendix A.

Left-to-right pointer network (L2R). One of
the current top-performing parsers on PTB, it uses a
left-to-right transition-based algorithm that builds a
number of attachments equal to sentence length us-
ing a pointer network (Ma et al., 2018; Fernández-
González and Gómez-Rodrı́guez, 2019).3

Deep biaffine (BIAFFINE) (Dozat and Manning,
2017) is an edge-factored graph-based parser that
produces a matrix of scores giving a probability
distribution on arcs, where the Chu-Liu-Edmonds
algorithm (Chu and Liu, 1965; Edmonds, 1967) is
then applied to obtain a tree.

Sequence labelling parser (SEQLAB) encodes
trees as a sequence of labels, so that a direct one-
to-one prediction can be made for each token in a
sentence (Spoustová and Spousta, 2010; Li et al.,
2018b; Strzyz et al., 2019).4 We implement it us-
ing the Biaffine system described above (for unifor-
mity) editing it to be a sequence-labelling system.

3.2 Data

In our choice of treebanks, we balance three fac-
tors: the need to use a small number of treebanks
(as our detailed Pareto analysis implies training a
large number of models per treebank), linguistic
diversity and treebank quality. This leads us to
choose 4 high-quality (manually annotated or cor-
rected, and relatively large) treebanks covering 3
different language families and 4 subfamilies: UD-
Hindi-HDTB, UD-Polish-PDB, UD-Korean-Kaist
and the Chinese Penn Treebank. More details of
each treebank, justifying their diversity and ade-
quacy for the analysis are given in Appendix C.

3.3 Methodology

We vary the size of the BiLSTM component of
the networks by their number of layers and nodes.
Each parser has randomly-initialised character em-
beddings and pretrained word embeddings as only
inputs. We use pretrained FastText embeddings
(Grave et al., 2018). Except for Chinese, as the
FastText embeddings are in the traditional script,

3https://github.com/danifg/SyntacticPointer.
4We use refactored encoding/decoding functions from

https://github.com/mstrise/dep2label.

so we use the embeddings from Li et al. (2018a).5

The embeddings are reduced to 100 dimensions
using PCA. The structure of the networks are very
similar. The L2R system uses a biaffine transforma-
tion to score the transitions at each step similar to
the BIAFFINE parser, and we use the same sizes for
the layers. The SEQLAB system is altered from the
BIAFFINE implementation and is exactly the same
except the layers needed for the biaffine transfor-
mation are replaced by two MLPs which predict
the labels for each token. The only major differ-
ence in the networks is that L2R uses a CNN to
create the character embeddings and the other two
use BiLSTMs. We didn’t change this in order to
avoid modifications to the systems. The network
hyperparameters are shown in Table 2 in Appendix
B. Models were trained on GPU, but we report the
energy used by both the GPU and CPU.

We could have altered other aspects of the net-
work, but the main computational cost comes from
the BiLSTM layer. The other main contender to
alter would be the embedding layers. For exam-
ple, we could have altered the size of the character
BiLSTM/CNN, but certain experiments show that
it has a limited impact on accuracy (Smith et al.,
2018; Anderson and Gómez-Rodrı́guez, 2020b).

We measured the speed of each system on each
treebank by running them 5 times using a single
CPU core, both for speeds measured running on
GPU and CPU, so that we get a reasonably accurate
measure of the speed for each treebank. We then
report macro averaged speeds across treebanks.

We use the energyusage package for measur-
ing training energy.6 It measures the power usage
of the GPU and CPU while a process is running
(having taken a measure of the background usage).
We minimised the use of the system when train-
ing these models to obtain accurate measurements,
but they aren’t overly precise. This isn’t a major
issue as the measurements are over long periods of
time and so unless there were massive fluctuations
when training a given model, comparison is fine.
We use joules (or kJ and MJ) as they are the SI
units for energy (BIPM, 2019) and, unlike carbon
emissions, they are independent of external factors
like regional electricity generation grids.
Hardware: Intel Core i7-7700 and Nvidia
GeForce GTX 1080.
Software: Python 3.7.0, PyTorch 1.0.0, and CUDA
8.0.

5https://jima.me/open/cwv/
6https://pypi.org/project/energyusage
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Figure 1: Pareto fronts for L2R, BIAFFINE, and SEQLAB for the development data.

3.4 Pareto fronts: inference speed
Figure 1 shows LAS versus parsing speed for the
development data (we also present the same for the
test data in Figure 7 in the Appendix that echoes
the visualisation seen here). The individual Pareto
front for each parser is shown (light grey, dashed)
As expected, models with larger networks are more
accurate but slower. More interestingly, the overall
Pareto front is exclusively constructed of BIAFFINE

and SEQLAB systems. While L2R does achieve
similar accuracy scores as BIAFFINE, it is consid-
erably slower. SEQLAB is the fastest option by a
clear margin (especially smaller networks on CPU).
So the practical advice to draw from this aspect or
the Pareto optimisation would be to use BIAFFINE

if accuracy is the main concern, or SEQLAB if in-
ference time is important.

3.5 Pareto fronts: training energy
Figure 2 shows LAS against the average energy
(across treebanks) consumed during training (in
training, we always use the GPU). There is no clear
link between the energy consumed and the accuracy
of a system. However, this visualisation highlights
that SEQLAB is nowhere near optimal with respect
to training efficiency.

The amount of energy consumed during training
is basically dependent on the time it takes each
system to converge as can be seen in Figure 3. In
this figure, we show individual models (i.e. not av-
eraged over treebanks). The relation for BIAFFINE

and SEQLAB is very clearly linear between energy
and training time, suggesting that there is nothing
intrinsically more energy consuming between these
systems beyond convergence time. For L2R, this

relation seems to hold broadly, but is less clear. It
appears that L2R is more sensitive to the nature of

Figure 2: Pareto fronts for L2R, BIAFFINE, and SE-
QLAB for training energy.

Figure 3: Training energy consumption with respect to
training time.
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the data, which we expand on in Appendix F.

4 Limitations of analysis

While our analysis is not ground-breaking or partic-
ularly expansive in nature, we do think it is useful
in practice and acts as mini-review of the current
state of affairs in dependency parsing. However,
there are a number of limitations in this study. First,
we only look at the parameters associated with the
BiLSTMs. We feel this is fairly justified, but it is
obviously feasible that varying these parameters
and not the others could have different effects for
each parsing system even if that is fairly unlikely.
While we do look at a very diverse set of languages
with diverse linguistic features, it is still a fairly
small sample. We were somewhat limited by hav-
ing to train many models and felt it would be better
to focus on a sample of diverse languages with
quality data than many languages and less model
settings. Of course, this analysis could be extended
to use more languages, but we expect this would
further corroborate the results presented here. Also
by using a small set of treebanks, we don’t cover
a wide array of domains (the data is mainly fiction
and news).

Another potential limitation is only using one
dependency annotation scheme (the scheme used
for CTB was a precursor to UD), but in lieu of a
theoretical reason that the parsers would behave
differently using a different scheme (e.g. surface
syntactic UD (SUD) treebanks containing much
more non-projectivity (Gerdes et al., 2018)) this
feels like a light limitation.

A slightly more pressing limitation is the ab-
sence of a feature analysis because certain systems
could potentially benefit from different features.
Work has been presented in this direction and has
shown that predicted POS tags aren’t wonderfully
useful (Smith et al., 2018; Anderson and Gómez-
Rodrı́guez, 2020b; Zhang et al., 2020b). However,
these analyses didn’t include SEQLAB parsers at all
and the transition-based system used was a lower-
performing system, UUParser. So it is feasible that
L2R and SEQLAB would benefit from predicted
POS tags. That can be left open for the future.

Another limitation is that we only trained one
model for each BiLSTM setting. While training a
model for each treebank somewhat offset this, it is
still possible that with different initialisation, these
parsers would behave slightly differently. How-
ever, it is unlikely to cause material differences in

the performance and as mentioned, this is quite
strongly offset by training on varying treebanks.

And finally, we focused on parsers trained on
fairly large amounts of annotated data. We leave
the analysis of different parsing systems in a low-
resource setting for others, but we point out that
when training on very little data, training costs
aren’t much of a concern and on truly low-resource
languages, data parsed at production is also go-
ing to be scarce so inference speed won’t be the
bottleneck.

5 Conclusion

We have presented a simple Pareto optimisation
analysis for a representative sample of modern de-
pendency parsers. We evaluated efficiency in two
ways. We evaluated the trade-off between accu-
racy and parsing speed and the trade-off between
accuracy and training energy consumption. The
BIAFFINE and SEQLAB occupied the speed Pareto
front with the former being slower and more ac-
curate and the latter being faster and less accurate.
We didn’t observe any real trade-off with regards to
training energy and performance, but it was clear
that SEQLAB is not particularly efficient in this
regard. Typically training energy varied based on
how long a model took to converge, with L2R be-
ing somewhat sensitive to the different treebanks.
Overall, for most scenarios, BIAFFINE emerged as
a well-balanced practical solution. For the sake of
candour, we offer a brief discussion of the limita-
tions of this analysis in Appendix 4.
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Appendix A Parsers

Left-to-right pointer network (L2R) is a parser
which uses a left to right transition-based algo-
rithm that builds a number of attachments equal
to the length of a given sentence together with a

The place had an unco’ souch aboot it
<\ <\ / < <\\> / < \>

DET NSUBJ

DET
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OBJ
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CASE

ROOT

Figure 4: The bracketing encoding from Strzyz et al.
(2019). Text is an extract from Robertson (2006).

pointer network which can point to a given po-
sition in the sentence for each token (Ma et al.,
2018; Fernández-González and Gómez-Rodrı́guez,
2019).7 It is one of the current top performing
parsers. We use the implementation as is, except
we make moderate alterations to overcome hard-
coded filepaths and the like. Otherwise, the only hy-
perparameter we change is the number of encoder
layers and the number of nodes in the encoder and
decoder layers.

Sequence labelling parser (SEQLAB) is a pars-
ing system that first encodes trees as a set of la-
bels, so that a direct one-to-one prediction can
be made for each token in a sentence (Spoustová
and Spousta, 2010; Li et al., 2018b; Strzyz et al.,
2019).8 We use the original bracketing encoding
from Strzyz et al. (2019) as it doesn’t require UPOS
tags to decode (as the other leading encoding does),
it performs closely to a more recent bracketing en-
coding that covers more non-projectivity (Strzyz
et al., 2020), and the latter encoding wasn’t publicly
available when this work commenced. It casts a
tree as series of tags which are made up of left and
right brackets and forward and backwards slashes
which encode the incoming and outgoing arcs for
each respective node. The encoding for each token
is based on edges associated with the preceding to-
kens and the direction of the edges. More formally,
the encoding for wi is given by:

< — if εj(i−1) ∈ E ∧ j > i− 1

\— ×k | k =
∑

wj∈S

{
1 if j < i ∧ εij ∈ E
0 otherwise

/ — ×k | k =
∑

wj∈S

{
1 if i−1 < j ∧ ε(i−1)j ∈ E
0 otherwise

> — if εji ∧ j < i

7https://github.com/danifg/
SyntacticPointer

8We use refactored encoding/decoding functions from
https://github.com/mstrise/dep2label.
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We use the biaffine implementation described
below and edit it to be a simple sequence-labelling
system, i.e. an embedding layer, followed by a
number of BiLSTM layers, and MLPs one for pre-
dicting the bracket tags and one for predicting the
edge labels. We use the same hyperparameters as
used for the biaffine parser.

Deep biaffine (BIAFFINE) is a graph-based
parser that creates two representations of each to-
ken from the hidden representations from BiL-
STMs, hypothesised to be a representation of each
token as dependents and as heads (Dozat and Man-
ning, 2017).9 An affine transformation is applied
to the head representation and then this and the de-
pendent one are then combined via a second affine
transformation (hence biaffine) to give a matrix of
scores, which gives a probability distribution for
each node representing the probability any other
node is that node’s head. A well-formed tree is then
enforced using the Chu–Liu/Edmonds’ algorithm
(Chu and Liu, 1965; Edmonds, 1967). The edge
labels are then predicted based on the predicted
edges. We use the standard hyperparameters for
this system except where we match them to better
correspond to the L2R parser and then only alter
the hyperparameters associated with the BiLSTMs.

Appendix B Network hyperparameters

Hyperparameter Value

Word embedding dimensions 100
Character embedding in (¬ L2R) 32
Character embedding out (¬ L2R) 100
Character dimension (if L2R) 100
Embedding dropout 0.33
Arc MLP dimensions (¬ SEQLAB) 512
Label MLP dimensions (¬ SEQLAB) 128
MLP layers 1
Epochs 200
Patience 10
Training batch size 32

Table 2: Hyperparameters for all models. L2R uses a
CNN char. embedding layer and SEQLAB doesn’t have
a biaffine layer. Other parameters are as in the original
(except SEQLAB which uses those of BIAFFINE).

Appendix C Data

We use a small sample of treebanks covering lan-
guages from 3 different language families and 4

9The original repository (https://github.com/
zysite/biaffine-parser) redirects to a larger set of
biaffine based parsers, but is largerly the same.

sub-families and which represent different syntac-
tic systems covering analytic, fusional, and agglu-
tinative languages and all are written in different
scripts. We offer a brief description of the tree-
banks used and some of the salient features of their
respective languages. The treebanks were chosen
to represent varying syntactic features, but also be-
cause of their high quality from being either man-
ually annotated or manually corrected. We also
chose relatively large treebanks. The statistics for
each treebank are shown in Table 3.

UD Hindi-HDTB (Hindi) is a UD treebank for
Hindi based on manually annotated news data
(Palmer et al., 2009; Bhat et al., 2017). Hindi is a
lightly fusional language with some degree of ver-
bal inflection and noun declension but also makes
extensive use of postpositions (McGregor, 1977).
It is a split-ergative language meaning in certain
cases it uses a nominative-accusative structure but
in others it uses an ablative-ergative syntax where
the subject of an intransitive verb behaves like the
object of a transitive one (Comrie, 1978). It also ex-
hibits tripartite behaviour in certain clauses, where
the subject of intransitive verbs, the object of tran-
sitive verbs, and the subject of transitive verbs all
have different case markings (Comrie, 1978). It is
a SOV language, but it has a fairly free word order
(Snell and Weightman, 1989). It is Indo-Iranian
and is written in the Devanagari script.

UD Polish-PDB (Polish) is a UD treebank man-
ually annotated on fiction, non-fiction, and news
data (Wróblewska, 2018). Polish is a highly fu-
sional language with a high degree of verbal inflec-
tion (Feldstein, 2001) and 7 case-markings (Wiese,
2011). It is a null-subject language (Cognola and
Casalicchio, 2018) with a nominal SVO order but
has relatively free word order (Siewierska, 1993).
Like most Slavic languages it doesn’t make use of
articles (Bielec, 1998) but it does have a complex
system of numeral and quantifiers that result in
agreement mistmatches (Klockmann, 2012). It is a
Balto-Slavic language written in the Latin script.

UD Korean Kaist (Korean) is a large treebank
generated from a constituency treebank which was
semi-automatically annotated with manual correc-
tions based on academic, fiction, and news data
(Choi et al., 1994; Chun et al., 2018). Korean is
a strongly suffixing agglutinative language (Ram-
stedt, 1968; Sohn, 1999). This results in a large
number of cases and a high degree of verbal inflec-
tion (Chang, 1996; Song, 1988; Lee and Ramsey,
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Training Development Test
Sents. Tokens Avg. Len. NP Chars. Sents. Tokens Avg. Len. NP Chars. Sents. Tokens Avg. Len. NP Chars.

Chinese 15K 408K 28.2 0.0 4.9 2K 51K 28.0 0.0 4.9 2K 49K 27.3 0.0 4.9
Hindi 13K 281K 22.1 2.6 11.4 2K 35K 22.2 2.4 11.5 2K 35K 22.2 2.4 11.3
Korean 23K 296K 13.9 4.5 8.2 2K 25K 13.2 4.7 8.6 2K 28K 13.4 4.0 8.3
Polish 18K 282K 16.9 1.4 5.4 2K 35K 16.7 1.5 5.4 2K 34K 16.2 1.4 5.4

Table 3: Treebank statistics: number of sentences (Sents.), number of tokens (Tokens), average sentence length
(Avg. Len.), percentage for non-projective arcs (NP), average word length (Chars.).

2000). It is technically a SOV ordered languae
but it has a highly flexible word order (Ramstedt,
1968; Sohn, 1999). Korean also uses honorifics
and speech levels, the former encoding the social
relationship between the speaker and the referents
in a discussion and the latter the speaker and the
person/people being spoken to (Brown, 2015). It is
a Koreanic language written in the Hangul script.

Chinese Penn Treebank (Chinese) is large man-
ually annotated treebank for Mandarin based on
news data (Xue et al., 2002, 2005). It is an analytic,
isolating language with a SVO dominant word or-
der and is a pro-drop language (Li and Thompson,
1981). Chinese has no grammatical tense markers
so relies on context or temporal expressions, but
aspect is expressed via the use of particles (Liu,
2015). Classifiers and measure words must be used
when a noun is preceded by a number, a demon-
strative pronoun, or certain quantifiers which are
particles that appear between these qualifiers and
their respective nouns (Her and Hsieh, 2010). Chi-
nese is said to be a verb stacking language, where
more than one verb or verb phrases are stacked
together in the same clause, but there is some dis-
agreement if the way verbs are combined actually
constitutes verb stacking (Li and Thompson, 1981;
Paul, 2008). It is a Sino-Tibetan language written
in simplified Hanzi. We re-split the data because
the standard split has tiny development and test
sets. The resulting sizes are shown Table 3.

Appendix D Training time

Figure 6 shows the average training time (across
treebanks) for each parser against the BiLSTM
structure. There is a clear linear relation as the
complexity of the BiLSTM increases. That is con-
sidering a BiLSTM with 2 layers and 1000 nodes
to be less complex than one with 3 layers and 400
nodes. We also show a similar plot in the Figure
5, but against the total number of parameters in the
network, which shows a similar but less clear trend.

Figure 5: Average training time against total network
parameters.

Figure 6: Average training time against BiLSTM struc-
ture.

Appendix E Full data

Table 4 shows the full LAS scores for each system
for each treebank with different BiLSTM configu-
rations on the development data. Similarly, Table 5
shows the results for the test data. Figure 7 shows
LAS against inference speed for the test data and
echoes what was observed for the development data
in Figure 1. Table 6 shows the total training energy
cost, total training time, and the parameters for
each parser and for each BiLSTM configuration.
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BiLSTM BIAFFINE SEQLAB L2R
Layers Nodes zh hi ko pl avg zh hi ko pl avg zh hi ko pl avg

2





400 80.59 89.83 85.35 86.22 85.50 71.35 85.18 80.47 79.88 79.22 79.68 89.99 83.81 85.32 84.70
600 81.33 90.48 85.43 86.88 86.03 72.76 86.11 81.05 81.55 80.37 80.62 90.31 84.11 86.54 85.40
800 81.81 90.61 86.02 87.38 86.45 74.27 86.48 81.63 82.60 81.24 81.59 90.03 83.97 86.77 85.59
1000 82.15 90.56 85.91 87.95 86.64 74.82 87.06 81.55 82.91 81.58 81.66 90.54 84.06 87.45 85.93

3





400 81.71 90.55 85.45 86.83 86.13 73.62 86.42 81.23 82.15 80.85 82.50 90.85 84.67 87.16 86.29
600 81.93 90.62 86.04 87.66 86.56 75.46 87.32 81.64 83.03 81.86 83.25 91.13 84.75 87.83 86.74
800 82.65 91.06 85.94 88.35 87.00 76.20 87.65 81.66 83.90 82.35 83.57 91.00 84.99 88.66 87.06
1000 82.98 91.16 86.03 88.64 87.20 76.74 87.50 81.61 84.21 82.51 83.41 91.20 85.28 88.84 87.18

Table 4: Full LAS results on the development data.

BiLSTM BIAFFINE SEQLAB L2R
Layers Nodes zh hi ko pl avg zh hi ko pl avg zh hi ko pl avg

2





400 81.03 89.74 84.58 86.76 85.53 72.92 86.66 80.11 82.68 80.59 79.95 90.27 83.13 85.39 84.69
600 81.82 90.39 84.89 87.38 86.12 74.43 87.59 80.84 83.84 81.68 80.74 90.43 83.77 86.68 85.41
800 82.27 90.60 85.10 88.20 86.55 75.27 87.74 80.93 84.43 82.09 81.73 90.27 83.57 86.76 85.58
1000 82.70 90.71 84.83 88.44 86.67 76.44 87.71 80.40 85.07 82.41 81.86 90.35 83.73 87.42 85.84

3





400 81.93 90.42 84.51 87.49 86.09 76.14 88.21 81.40 85.58 82.83 82.63 90.98 84.57 87.59 86.44
600 82.27 90.23 85.45 88.39 86.59 78.13 88.77 81.96 86.69 83.89 83.69 91.22 84.10 88.09 86.78
800 83.11 91.08 85.46 88.78 87.11 78.67 88.61 81.75 86.88 83.98 83.72 90.93 84.43 89.18 87.06
1000 83.47 90.94 85.56 88.86 87.21 78.91 89.26 81.68 87.20 84.26 83.65 91.18 84.47 89.34 87.16

Table 5: Full LAS results on the test data.

BiLSTM Total Energy (MJ) Total Time (hours) Avg. Parameters (×106)
Layers Nodes BIAFFINE SEQLAB L2R BIAFFINE SEQLAB L2R BIAFFINE SEQLAB L2R

2





400 0.54 0.59 0.69 6.1 7.0 8.3 167.3 165.4 166.3
600 0.58 0.63 0.75 6.6 7.8 9.1 169.3 167.2 167.5
800 0.53 0.68 0.65 6.0 7.9 7.8 172.0 169.6 169.0
1000 0.73 0.83 0.76 8.4 9.6 9.1 175.3 172.7 170.9

3





400 0.83 0.81 0.92 9.9 8.9 11.1 168.3 166.3 167.2
600 0.66 0.96 0.84 7.5 12.0 10.2 171.5 169.3 169.6
800 0.82 0.98 1.00 9.8 11.2 11.9 175.8 173.4 172.9
1000 1.01 1.07 0.92 11.2 11.9 11.1 181.3 178.7 176.9

Table 6: Total energy consumed during training, total training time, and average parameters for each parser system
for different BiLSTM configurations.

Figure 7: Pareto fronts for L2R, BIAFFINE, and SEQLAB on the test data.
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Appendix F L2R training efficiency

Figure 8 shows training energy against training
time for L2R for each treebank used. Clearly, the
points associated with each treebank cluster. It
is clear training the parser on the Korean data is
much more energy consuming compared to the
others (which form a linear dispersion). It isn’t
particularly clear why this would be the case based
on the statistics in Table 3, except that Korean has
the largest number of instances.

Figure 8: Energy against training time for L2R systems.
L2R is more impacted by different data.
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Abstract

The introduction of pre-trained transformer-
based contextualized word embeddings has
led to considerable improvements in the ac-
curacy of graph-based parsers for frameworks
such as Universal Dependencies (UD). How-
ever, previous works differ in various dimen-
sions, including their choice of pre-trained lan-
guage models and whether they use LSTM lay-
ers. With the aims of disentangling the ef-
fects of these choices and identifying a sim-
ple yet widely applicable architecture, we in-
troduce STEPS, a new modular graph-based
dependency parser. Using STEPS, we perform
a series of analyses on the UD corpora of a
diverse set of languages. We find that the
choice of pre-trained embeddings has by far
the greatest impact on parser performance and
identify XLM-R as a robust choice across the
languages in our study. Adding LSTM layers
provides no benefits when using transformer-
based embeddings. A multi-task training setup
outputting additional UD features may con-
tort results. Taking these insights together, we
propose a simple but widely applicable parser
architecture and configuration, achieving new
state-of-the-art results (in terms of LAS) for 10
out of 12 diverse languages.1

1 Introduction

Recent years have seen considerable improvements
in the performance of syntactic dependency parsers
for frameworks such as Universal Dependencies
(UD; de Marneffe et al., 2014). For graph-based
parsers, these improvements can in large part be at-
tributed to two developments: (1) the introduction
of deep biaffine classifiers (Dozat and Manning,
2017), which now constitute the de-facto standard
approach for graph-based dependency parsing, and

1We release our code and pre-trained models on
github.com/boschresearch/steps-parser.
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Figure 1: Modular architecture of the STEPS parser.
Dotted lines denote optional components.

(2) the rise of pre-trained distributed word repre-
sentations, particularly transformer-based contex-
tualized embeddings such as BERT (Devlin et al.,
2019) or RoBERTa (Liu et al., 2019). Both charac-
teristics are present in recent top-performing sys-
tems (Che et al., 2018; Straka et al., 2019; Kon-
dratyuk and Straka, 2019; Kanerva et al., 2018,
2020; Che et al., 2018).

However, there remain a considerable number of
implementation and configuration choices whose
impact on parser performance is less well un-
derstood. This is evidenced by the many differ-
ent model configurations (see Table 1) present in
parsers that have achieved top results in recent
shared tasks addressing UD parsing (Zeman et al.,
2017, 2018; Bouma et al., 2020). The choices in-
clude (a) the particular pre-trained word embed-
dings or language model to use, (b) whether to
utilize an LSTM in addition to (fine-tuned) contex-
tualized word embeddings; and (c) whether to use
a multi-task training setup simultaneously predict-
ing additional UD features (such as morphology or
parts of speech) during parsing.
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The aim of this paper is to disentangle the effects
of the above factors and determine their impact on
parser performance. We appeal to the concept of
Occam’s razor by ways of avoiding architectural el-
ements that do not bring about a testable advantage.
With this idea in mind, we introduce STEPS (the
Stuttgart Transformer-based Extensible Parsing
System), a modular graph-based dependency parser
which implements commonly used modules such
as biaffine scorers (Dozat et al., 2017; Kondratyuk
and Straka, 2019) or LSTM layers (Straka, 2018)
(see Figure 1). Using STEPS, we perform a series
of experiments on the UD treebanks of a diverse
set of languages. Our setup facilitates estimating
the impact of the various architectures and configu-
ration decisions in a comparable way.

Our most important insight is that a relatively
simple architecture using biaffine heads on top of
fine-tuned XLM-R (Conneau et al., 2020) leads
to the highest parsing accuracy for almost all lan-
guages in our study, outperforming prior systems
on most languages. Our analysis indicates that
LSTM layers do not lead to benefits. Simplify-
ing the architecture even further by using a single
scorer for edge and label prediction results in sim-
ilar performance but on average leads to longer
training times. Our contributions are as follows:

(1) We introduce STEPS, a new implementation
of a graph-based dependency parser designed
to be modular and easily extensible. STEPS
achieves new state-of-the-art UD parsing per-
formance (in terms of LAS) for 10 out of the
12 typologically diverse languages in our study.
We will make our code and pre-trained models
for 12 languages publicly available.

(2) We conduct a detailed experimental study, iden-
tifying components of parser architecture that
are really necessary to obtain a strongly per-
forming system that is applicable across a wide
range of languages. The final system uses
XLM-R, no LSTM layer, and a factorized edge
and label scoring architecture.

(3) We show that multi-task setups predicting ad-
ditional features as commonly employed in
UD parsing may confound results for parsing
for individual languages; we hence propose to
compare parsing accuracy in unified evaluation
settings in future work.

(4) We show that our parser can be easily adapted

Parser Pre-trained embed. LSTM MTL

StanfordNLP word2vec, fastText yes no
UDPipe 2.0 word2vec, fastText yes yes
HIT-SCIR fastText, ELMo yes no
UDify mBERT no yes
Trankit XLM-R no yes

Table 1: Settings for a number of previously state-
of-the-art graph-based dependency parsers. “LSTM”
states whether the parser makes use of an LSTM, and
“MTL” states whether the parser is also trained to si-
multaneously predict other UD properties such as POS
tags or morphological features.

to Enhanced UD parsing, also resulting in state-
of-the-art performance(in terms of ELAS) for
5 out of 7 evaluated languages.

This paper is structured as follows. Sec. 2 gives
the necessary background on relevant state-of-the-
art neural graph-based dependency parsers as well
as related work on analysing and comparing parsers.
Sec. 3 describes the architecture and configuration
options for our new STEPS parser, at the same
time introducing the various factors studied in our
experiments (Sec. 4). Sec. 5 presents the adaption
of our system to Enhanced UD. Finally, we discuss
implications for parser choice and future parser
design (Sec. 6).

2 Related Work

This section provides a brief outline of the use
of contextualized word embeddings in syntactic
parsers, recently developed graph-based depen-
dency parsers, and related work on dependency
parser analysis.

Contextualized Word Embeddings in Depen-
dency Parsing. Like in other sub-fields of nat-
ural language processing, using contextualized
word embeddings has become the de-facto standard
when building syntactic parsers. Dyer et al. (2015)
use LSTM-based contextual representations for the
stack and buffer in transition-based parsing, while
Kiperwasser and Goldberg (2016) use BiLSTM-
based feature representations for individual tokens
in both graph-based and transition-based parsing.
In both of these cases, the underlying LSTM is
trained simultaneously with the target task. In con-
trast, recently the predominant approach towards
contextualized word representations has been to
pre-train systems on large-scale language model-
ing objectives, then taking their representations as
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input for a target task, optionally while continu-
ing to fine-tune them. This approach was initially
proposed using an LSTM-based system (ELMo;
Peters et al., 2018) and has since been transferred
to transformers (e.g., BERT; Devlin et al., 2019).
Transformer-based pre-trained language models
have proven wildly successful and have become
a standard method for a wide range of NLP tasks,
including syntactic dependency parsing.

Recent Graph-based Parsers. Table 1 shows
the configurations of three parsers that were among
the best-performing systems in the CoNLL 2017
and CoNLL 2018 Shared Tasks on UD parsing, as
well as the more recent UDify and Trankit parsers.

StanfordNLP (Dozat et al., 2017) was one of
the first systems to apply the biaffine graph-based
parser architecture to Universal Dependency pars-
ing. Its token representations make use of pre-
trained word2vec (Mikolov et al., 2013) embed-
dings that are contextualized using a BiLSTM. UD-
Pipe 2.0 (Straka, 2018) uses a multi-task setup
in which POS and feature tagging, lemmatization,
and dependency parsing share layers. The system
was later extended (Straka et al., 2019, henceforth
UDPipe+) by incorporating multilingual BERT
(mBERT; Devlin et al., 2019) in its token repre-
sentations. HIT-SCIR (Che et al., 2018) was one
of the first UD parsers to make use of contextu-
alized pre-trained word embeddings (in the form
of ELMo; Peters et al., 2018). The model does
not make use of a multi-task training setup. UDify
(Kondratyuk and Straka, 2019) differs from pre-
vious UD parsers in two ways. First, it does not
use an LSTM layer for token representation, in-
stead using a learned scalar mixture of mBERT lay-
ers and fine-tuning mBERT during training. This
is in contrast to the three aforementioned parsers,
which do not fine-tune their pre-trained token em-
beddings. Second, UDify learns a single model for
all languages, concatenating all UD 2.5 training
sets. Trankit (Nguyen et al., 2021) is a recently
released end-to-end UD parsing system built on the
XLM-R language model. In contrast to UDify and
our own STEPS parser, it does not fine-tune the
entire language model, but instead inserts Adapter
layers (Pfeiffer et al., 2020a,b) to efficiently create
language-specific models for 56 languages.

Multi-Purpose Parsers. Other parsers with
modular or extensible architectures include Alto
(Gontrum et al., 2017), a prototyping tool for new

grammar formalisms based on Interpreted Regular
Tree Grammars (IRTGs), and PanParser (Aufrant
and Wisniewski, 2018), a modular framework for
transition-based dependency parsing. In contrast
to these two, STEPS is a graph-based dependency
parser that focuses on easy configuration of differ-
ent transformer-based language models and neural
architecture variants.

Parser Analyses and Comparisons. Recent
years have seen a wide range of studies comparing
different language models for dependency parsing
(e.g., Kanerva et al., 2018; Pyysalo et al., 2020;
Smith et al., 2018). Additionally, several studies
have investigated the amount of implicit syntactic
information captured in pre-trained LMs such as
ELMo and BERT (Tenney et al., 2019a,b; Hewitt
and Manning, 2019). Conversely, several studies
have investigated the utility of structural features
for dependency parsing in the presence of LSTMs
and/or contextualized word embeddings, generally
finding that their impact is diminished in the pres-
ence of contextual information (Falenska and Kuhn,
2019; Fonseca and Martins, 2020).

Kulmizev et al. (2019) compare the effect
of deep contextualized word embeddings on
transition-based and graph-based dependency
parsers, showing that their inclusion makes the two
approaches virtually equivalent in terms of pars-
ing accuracy. Our work is similar to theirs in the
sense that we also evaluate several very different
dimensions of parser architecture at the same time,
utilizing the same underlying backbone and thus
ensuring comparability across experiments.

3 STEPS: A Modular Graph-Based
Dependency Parser

In this section, we describe our modular depen-
dency parser STEPS (Stuttgart Transformer-based
Extensible Parsing System). Each subsection fo-
cuses on a particular aspect of the parser setup,
providing background on its usage and its potential
impact on parser performance.

3.1 Input Token Representation
STEPS provides a number of different options for
input token representation. As Table 1 shows,
parsers have made use of a variety of pre-trained
embeddings, with transformer-based language
models having become the predominant current
approach. We hence focus on the latter and com-
pare multilingual BERT (mBERT; Devlin et al.,
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2019), language-specific BERTs (langBERT), and
the multilingual XLM-R-large model (Conneau
et al., 2020). XLM-R utilizes the pre-training opti-
mizations first proposed for RoBERTa (Liu et al.,
2019), which includes training on a considerably
larger amount of data. A detailed overview of all
transformer models used in our experiments is pro-
vided in the second column of Table 2.

STEPS represents each token i using a vector ri
corresponding to the embedding of its first word-
piece token. Following Kondratyuk and Straka
(2019), we compute token embeddings as weighted
sums of the representations of the respective to-
kens given by the internal transformer encoder lay-
ers, resulting in either 768- oder 1024-dimensional
embeddings depending on the transformer model
used. Coefficients for this sum are learned dur-
ing training, and layer dropout is applied in order
to prevent the model from focusing on particular
layers. Our model learns a different set of these co-
efficients of for each output task (see Sec. 3.2 and
Sec. 3.3 below). In addition to the above described
transformer-only setting, we also compute an-
other version of token embeddings by feeding the
embeddings computed by the sum operations into a
multi-layer bidirectional LSTM (BiLSTM), whose
per-token output then constitutes ri.

3.2 Biaffine Classifier Architecture
STEPS makes use of biaffine classifiers as pro-
posed by Dozat and Manning (2017), which have
become the de-facto standard method for graph-
based dependency parsing. In a first step, a head
representation hhead

i and a dependent representa-
tion hdep

i are created for each input token i repre-
sented as embedding vector ri via two single-layer
feedforward neural networks:

hhead
i = FNNhead(ri) (1)

hdep
i = FNNdep(ri) (2)

These representations are then fed into the biaffine
function, which maps head–dependent pairs (i, j)
onto vectors si,j of arbitrary size:

si,j = Biaff
(
hhead
i ,hdep

j

)
(3)

Biaff(x1,x2) = x>1 Ux2 +W (x1 ⊕ x2) + b (4)

U, W and b are learned parameters; ⊕ denotes
the concatenation operation. The scores si,j can
now be leveraged in different ways to construct an
output tree or graph; this will be described next.

First, the factorized approach (Dozat and Man-
ning, 2017) uses two instances of biaffine classi-
fiers. The first classifier (the “arc scorer”) is re-
sponsible for predicting which (unlabeled) edges
exist in the output structure. It predicts, for each
token, a probability distribution over potential syn-
tactic heads (i.e., all other tokens in the sentence).
We then feed the log-probabilities to the Chu-
Liu/Edmonds maximum spanning tree algorithm
(Chu and Liu, 1965; Edmonds, 1967) and label the
resulting tree using the label scorer. The second
classifier (the “label scorer”) then assigns depen-
dency labels to edges predicted in the first step.

The unfactorized approach, proposed by Dozat
and Manning (2018) for semantic graph parsing,
uses only a single biaffine classifier (namely the
label scorer). Non-existence of dependencies is
encoded using simply another label (∅). We adapt
this approach to tree parsing by discarding the arc
scorer and computing the edge weights for the Chu-
Liu/Edmonds MST algorithm as log(1−P (∅)) in
order to extract a labeled dependency tree directly.
To the best of our knowledge, this is the first time
that the unfactorized architecture has been applied
to the parsing of dependency tree structures.

3.3 Multi-Task Training

We study the effects of a multi-task training setup
by implementing two approaches to training our
parser: (a) dep-only, in which the model is trained
only on syntactic dependencies; and (b) multi-task
learning (MTL), in which the model additionally
predicts universal part-of-speech tags (UPOS) and
morphological features (UFeats). We follow Kon-
dratyuk and Straka (2019) by learning different
coefficients for the transformer layers for these tag-
ging tasks (see Sec. 3.1) and then using a single-
layer feed-forward neural network to extract logit
vectors over the respective label vocabularies. By
default, the loss for the entire system is computed
as the sum of losses for the individual output mod-
ules (UPOS tagger, UFeats tagger, and dependency
parser). However, we also add the option of scaling
the loss of the individual output modules in order
to prevent individual tasks from overwhelming the
system as a whole (see Sec. 4.6).

4 Experiments

This section describes our experimental setup and
reports the results of our experiments on pre-trained
embeddings (Sec. 4.3), factorized vs. unfactor-
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Language Transformer LM UD Treebank

Arabic ArabicBERT-large (Safaya et al., 2020) PADT (Smrž et al., 2008)
Chinese Chinese BERT (Devlin et al., 2019) GSD
Czech Slavic-BERT (Arkhipov et al., 2019) PDT (Bejček et al., 2012)
English RoBERTa-large (Liu et al., 2019) EWT (Silveira et al., 2014)
Finnish FinBERT (Virtanen et al., 2019) TDT
German German BERT (github.com/dbmdz/berts) GSD (McDonald et al., 2013)
Hindi WikiBERT-Hindi (Pyysalo et al., 2020) HDTB (Bhat et al.; Palmer et al., 2009)
Italian Italian BERT-XXL (github.com/dbmdz/berts) ISDT
Japanese WikiBERT-Japanese (Pyysalo et al., 2020) GSD
Korean KR-BERT (Lee et al., 2020) Kaist (Chun et al., 2018)
Latvian WikiBERT-Latvian (Pyysalo et al., 2020) LVTB
Russian RuBERT (Kuratov and Arkhipov, 2019) SynTagRus (Droganova et al., 2018)

Multilingual mBERT (Devlin et al., 2019) –
Multilingual XLM-R (Conneau et al., 2020) –

Table 2: Language models and UD treebanks used in our experiments. Citations for treebanks are given where
provided in treebank repository documentation.

ized parser architecture (Sec. 4.5), LSTM usage
(Sec. 4.4), and multi-task training (Sec. 4.6).

4.1 Experimental Setup

Languages and treebanks. We select 12 lan-
guages, covering a diverse range of language fam-
ilies and writing systems, by applying linguistic
criteria similar to those outlined by de Lhoneux
et al. (2017). For each language, we select the
largest available treebank from UD 2.6 for which
token data is freely available. These treebanks
are listed in the third column of Table 2. In all
of our experiments, we use gold tokens and train
language-specific models, testing on the test set of
the respective treebank.

Evaluation metrics. We compute UAS and LAS
using the official evaluation script for the CoNLL
2018 Shared Task.2 UAS (Unlabeled Attachment
Score) computes the fraction of tokens that have
been assigned the correct syntactic head. LAS
(Labeled Attachment Score) records the fraction of
tokens that have been assigned the correct syntactic
head with the correct edge label.

4.2 Implementation

Our parser is implemented in Python, using Py-
Torch (Paszke et al., 2019) and the Huggingface
Transformers library (Wolf et al., 2019). Training
is performed on a single nVidia Tesla V100 GPU.

Hyperparameters. We aim to obtain a simple
yet high-performing hyperparameter configuration.
To do so, we start out with the configuration of

2https://universaldependencies.org/
conll18/conll18_ud_eval.py

UDify, which is architecturally quite similar to
STEPS, and tune parameters using grid search in ca.
40 runs on a small development set (consisting of
English, Arabic, and Korean data), aiming at a sim-
plified setup that achieves good results across these
diverse languages. The hyperparameters examined
by us were

• Hidden size of the biaffine classifier (256 /
512 / 768 / 1024)

• Batch size (16 / 32)

• Base learning rate (7e−6 to 5e−5)

• Early stopping patience (10 / 15 / 20 epochs)

• Learning rate schedule (constant LR / warmup
only / cosine annealing / Noam)

In large part, our final settings are identical to
UDify’s values with the following differences. We
use the AdamW optimizer (Loshchilov and Hutter,
2019) instead of Adam; we perform neither label
smoothing nor gradient clipping; and we do not use
differential learning rates. In addition, we do not
train for a fixed number of epochs, but instead stop
once performance on the validation set does not
increase for 15 epochs, or after at most 24 hours.

For model variants involving LSTMs, we tuned
the hyperparameters involved in these layers (num-
ber of layers; hidden size; dropout; learning rate)
in a second round of optimization consisting of 15
trials of random search on the English data. We
then picked the two best-performing models and
ran them on the other languages, finding that one
of them performed best on all languages.
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Transformer LM
Token mask probability 0.15
Layer dropout 0.1
Hidden dropout 0.2
Attention dropout 0.2
Output dropout 0.5

Biaffine classifier
Arc scorer dimension 768 or 1024a

Label scorer dimension 256 or 768/1024b

Dropout 0.33
LSTM

Hidden size 330
Number of layers 3
Dropout 0.5
LSTM learning rate 5e−4

Optimization
Optimizer AdamW
β1, β2 0.9, 0.999
Weight decay 0
Batch size 32
Base learning rate 4e−5

LR schedule Noam
LR warmup 1 epoch

Table 3: Hyperparameter values. aIdentical to hidden
size of the transformer encoder. b256 in factorized mod-
els, hidden size of transformer encoder in unfactorized
models.

All of our final hyperparameter settings can be
found in Table 3.

4.3 Impact of Pre-Trained Word Embeddings

We first evaluate how parsing performance differs
when varying the underlying pre-trained language
model. We here do not include an LSTM layer and
perform only dependency parsing. Table 4 shows
results for all 12 treebanks used in this study. UD-
Pipe+ refers to the version of UDPipe enhanced
with BERT and Flair embeddings proposed by
Straka et al. (2019) and described in Sec. 2. UDify
refers to the original system trained on all UD lan-
guages without treebank-specific fine-tuning. As
multilingual training usually results in improved
performance for low-resource languages at the cost
of lowering scores for high-resource languages
(Üstün et al., 2020), for meaningful comparison, we
train UDifymono on single treebanks. Trankitlarge
refers to the version of Trankit which uses XLM-
R-large as the underlying language model, same as
STEPSXLM-R.

STEPSmBERT roughly corresponds to UDifymono,
and indeed the models overall perform similarly.
We attribute differences to slightly different train-
ing setups. While UDify is trained for 80 epochs,
STEPS employs early stopping after 15 epochs
without improvement. Moreover, we did not dis-

able multi-task learning for parallel UD feature
prediction in UDifymono, and this may be an ex-
planation why STEPSmBERT does much better on
Finnish, Czech and Russian, where morphological
features may be harder to predict. (For a princi-
pled comparison of multi-task setups, see Sec. 4.6.)
By contrast, UDPipe+ often outperforms UDify,
UDifymono, and STEPSmBERT, which is likely due
to the fact that it trains its own word embeddings
in addition to mBERT and additionally makes use
of character-level representations via GRUs.

Parsing accuracy of STEPS is very high across
the board, with new state-of-the-art results being
achieved on all languages except Japanese and
German. For most languages, the best results are
achieved using STEPSXLM-R, with STEPSlangBERT
coming in second. In contrast, using mBERT is
not the best option on any treebank. In fact, the
only languages for which mBERT achieves better
results than langBERT in our experiments are Lat-
vian and Hindi.3 While using langBERT usually
yields worse parsing accuracy than XLM-R, results
are roughly on par for Arabic and English. We
note that the language-specific models we chose for
these treebanks (ArabicBERT-large and RoBERTa-
large, respectively) are the only ones with a number
of trainable parameters similar to XLM-R, while all
others have a considerably smaller number of pa-
rameters. This highlights the importance of model
size in pre-trained word embeddings.

STEPSXLM-R and Trankitlarge show rather simi-
lar performance overall, which is to be expected
given the fact that both are built on the same under-
lying language model (XLM-R-large). The slight
advantage for STEPSXLM-R observed on most lan-
guages may stem from the fact that it fine-tunes the
entire transformer model instead of merely adding
Adapter layers, and that it does not use a multi-
task training setup (cf. Sec. 4.6). Interestingly, on
Finnish and Latvian, both systems outperform other
existing parsers by very large margins (around 4.9
and 6.5 LAS, respectively). We assume that there
are two main reasons for this. First, XLM-R is
pre-trained on CommonCrawl data (Conneau et al.,
2020; Wenzek et al., 2020) as opposed to Wikipedia
dumps, which results not only in several orders

3In a similar study comparing mBERT- and langBERT-
based parsers, Kanerva et al. (2020) also found Latvian to be
one of the few languages for which mBERT outperformed the
language-specific (WikiBERT) version. Both the Latvian and
the Hindi Wikipedias are rather small, consisting of only 21M
and 35M tokens, respectively (Pyysalo et al., 2020).
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ar cs de en fi hi it ja ko lv ru zh
PADT PDT GSD EWT TDT HDTB ISDT GSD Kaist LVTB STR GSD

UDPipe+ 84.62 92.56 84.06 90.40 89.49 92.50 93.38 94.27 87.54 84.50 93.68 86.74
UDify 82.88 92.88 83.59 88.50 82.03 91.46 93.69 92.08 84.52 85.09 93.13 83.75
UDifymono 83.34 91.58 84.28 89.52 86.74 91.44 93.14 92.14 86.45 85.45 92.32 82.95
Trankitlarge 86.51 93.11 86.27 91.64 94.31 93.17 94.63 78.14 40.76 91.76 95.16 87.38

STEPSmBERT 83.80 92.69 84.08 89.16 88.91 91.30 93.13 92.22 24.49 85.05 93.74 84.94
STEPSlangBERT 86.60 92.99 85.87 91.98 93.57 91.16 94.25 92.98 84.56 82.61 94.44 86.20
STEPSXLM-R 86.55 94.58 86.07 91.91 94.36 93.34 94.86 94.10 89.93 91.93 95.30 87.75

STEPSXLM-R-LSTM 86.41 94.52 86.20 91.58 93.92 93.28 94.57 94.01 89.91 91.61 95.27 86.96
STEPSXLM-R-unfact 86.32 94.38 86.19 91.57 94.11 93.21 94.58 93.58 89.86 91.76 95.17 87.47

Table 4: Labeled Attachment Score (LAS) for basic dependency parsing varying input embeddings and architec-
ture. STEPS scores are averages of three runs.

of magnitude more training data (over 1 billion
tokens for both languages), but also presumably
more heterogenous data, which may provide better
generalizations for the domains in our test data.4

Second, XLM-R has a much larger vocabulary size
than mBERT (250k vs. 100k), which means it may
account better for the rich morphology of these
languages. On average, a Finnish (Latvian) token
is split up into 2.4 (2.1) word pieces when using
mBERT, but only 1.9 (1.8) word pieces when using
XLM-R.

Finally, we note that STEPSmBERT and
Trankitlarge perform extremely poorly on Korean
(24.49/40.76 LAS on average), indicating that the
models do not properly learn from the data. We
assume that this may be a tokenization or character
encoding issue unique to the Korean-Kaist tree-
bank.5 However, a similar pattern is not observed
for any of the other parser models, and we were
unfortunately unable to identify the exact cause
despite our best efforts.

4.4 Impact of LSTM Layer

We evaluate the performance of a system identical
to STEPSXLM-R described above, but with 3 addi-
tional BiLSTM layers added on top of the language
model (STEPSXLM-R-LSTM in Table 4). Changes in
performance are generally small. With the excep-
tion of German, including LSTM layers actually
decreases parsing accuracy slightly. The LSTM
model contains more trainable parameters and also

4Both fi-TDT and lv-LVTB contain, among others, “non-
standard” data such as blog entries, legal texts, and spoken
language (Haverinen et al., 2014; Pretkalnin, a et al., 2018).

5As pointed out by an anonymous reviewer, Korean-Kaist
uses a rather different tokenization strategy than other UD
treebanks, with tokens corresponding to larger chunks. Rely-
ing on just the first word pieces for token embeddings may be
problematic in this context.

makes use of differential learning rates, yet, we did
not find any meaningful differences in convergence
speed and training times. Hence, we conclude that
when fine-tuning an underlying transformer-based
language model, adding LSTM layers on top is
not necessary. However, results may differ for sys-
tems that additionally train their own token em-
beddings or make use of character-based represen-
tations, both of which we do not address in our
experiments.

4.5 Impact of Factorization

Dozat and Manning (2018) show that for seman-
tic dependency graph parsing, a simplified parser
architecture predicting edge presence and edge la-
bels from the same scoring matrix achieves largely
identical results compared to a model using two
separate classifiers for arcs and labels. We here
dive into the question whether such an unfactorized
approach is also able to achieve competitive results
in syntactic tree parsing. We do so by implement-
ing a version of STEPSXLM-R that makes use of the
unfactorized approach as descibed in Sec. 3.2.

Results of our experiments can be found in the
row labeled STEPSXLM-R-unfact in Table 4. Overall,
performance of the unfactorized approach is very
close to the factorized version, but slightly lower.
While this shows that the unfactorized approach
is indeed viable for tree parsing, analysis of the
training times reveals an increase by ca. 30 % on
average when using the unfactorized model, indi-
cating that the shared scorer takes a longer time to
converge.

In light of these results, we propose to stick with
the factorized version for syntactic tree parsing. At
least in a research setting, shorter training times
allow for a larger set of experiments and thus ulti-
mately in using fewer resources. When applying
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the parser, differences in model size and parsing
time are negligible.

4.6 Impact of Multi-Task Approach
Finally, we analyze how performance changes
when predicting UPOS and UFeats in addition to
dependencies. For these experiments, we use XLM-
R as input embeddings and a factorized architec-
ture. For UFeats, we follow UDify’s approach
and consider each possible combination of mor-
phological features a unique label. As shown in
Table 5, STEPSMTL achieves very high accuracies
for UPOS and UFeats, performing on par with or
only slightly worse than the previous state of the art
(Trankitlarge) for most languages. However, we find
that compared to the dependency-only system, pars-
ing accuracy drops considerably in the multi-task
setting (up to over 1 LAS for Finnish).

During training of STEPSMTL, accuracy on the
validation set increased very rapidly for the tagging
tasks and reached levels close to the final values
after only a few epochs, while accuracy for the
parsing task increased much slower. This suggests
that the loss for the tagging tasks might overwhelm
the system as a whole, causing the parser modules
to underfit. We therefore also test STEPSMTLscale,
in which the loss for UPOS and UFeats is scaled
down to 5% during training. STEPSMTLscale per-
forms close to STEPSMTL, even outperforming it
in the case of Hindi. In turn, however, accuracy for
UPOS and particularly UFeats drops considerably.

To sum up, our experiments indicate that multi-
task setups as commonly employed in UD pars-
ing have a non-negligible effect on parsing per-
formance. Hence, when comparing parser perfor-
mance, it is crucial to take potential multi-task se-
tups into account. If the respective setups differ,
ignoring them may result in misleading interpreta-
tions of parsing performance of model architectures
(unless the variable of interest is the multi-task
setup itself).

4.7 Summary
Our experimental findings can be summarized as
follows: (a) Choice of pre-trained embeddings has
the greatest impact on parser performance, with
XLM-R yielding the best results in most cases; (b)
adding LSTM layers is not necessary when work-
ing with a large fine-tuned language model; (c)
a factorized parser architecture is preferable due
to faster training; (d) when using a multi-task ap-
proach incorporating UPOS and UFeats prediction,

there is a tradeoff between tagging and parsing
accuracy, and conclusions regarding architecture
should be drawn by comparing experiments per-
formed in the same setting. Crucially, one of the
simplest parsers in our evaluation (STEPSXLM-R)
achieves the best results overall, often surpassing
more complex previous work.

5 Enhanced UD Parsing with STEPS

In order to determine whether our conclusions also
hold for the related graph parsing task of Enhanced
UD (Schuster and Manning, 2016), we run an ad-
ditional batch of experiments on 7 treebanks from
the IWPT 2020 Shared Task (Bouma et al., 2020).

Modifications to STEPS. We modify STEPS to
generate dependency graphs using a factorized ap-
proach as proposed by Dozat and Manning (2018)
for semantic dependency parsing, weighting the
losses of the edge and label scorers:

` = λedge`edge + λlabel`label. (5)

After tuning on English in a set of preliminary
experiments, we set the hyperparameters λedge to
1.0 and λlabel to 0.05. For comparison, we also
evaluate the unfactorized version of our parser.

While enhanced UD does not require output
graphs to be trees, it imposes the constraint that ev-
ery node must be reachable from the root. We use
the heuristic proposed by Grünewald and Friedrich
(2020) for graph post-processing, which greedily
adds the highest-scoring edge from a node that is
reachable from the root to a node that is unreach-
able from the root until the condition is fulfilled.

Furthermore, for certain relations such as nmod
or obl, enhanced UD allows for the inclusion of lex-
ical material (such as prepositions) in dependency
labels. To avoid data sparsity issues resulting from
the increase in the number of dependency labels,
we follow the label de- and re-lexicalization strat-
egy proposed by Grünewald and Friedrich (2020),
replacing lexical materials in labels with with place-
holders such as obl:[case]. At prediction time, lex-
icalized parts of the labels can be retrieved from
the respective child nodes in the graph. We apply
this strategy for all languages in our study except
Finnish and Russian (which do not have lexicalized
labels) and Arabic (for which we additionally look
up lemmas of the lexical material using a simple
majority baseline method).
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TREEBANK MODEL UPOS UFEATS UAS LAS

Trankitlarge 95.47 95.54 90.90 86.51
Arabic STEPSdep-only – – 90.96 86.55
(ar_padt) STEPSMTL 97.24 94.89 90.34 86.01

STEPSMTLscale 96.47 87.74 90.80 86.41

Trankitlarge 99.37 98.23 95.51 93.11
Czech PDT STEPSdep-only – – 95.89 94.58
(cs_pdt) STEPSMTL 99.41 98.06 95.59 94.19

STEPSMTLscale 98.97 94.20 95.85 94.52

Trankitlarge 95.48 91.91 90.11 86.27
German STEPSdep-only – – 90.02 86.07
(de_gsd) STEPSMTL 95.40 91.91 89.53 85.46

STEPSMTLscale 94.65 83.33 89.74 85.80

Trankitlarge 97.91 98.04 93.59 91.64
English STEPSdep-only – – 93.90 91.91
(en_ewt) STEPSMTL 97.84 98.02 93.47 91.50

STEPSMTLscale 96.58 96.49 93.80 91.78

Trankitlarge 98.72 97.07 95.55 94.31
Finnish TDT STEPSdep-only – – 95.69 94.36
(fi_tdt) STEPSMTL 98.52 96.75 94.62 93.11

STEPSMTLscale 98.19 88.70 95.59 94.26

Trankitlarge 98.12 93.98 96.16 93.17
Hindi STEPSdep-only – – 96.11 93.34
(hi_hdtb) STEPSMTL 98.09 94.49 95.96 93.03

STEPSMTLscale 97.51 88.60 96.18 93.39

TREEBANK MODEL UPOS UFEATS UAS LAS

Trankitlarge 98.80 98.43 95.93 94.63
Italian STEPSdep-only – – 96.25 94.86
(it_isdt) STEPSMTL 98.81 98.58 95.80 94.36

STEPSMTLscale 98.43 94.28 96.09 94.69

Trankitlarge 92.57 97.58 86.62 78.14
Japanese STEPSdep-only – – 95.62 94.10
(ja_gsd) STEPSMTL 98.21 99.98 95.38 93.78

STEPSMTLscale 96.94 99.91 95.53 94.00

Trankitlarge 69.86 98.95 67.96 40.76
Korean STEPSdep-only – – 91.71 89.93
(ko_kaist) STEPSMTL 96.41 100.00 91.48 89.73

STEPSMTLscale 93.90 100.00 91.53 89.77

Trankitlarge 97.83 95.38 94.19 91.76
Latvian STEPSdep-only – – 94.32 91.93
(lv_lvtb) STEPSMTL 97.73 94.79 93.44 90.99

STEPSMTLscale 96.72 81.42 93.97 91.61

Trankitlarge 99.34 98.47 96.18 95.16
Russian STEPSdep-only – – 96.32 95.30
(ru_syntagrus) STEPSMTL 99.27 98.34 95.94 94.88

STEPSMTLscale 98.99 95.91 96.19 95.20

Trankitlarge 96.83 99.48 90.03 87.38
Chinese STEPSdep-only – – 90.72 87.75
(zh_gsd) STEPSMTL 97.20 99.50 89.70 86.86

STEPSMTLscale 95.21 98.53 90.31 87.39

Table 5: Results for basic dependency parsing vs. parsing and feature prediction (multi-task) for STEPSXLM-R.
Scorres are averages of three runs. For UPOS and UFeats, we report accuracy.

Experimental Results. We compare our results
against TurkuNLP, a modified version of UDify
which scored 1st in the official evaluation of
the IWPT 2020 Shared Task, and ShanghaiTech,
which scored 1st in the unofficial post-evaluation.

We evaluate in terms of ELAS (Enhanced LAS,
i.e., F1 score over the set of enhanced dependen-
cies in the system output and the gold standard)
using the official evaluation script for the IWPT
2020 Shared Task6 and report per-treebank results
for TurkuNLP and ShanghaiTech as submitted.7

To ensure comparability with previous work, we
compute our results using raw text as input and
using Stanza (Qi et al., 2020) for tokenization and
sentence segmentation. Table 6 reports our results.
Our parser achieves very high accuracy, outper-
forming TurkuNLP and ShanghaiTech on all evalu-
ated languages except Arabic and Czech. Notably,
the latter system also uses XLM-R embeddings,
but with a more complex parser architecture.

Unlike in tree parsing, the unfactorized system
actually slightly outperforms the factorized system
on a number of languages, with the largest margins

6https://universaldependencies.org/
iwpt20/iwpt20_xud_eval.py

7https://universaldependencies.org/
iwpt20/Results.html

Turku- Shanghai- STEPSXLM-R
NLP Tech fact unfact

ar-PADT 77.83 77.73 77.42 77.68
cs-PDT 88.17 90.63 89.49 89.43
en-EWT 86.14 86.30 87.11 87.28
fi-TDT 89.24 89.97 91.53 91.51
it-ISDT 91.54 91.49 92.35 92.39
lv-LVTB 84.94 87.64 89.04 88.95
ru-STR 90.69 92.31 93.68 93.75

Table 6: Results (ELAS) for enhanced dependency
parsing. Scores are averages of three runs.

on Arabic and English. Taken together, these re-
sults show that (a) our best approach is not only
robust across languages, but also across (syntactic)
parsing tasks, and (b) the unfactorized approach
may be well-suited to graph parsing tasks, which
is in line with the results of Dozat and Manning
(2018).

6 Discussion and Conclusion

In this paper, we have performed a detailed and
principled analysis on a variety of decisions arising
during dependency parser design. What works?
We have identified an architecture based on fine-
tuned XLM-R embeddings and factorized scoring
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that lead to new state-of-the-art performance for 11
out of 12 diverse language in our study on basic UD
parsing, and for 5 out of 7 lanugages for enhanced
UD parsing. What doesn’t? Adding LSTM lay-
ers on top of the transformer leads to a decrease
in accuracy in most cases. We have also shown
that multi-task setups predicting UPOS and UFeats
often degrade parsing performance. What is re-
ally necessary? For current state-of-the-art UD
parsers, we recommend making sure that the pre-
trained language model covers the intended domain
well. In addition, keeping a factorized approach is
a good idea for tree parsing, while in graph parsing,
a single scorer module may suffice.

In this paper, we have addressed a high- to
medium-resource scenario, assuming that we know
the application language of a parser and thus train-
ing a single parser per language. Future work may
address multilingual approaches such as the train-
ing setup used by UDify or the recently proposed
UDapter (Üstün et al., 2020), which aims at boost-
ing performance of low-resource languages while
keeping performance of high-resource languages
high. Furthermore, it would be interesting to see if
our results about biaffine achitectures also hold for
non-syntactic tasks that have recently been framed
as dependency parsing tasks, such as Named Entity
Recognition (Yu et al., 2020), negation scope detec-
tion (Kurtz et al., 2020) or Semantic Role Labeling
(Shi et al., 2020).

To sum up, in this paper we have applied “Oc-
cam’s razor” to graph-based dependency parsing.
We believe that the insights from our study will
foster further research on dependency parsing and
on framing other tasks as dependency parsing, tak-
ing our simplified but robustly performing STEPS
parser as a starting point.
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uating contextualized embeddings on 54 languages
in pos tagging, lemmatization and dependency pars-
ing. arXiv preprint arXiv:1908.07448.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019a.
BERT rediscovers the classical NLP pipeline. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4593–
4601, Florence, Italy. Association for Computational
Linguistics.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang,
Adam Poliak, R Thomas McCoy, Najoung Kim,
Benjamin Van Durme, Sam Bowman, Dipanjan Das,
and Ellie Pavlick. 2019b. What do you learn from
context? probing for sentence structure in contextu-
alized word representations. In International Con-
ference on Learning Representations.

Ahmet Üstün, Arianna Bisazza, Gosse Bouma, and
Gertjan van Noord. 2020. UDapter: Language adap-
tation for truly Universal Dependency parsing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2302–2315, Online. Association for Computa-
tional Linguistics.

Antti Virtanen, Jenna Kanerva, Rami Ilo, Jouni Luoma,
Juhani Luotolahti, Tapio Salakoski, Filip Ginter, and
Sampo Pyysalo. 2019. Multilingual is not enough:
Bert for finnish. arXiv preprint arXiv:1912.07076.

Guillaume Wenzek, Marie-Anne Lachaux, Alexis Con-
neau, Vishrav Chaudhary, Francisco Guzmán, Ar-
mand Joulin, and Edouard Grave. 2020. CCNet:
Extracting high quality monolingual datasets from
web crawl data. In Proceedings of the 12th Lan-
guage Resources and Evaluation Conference, pages
4003–4012, Marseille, France. European Language
Resources Association.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2019.
Huggingface’s transformers: State-of-the-art natural
language processing. ArXiv, abs/1910.03771.

Juntao Yu, Bernd Bohnet, and Massimo Poesio. 2020.
Named entity recognition as dependency parsing. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6470–
6476, Online. Association for Computational Lin-
guistics.
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Abstract

Many neural end-to-end systems today do not rely on syntactic parse trees, as much of the information
that parse trees provide is encoded in the parameters of pretrained models. Lessons learned from parsing
technologies and from taking a multilingual perspective, however, are still relevant even for end-to-end
models.

This talk will describe work that relies on compositionality in semantic parsing and in reading compre-
hension requiring numerical reasoning. We’ll then describe a new dataset that requires advances in multi-
lingual modeling, and some approaches designed to better model morphology than off-the-shelf subword
models that make some progress on these challenges.
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Abstract

We describe the second IWPT task on end-to-
end parsing from raw text to Enhanced Univer-
sal Dependencies. We provide details about
the evaluation metrics and the datasets used
for training and evaluation. We compare the
approaches taken by participating teams and
discuss the results of the shared task, also in
comparison with the first edition of this task.

1 Introduction

Universal Dependencies (UD) (Nivre et al., 2020)
is a framework for cross-linguistically consistent
treebank annotation that has so far been applied to
114 languages. UD defines two levels of annotation,
the basic trees and the enhanced graphs (EUD)
(Schuster and Manning, 2016).

There are several good parsers that can predict
the basic trees (including tokenization and mor-
phology) for previously unseen text (Straka et al.,
2016; Qi et al., 2020). Two large shared tasks
on basic UD parsing were organized at CoNLL
(Zeman et al., 2017, 2018). Enhanced UD pars-
ing attracted comparatively less attention until the
shared task organized at IWPT 2020 (Bouma et al.,
2020). The present paper describes a second in-
stance of that task, organized as a part of the 17th
International Conference on Parsing Technologies1

(IWPT), collocated with ACL-IJCNLP 2021. Like
in the previous year, the evaluation was done on
datasets covering 17 languages from four language
familiies.

This paper is a follow-up of the overview paper
of the previous instance of the shared task (Bouma
et al., 2020). To make the paper self-contained, we
include updated versions of some sections of that
paper, in particular describing the enhanced anno-
tation format, the task, and the evaluation metric.

1https://iwpt21.sigparse.org

The data section now documents the modifications
we made to the data from UD release 2.7.

2 Motivation

The basic dependency annotation in the Univer-
sal Dependencies format introduces labeled edges
between nodes that represent tokens in the input
string, where each node is a dependent of exactly
one other node, with the exception of the node
token. While this tree structure supports many
downstream tasks, there are also phenomena that
are hard to capture using single-parent edges only.
The enhanced dependency layer therefore supports
richer annotation where nodes may have more than
one parent, and where additional ‘empty’ nodes rep-
resent elided material that is not overtly expressed
in the input string. The enhanced level can be used
to account for a range of linguistic phenomena (see
Section 3) and to support downstream applications
that rely on the semantic interpretation of the input.

There are now a number of treebanks that in-
clude enhanced dependency annotation. Further-
more, the recent shared tasks on dependency pars-
ing and subsequent work have shown that consider-
able progress has been made in multilingual depen-
dency parsing. For enhanced dependency parsing,
there are additional challenges. The enhanced rep-
resentation is a connected directed graph, possibly
containing cycles, while the bulk of dependency
parsing work still focuses on rooted trees. The set
of labels to be predicted is also much larger, as
some enhanced dependency labels incorporate the
lemma of certain dependents.

On the other hand, it has been shown that much
of the enhanced annotation can be predicted on the
basis of the basic UD annotation (Nyblom et al.,
2013; Schuster et al., 2017; Nivre et al., 2018).
Moreover, most state-of-the-art work in depen-
dency parsing uses a graph-based approach, where
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the assumption that the output must form a tree is
only used in the final step from predicted links to
final output. And finally, work on deep-syntax and
semantic parsing has shown that accurate mapping
of strings into rich graph representations is possible
(Oepen et al., 2014, 2015, 2019, 2020) and could
even lead to state-of-the-art performance for down-
stream applications as shown by the results of the
Extrinsic Parsing Evaluation shared task (Oepen
et al., 2017).

The previous IWPT shared task (Bouma et al.,
2020) reflected this development quite well: some
submissions took the way of direct text-to-graph
mapping, some of them predicted a rooted tree and
then employed heuristics to enhance it; and one sub-
mission encoded graphs as trees, then used a tree
parser to predict them. Since it was the first task
of its kind on large scale multilingual Enhanced
Dependencies parsing and some teams may not
have been able to successfully implement all their
ideas in time (or new ideas may have occurred after
seeing what other teams had done), a second round
of the task is a natural next step to see whether we
can do even better.

3 Enhanced Universal Dependencies

UD version 22 states that apart from the morpholog-
ical and basic dependency annotation layers, strings
may be annotated with an additional, enhanced, de-
pendency layer, where the following phenomena
can be captured:

• Gapping. To support a linguistically more sat-
isfying treatment of ellipsis, empty nodes can
be introduced to represent missing predicates
in gapping constructions.

• Parent of coordination. Incoming relations are
propagated from the parent of the coordina-
tion structure to each conjunct.

• Shared dependent of coordination. Outgoing
relations are propagated from each conjunct
to a shared dependent, e.g., a shared subject
or object of coordinate verbs.

• Control and raising constructions. The exter-
nal subject of xcomp dependents, if present,
can be explicitly marked.

2https://universaldependencies.org/u/
overview/enhanced-syntax.html

• Relative clauses. The antecedent noun of a
relative clause is annotated as a dependent of
a node within the relative clause (thus intro-
ducing a cycle) and the relative pronoun is an-
notated as a ref dependent of the antecedent
noun.

• Case information. Selected dependents (in
particular obl and nmod), if they are marked
by morphological case and/or by an adposi-
tional case dependent, can now be labeled
as obl:marker or nmod:marker where
marker is the lemma of the case dependent
and/or the value of the morphological feature
Case.

All enhancements are optional, so a UD treebank
may contain enhanced graphs with one type of
enhancement and still lack the other types.

4 Data

The evaluation was done on 17 languages from
4 language families: Arabic, Bulgarian, Czech,
Dutch, English, Estonian, Finnish, French, Ital-
ian, Latvian, Lithuanian, Polish, Russian, Slovak,
Swedish, Tamil, Ukrainian. The language selec-
tion is driven simply by the fact that at least partial
enhanced representation is available for the given
language.

Training and development data were based on
the UD release 2.7 (Zeman et al., 2020) but for
several treebanks the enhanced annotation is richer
than in UD 2.7. Besides improvements in the offi-
cially released versions of the individual treebanks,
a few other things have changed in comparison to
the IWPT 2020 task. The English data now in-
cludes the GUM treebank (its enhanced annotation
was not present in UD 2.7 but it was being prepared
for UD 2.8 and it was ready in time for the shared
task). As in 2020, we include two French treebanks
whose enhanced annotation is still not included in
the official UD releases, but the annotation is more
conservative this year, omitting the extra labels
for diathesis neutralization (Candito et al., 2017)
and surface vs deep syntax markers. Still, some
enhancements in French go slightly beyond the
official UD guidelines (see below for details). In
Polish, we now harmonize the relation subtypes
in the three treebanks so that merging them into
one dataset is no longer an issue. Finally, we omit
the Chukchi treebank, which is new in UD 2.7 and
has enhanced graphs, but the graphs are there only
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Sue has 5 euros , Pat 6 and Kim 3

nsubj

conj
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obj

nummod punct orphan cc orphan

Figure 1: A basic tree of a gapping structure.

Sue has 5 euros , Pat _ 6 and Kim _ 3

nsubj

conj
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obj

nummod

punct

nsubj obj

cc

nsubj obj

Figure 2: The correct enhanced graph of the gapping
structure from Figure 1. “_” are empty nodes.

to provide empty nodes to capture incorporated
modifiers (rather than gapping); furthermore, the
treebank is too small and has no training data.

There are 13 treebanks of 7 languages in UD 2.7
that contain all types of enhancements: Czech
(CAC, FicTree, PDT, and PUD), Dutch (Alpino
and LassySmall), English (EWT and PUD), Ital-
ian (ISDT), Lithuanian (ALKSNIS), Slovak (SNK),
and Swedish (Talbanken and PUD). For the remain-
ing languages, we applied simple heuristics and
added at least some enhancements for the purpose
of the shared task, but these annotations are not yet
part of the regular UD releases. We only applied
our heuristics to the missing enhancement types;
we did not attempt to modify the enhancements
provided by the data providers. Table 1 gives an
overview of enhancements in individual treebanks.

The enhancements differ in how easily and ac-
curately they can be inferred from the basic UD
annotation:

• Enhancing relation labels with case informa-
tion is deterministic. We apply it to the rela-
tions obl, nmod, advcl and acl. If they
have a case or mark dependent, we add its
lowercased lemma (for fixed multiword ex-
pressions or for multiple case/mark depen-
dents we glue the lemmas with the “_” charac-
ter). For obl and nmod we further examine
the Case feature and add its lowercased value,
if present.

• Linking the parent of coordination to all con-

Treebank UD 2.7 Task
Arabic PADT GPS RC GPS RC
Bulgarian BTB PSXRC PSXRC
Czech CAC GPSXRC GPSXRC
Czech FicTree GPSXRC GPSXRC
Czech PDT GPSXRC GPSXRC
Czech PUD GPSXRC GP XRC
Dutch Alpino GPSXRC GPSXRC
Dutch LassySmall GPSXRC GPSXRC
English EWT GPSXRC GPSXRC
English GUM GPSXRC
English PUD GPSXRC GPSXRC
Estonian EDT GPS R GPS RC
Estonian EWT G GP RC
Finnish PUD GP GP RC
Finnish TDT GPSX GPSXRC
French FQB PSXR
French Sequoia PSXR
Italian ISDT GPSXRC GPSXRC
Latvian LVTB GPSX C GPSXRC
Lithuanian ALKS. GPSXRC GPSXRC
Polish LFG PSX C PSXRC
Polish PDB PS GPSXRC
Polish PUD PS GPSXRC
Russian SynTagRus G GP XRC
Slovak SNK GPSXRC GPSXRC
Swedish PUD GPSXRC GPSXRC
Swedish Talbanken GPSXRC GPSXRC
Tamil TTB PS PS RC
Ukrainian IU GPSXR GPSXRC

Table 1: New annotation for the shared task. Abbre-
viations: G = gapping; P = parent of coordination; S
= shared dependent of coordination; X = external sub-
ject of controlled verb; R = relative clause; C = case-
enhanced relation label.

juncts is deterministic.

• Recognizing and transforming relative clauses
is easy if relative pronouns can be recognized.
This can be tricky in languages where the
same pronouns can be used relatively (Fig-
ure 3) and interrogatively (Figure 4). We can-
not recognize all instances of the latter case
reliably; fortunately they do not seem to be
too frequent.

• External subjects of xcomp clauses are sub-
jects, objects or oblique dependents of the
matrix clause. To find them, we need to know
whether the governing verb has subject or ob-
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the man who will come

det

nsubj

acl:relcl

ref aux

Figure 3: Enhanced graph of a relative clause.

the question who will come

det

acl

nsubj

aux

Figure 4: Enhanced graph of an interrogative clause.

ject control. We use language-specific verb
lists, which can resolve many cases, but not
all. If a verb is not on any list, we skip it.

• Gapping can be easily identified by the pres-
ence of the orphan relation in the basic tree,
insertion of empty nodes is thus trivial. How-
ever, we do not know the type of the relation
between the empty node and the orphaned de-
pendents. Figure 2 shows a graph where each
empty node has one nsubj and one obj de-
pendent. We cannot infer these labels from the
basic tree (Figure 1), so we use dep instead.

• Linking conjuncts to shared dependents can-
not be done reliably because we cannot know
whether a dependent should be shared (this
may be sometimes difficult even for a human
annotator!) Therefore we do not attempt to
add this enhancement to the datasets that do
not have it.

Although the UD releases distinguish several
different treebanks for some languages, for the pur-
pose of the shared task evaluation we merged all
test sets of each language. We wanted to promote
robust parsers that are not tightly tied to one par-
ticular dataset. Merging treebanks of one language
was possible because for almost all languages it
holds that treebanks participating in the present
task are maintained by the same team, hence no sig-
nificant treebank-specific annotation decisions are
expected. The exceptions are English and Polish
but there should not be any significant divergence
in these languages either. In English, the GUM
corpus is maintained by other people than EWT
and PUD; nevertheless, the corpora use the same

Treebank basic lab add rem

Arabic PADT 301399 27 7 1
Bulgarian BTB 156151 12 4 1
Czech CAC 494383 18 13 2
Czech FicTree 167056 13 11 2
Czech PDT 1506484 17 10 2
Czech PUD 18610 17 8 2
Dutch Alpino 208540 13 5 1
Dutch LassySmall 98044 14 5 1
English EWT 254829 13 6 1
English GUM 134476 14 6 1
English PUD 21176 15 6 1
Estonian EDT 437769 22 2 1
Estonian EWT 56399 18 8 1
Finnish PUD 15813 19 3 1
Finnish TDT 202291 18 10 1
French FQB 24135 0 2 0
French Sequoia 70567 0 5 0
Italian ISDT 298344 17 6 1
Latvian LVTB 219955 16 11 2
Lithuanian ALKSNIS 70047 23 12 1
Polish LFG 130968 9 3 0
Polish PDB 350036 16 9 1
Polish PUD 18389 18 9 1
Russian SynTagRus 1106296 17 7 1
Slovak SNK 106097 15 7 1
Swedish PUD 19076 16 7 1
Swedish Talbanken 96819 15 8 1
Tamil TTB 9581 27 3 0
Ukrainian IU 122094 16 10 1

total 6696809 17 8 1

Table 2: Comparing the impact of enhancements in the
shared task treebanks where ‘basic’ is the number of ba-
sic dependencies (i.e., the number of words in the tree-
bank) and the rest is given as a percentage of ‘basic’:
‘lab’ are enhanced dependencies that differ from a ba-
sic dependency only in label; ‘add’ are new enhanced
dependencies (not only label but also the parent node
differs from basic); ‘rem’ are basic dependencies that
were removed from the enhanced graph.

set of relations, and there are ongoing efforts to
harmonize the way the relations are used. In Polish,
the LFG treebank uses a different set of relation
subtypes than PDB and PUD; however, this year
we removed the subtypes that are not used in all
three treebanks, so it should be possible to train a
parser on one treebank and successfully apply it to
another.

Table 2 shows that the effect of enhancements
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des pêcheurs venus nettoyer les rives
anglers come clean the banks

det

nsubj

nsubj

acl xcomp

obj

det

“anglers who came to clean the banks”

Figure 5: Participial adnominal clauses in French are
treated similarly to relative clauses: The modified noun
is attached as a subject of the participle (and here also
of the xcomp infinitive controlled by the participle).

differs quite a bit between the various languages.
For instance, the percentage of basic dependen-
cies that have a different label in the enhanced
graph (mostly because of adding the case informa-
tion to obl and other relations), ranges from 0 to
27%. Enhanced dependencies that introduce truly
novel edges are rarer. In the table they are again
expressed relatively to the number of basic depen-
dencies, and the figure varies between 2 and 13%.
Up to 2% basic edges are omitted in the enhanced
graph.

There are slight differences in how individ-
ual languages implement particular enhancement
types. Some languages follow earlier proposals
for enhanced relation subtypes that are not sup-
ported by the current UD guidelines, e.g., external
subjects are labeled nsubj:xsubj, antecedents
of relative clauses are nsubj:relsubj or
obj:relobj, the “case” information is extended
to showing conjunction lemma with conjuncts
(conj:and, conj:or etc.) Empty nodes are
occasionally used for other ellipsis types than gap-
ping or stripping. The adding of relations from rel-
ative clauses to modified nouns is further extended
in French to infinitival and participial adnominal
clauses, as in Figure 5.3

Upon completion of the shared task, the data has
been made publicly available at the permanent ad-
dress http://hdl.handle.net/11234/1-3728.

5 Task

As in the previous dependency parsing shared tasks,
participants were expected to go from raw, un-
tokenized strings to full dependency annotation.
The evaluation focused on the enhanced annotation
layer, but the participants were encouraged to pre-

3See (Candito et al., 2017) for details of the other enhance-
ments they added (controlled-adjectives, causative construc-
tions, etc.)

dict all annotation layers, and the evaluation of the
other layers is available on the shared task website.4

The task was open, in the sense that participants
were allowed to use any additional resources they
deemed fit (with the exception of UD 2.7 test data)
as long as this was announced in advance and the
additional resource was freely available to every-
body.

The submitted system outputs had to be valid
CoNLL-U files; if a file was invalid, its score would
be zero.5 The official UD validation script6 was
used to check validity, although only at ‘level 2’,
which means that only basic file format was
checked and not the annotation guidelines (e.g.,
an unknown relation label would not render the file
invalid). Constraints that have to be met at this
level are that there must be at least one root node
and every node must be reachable via a directed
path from at least one root node (rootedness and
connectedness), that the enhanced graph can con-
tain cycles, but not self-loops (a node depending on
itself), and that dependency labels can only contain
characters from a limited set.

In addition to CoNLL-U validity, we also re-
quired that systems do not alter any non-whitespace
characters when processing the input. This is
a pre-requisite for the evaluation, where system-
predicted tokens must be aligned with gold-
standard tokens; files with modified word forms
would be rejected.

6 Evaluation Metrics

The main evaluation metric is ELAS (labeled at-
tachment score on enhanced dependencies), where
ELAS is defined as F1-score over the set of en-
hanced dependencies in the system output and the
gold standard. Complete edge labels are taken into
account, i.e. obl:on differs from obl. A second
metric is EULAS, which differs from ELAS in that
only the universal part of the dependency relation
label is taken into account. Relation subtypes are
ignored, i.e., obl:on, obl:auf, and obl are
treated as identical.

Another issue we address is the evaluation of
empty nodes. A consequence of the treatment of
gapping and ellipsis is that some sentences contain

4https://universaldependencies.org/
iwpt21/

5https://universaldependencies.org/
format.html

6https://universaldependencies.org/
release_checklist.html#validation
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Sue has 5 euros , Pat 6 and Kim 3

nsubj

conj>obj

conj>nsubj

conj>cc

conj>obj

conj>nsubj

conj>punct

obj

nummod

Figure 6: The enhanced graph from Figure 2 after col-
lapsing empty nodes and reflecting the paths in depen-
dency labels.

additional nodes (numbered 1.1 etc.). It is not guar-
anteed that gold and system agree on the position
in the string where these should appear, but the in-
formation encoded by these additional nodes might
nevertheless be identical. Thus, such empty nodes
should be considered equal even if their string in-
dex differs. To ensure that this is the case, we
have opted for a solution that basically compiles
the information expressed by empty nodes into the
dependency label of its dependents. I.e. if a de-
pendent with dependency label L2 has an empty
node i2.1 as parent which itself is an L1 depen-
dent of i1, its dependency label will be expanded
into a path i1:L1>L2. This preserves the infor-
mation that the dependent was an L2 dependent of
‘something’ that was itself an L1 dependent of i1,
while at the same time removing the potentially
conflicting i2.1 (Figure 6).7

Finally, to analyze results, we computed ELAS
scores per phenomenon. This should be seen as a
diagnostic only, and is intended to gain further in-
sights into the capability of various systems to deal
with challenging phenomena, such as the proper
analysis of phenomena occurring in the context of
coordination and ellipsis.

7 Approaches

The predominant approach to obtaining the en-
hanced dependency graph is to use a biaffine func-
tion, i.e., predicting for each pair of nodes how
likely it is that they are in a parent-child relation.
There is wide variety in the way the final annota-

7If there are multiple empty nodes in the sentence, we lose
the information which orphans were siblings and which were
not. On the other hand, multiple empty nodes in one sentence
are extremely rare.

tion graph is obtained, and ensuring that the result
is valid (i.e. connected). GREW (Guillaume and
Perrier, 2021) uses manually constructed rewrite
rules to map basic UD into EUD, while FAST-
PARSE (Anderson and Gómez-Rodríguez, 2021)
and NUIG (Choudhary and O’riordan, 2021) refor-
mulate the task as a sequence-labeling task.

For the initial stages of the analysis (sen-
tence splitting, tokenization, lemmatization, POS-
tagging) most teams use Stanza (Qi et al., 2020) or
Trankit (Van Nguyen et al., 2021) or similar meth-
ods. In a post-evaluation experiment, the DCU-
EPFL team (Barry et al., 2021) obtained improved
scores using Trankit instead of Stanza, while the
TGIF team (Shi and Lee, 2021) uses a variation
of the Trankit and Stanza systems to obtain the
best pre-processing results, especially for sentence-
splitting.

A wide variety of monolingual and multilingual
pre-trained language models is used, with XML-R
(Conneau et al., 2020) being the most popular. The
ShanghaiTech system (Wang et al., 2021) learns
an input representation from a combination of pre-
trained language models where the various rep-
resentations are concatenated into a single vector
and masking is used to learn a weighting for var-
ious components of the combined vector. Both
COMBO (Klimaszewski and Wróblewska, 2021)
and UNIPI (Attardi et al., 2021) use a method that
learns weights for the scores obtained from various
layers of the BERT model to be used as input for
the biaffine parser.

Most teams reduce the number of edge labels
during training by de-lexicalizing edge labels. De-
pendency paths involving an empty node are usu-
ally also replaced by concatenating the path labels
into a single path, as is also done in the evaluation
script, thereby removing the need to predict empty
nodes.

8 Results

Table 3 gives scores for LAS, EULAS, and ELAS
macro-averaged over languages.8 The ‘baseline’
is simply copying the UD annotation to EUD, but
note that this is a strong baseline as it assumes per-
fect UD input, something that clearly is not the
case for automated systems. Nevertheless, most
systems perform well above the baseline for ELAS.

8More detailed results (per language and treebank,
unofficial results) are available on the website of the shared
task, https://universaldependencies.org/
iwpt21/Results.html
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The NUIG submission was incomplete, in that the
results for some languages were missing. The
submissions of TGIF and ShanghaiTech contain
dummy annotations for all annotation layers except
EUD, so no LAS is provided.

LAS and ELAS correlate strongly, with ELAS
generally being 3-4% lower than LAS, except for
DCU-EPFL, whose ELAS beats LAS. The best sys-
tem in the first edition of this shared task (Bouma
et al., 2020) obtained a ELAS of 84.50, while the
current highest scoring system obtains an ELAS of
89.24. The average of ELAS of the top-5 was 78.75
for the first edition, while the current top-5 has an
average of 86.14. The higher scores are most likely
both due to more uniform annotations across tree-
banks as described in section 4 and improvements
in approaches.

Team LAS EULAS ELAS

baseline 100.00 96.28 79.87

TGIF n/a 90.16 89.24
ShanghaiTech n/a 88.49 87.07
RobertNLP 89.18 88.00 86.97
Combo 87.84 85.20 83.79
Unipi 87.25 85.24 83.64
DCU-EPFL 82.65 84.47 83.57
Grew 85.77 84.07 81.58
Fastparse 71.72 68.78 65.81
Nuig 39.78 31.63 30.03

Table 3: Evaluation results on the test data, macro-
averaged over languages. LAS is the evaluation of the
basic dependency annotation, while EULAS and ELAS
evaluate the enhanced graph.

Table 4 gives the highest ELAS per language.
Again, we see considerable improvements for all
languages compared to the best ELAS for that lan-
guage in the first edition of the shared task. The
only exception is English, but it should be noted
that for English the GUM treebank was added to
this years data, so that results are not really compa-
rable.

For the first edition of this task (Bouma et al.,
2020) we provided a qualitative evaluation, where
scores were computed per treebank, while taking
into account that some treebanks do not include all
enhancements stated in the guidelines in their en-
hanced layer. This year, as the annotation is consid-
erable more uniform across treebanks, we decided
to concentrate on performance per enhancement
type. We used a script that labeled each edge in

Language 2020 2021

Arabic 77.82 82.26
Bulgarian 90.73 93.63
Czech 87.51 92.24
Dutch 85.14 91.78
English1 88.94 88.19
Estonian 84.54 88.38
Finnish 89.49 91.75
French2 86.23 91.73
Italian 91.54 93.31
Latvian 84.94 90.23
Lithuanian 77.64 86.06
Polish 84.64 91.46
Russian 90.69 94.01
Slovak 88.56 94.96
Swedish 85.64 89.90
Tamil 64.23 65.58
Ukrainian 87.22 92.78

Table 4: Best ELAS per language for 2020 and 2021.
All best scores for 2021 were obtained by TGIF ex-
cept for Arabic (ShanghaiTech). 1: English compares
the score for the EWT and PUD treebanks (2020)
with EWT+PUD+GUM (2021). 2: French compares
the scores between the 2021 more simple annotation
scheme and the 2020 more complex original proposal.

the enhanced annotation as belonging to one of
the phenomena or enhancement types listed in Ta-
ble 5. ELAS per phenomenon are given in Table 6.
Note that the classification script assumes that ba-
sic UD annotation is also provided. For systems
that only provide dummy labels and relations in
their basic annotation (TGIF and ShanghaiTech),
scores for some of the phenomena can therefore
not be computed in a meaningful way and we re-
placed the score with ‘n/a’. Table 6 illustrates that
some systems do not take gapping (G) and treat-
ment of orphans (O) into account. Also, scores
for coordination (P and S), controlled subjects (X)
and relatives (R) differ quite a bit among systems.
While some of the phenomena are relatively rare
in the data, it seems that to do well on the task, a
system needs to perform reasonably well on all the
phenomena listed here.

9 Conclusions

The second edition of the shared task for parsing
into enhanced universal dependencies shows im-
provements at various levels. First of all, the same
set of languages was included as for the first edition,
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B basic this enhanced edge is identical to an edge in the basic tree (including the label)
C cased case-enhanced relation (the relation with the shorter label may or may not exist in the basic tree)
L relabeled the same two nodes are also connected in the basic tree but the label is different and the

difference does not look like a case enhancement
G gapping the parent or the child is an empty node; the edge was added because of gapping
O orphan basic relation missing from enhanced graph because it was replaced by a relation

to/from an empty node (the basic edge is not necessarily labeled orphan)
P coparent shared parent of coordination, relation propagated to a non-first conjunct
S codepend shared dependent of coordination, relation propagated from a non-first conjunct
X xsubj relation between a controlled predicate and its external subject
R relcl relation between a node in a relative clause and the modified nominal; also the ref relation

between the modified nominal and the coreferential relative pronoun
W relpron basic relation incoming to a relative pronoun is missing from enhanced graph because it was

replaced by the ref relation
M missing basic relation is missing from the enhanced graph but none of the above reasons applies
E enhanced this enhanced edge does not exist in the basic tree and none of the above reasons applies

Table 5: Classification of enhanced dependencies according to phenomenon and enhancement type.

Phenom’n Combo DCU_EPFL Fastparse Grew RobertNLP ShanghaiTech TGIF Unipi

B 90.86 89.13 78.32 88.00 91.56 n/a n/a 90.19
C 83.28 80.17 61.03 76.79 83.10 n/a n/a 82.30
L 0.00 0.02 0.00 0.00 0.03 0.01 0.00 0.05
G 21.81 0.00 0.00 12.57 0.00 56.55 58.39 0.00
O 29.84 0.00 0.00 15.81 0.00 n/a n/a 0.00
P 60.63 73.48 26.39 62.09 64.78 75.91 79.61 61.24
S 38.02 59.07 0.71 40.92 64.19 65.40 69.22 57.64
X 64.29 84.41 3.37 71.00 86.82 85.96 88.09 84.75
R 64.73 84.42 1.53 65.21 85.38 85.67 85.08 82.42
W 88.17 87.06 0.00 81.50 90.63 n/a n/a 90.76
M 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
E 0.51 0.51 0.02 0.00 0.00 0.09 0.09 1.77

Table 6: ELAS per phenomenon. Scores are micro-averaged, i.e. computed for the concatenation of all treebanks.
Note that for systems that only provide dummy annotations for basic UD, some of the scores cannot be computed
in a meaningful way. The NUIG system was not included as it lacked results for some languages.

but now we were using treebanks of UD release
2.7 (Zeman et al., 2020). This EUD annotation
of this release is more consistent and according to
guidelines than the data of release 2.5, but we still
had to harmonize some of the annotations so that
differences in annotation would not have a negative
effect on system performance.

Second, the requirement that submitted annota-
tions should be minimally valid according to the
guidelines, was now more easily met by all partic-
ipating teams. Teams ensured that graphs would
be connected, for instance, by applying several
heuristics that introduce the minimal amount of
additional edges to meet connectedness.

Third, while the best performing system in the

first shared task used a method that pre-compiled
the enhanced annotation graph into a tree, compati-
ble with basic UD, and used a standard dependency
parsing algorithm for learning to produce such an-
notations, almost all systems in this years shared
task went for a graph-based approach. There still
is quite a bit of variation in the way the graph is
constructed though, with some systems first pro-
ducing a tree, and then adding additional edges,
where others try to produce the graph directly. At
the same time, most systems do apply some form
of pre-compilation to make the data more suitable
for learning. In particular, case-enhanced depen-
dency labels are replaced by de-lexicalized labels
that can be easily reconstructed in postprocessing.
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Similarly, most teams adopt a method that removes
‘empty’ nodes and instead expresses the informa-
tion in incoming and outgoing edges from these
nodes in the form of complex dependency labels
(as is done in the evaluation script as well).

Finally, a very positive outcome of this evalua-
tion is that scores have increased considerably, not
only for the top performing system, but also for
the top-5 systems. In particular, lower performance
now seems to be restricted to languages for which
very limited amounts of data is available, and, as
Table 4 shows, the best system obtains an ELAS
of over 90% for 11 of the 17 languages included in
the evaluation.
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Željko Agić, Amir Ahmadi, Lars Ahrenberg,
Chika Kennedy Ajede, Gabrielė Aleksandravičiūtė,
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valevskaitė, Simon Krek, Parameswari Krishna-
murthy, Sookyoung Kwak, Veronika Laippala, Lu-
cia Lam, Lorenzo Lambertino, Tatiana Lando,
Septina Dian Larasati, Alexei Lavrentiev, John Lee,
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Marheinecke, Héctor Martínez Alonso, André Mar-
tins, Jan Mašek, Hiroshi Matsuda, Yuji Matsumoto,
Ryan McDonald, Sarah McGuinness, Gustavo Men-
donça, Niko Miekka, Karina Mischenkova, Mar-
garita Misirpashayeva, Anna Missilä, Cătălin Mi-
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Abstract

We introduce the COMBO-based approach for
EUD parsing and its implementation, which
took part in the IWPT 2021 EUD shared
task. The goal of this task is to parse raw
texts in 17 languages into Enhanced Univer-
sal Dependencies (EUD). The proposed ap-
proach uses COMBO to predict UD trees
and EUD graphs. These structures are then
merged into the final EUD graphs. Some EUD
edge labels are extended with case informa-
tion using a single language-independent ex-
pansion rule. In the official evaluation, the so-
lution ranked fourth, achieving an average
ELAS of 83.79%. The source code is avail-
able at https://gitlab.clarin-pl.eu/

syntactic-tools/combo.

1 Introduction

Data-driven dependency parsers achieve high pars-
ing performance for languages representing differ-
ent language families. The state-of-the-art depen-
dency parsers are trained with supervised learning
methods on large correctly annotated treebanks, e.g.
from Universal Dependencies (UD, Nivre et al.,
2020). UD is an international initiative aimed at
developing a cross-linguistically consistent anno-
tation schema and at building a large multilingual
collection of dependency treebanks annotated ac-
cording to this schema. A relatively small subset
of UD treebanks is annotated with higher-order
syntactic-semantic representations that encode var-
ious linguistic phenomena and are called Enhanced
Universal Dependencies (EUD).

Dependency treebanks, especially the uniformly
annotated UD treebanks, are used for multilingual
system development, e.g. within multiple shared
tasks on dependency parsing (Buchholz and Marsi,
2006; Nivre et al., 2007; Seddah et al., 2013, 2014;
Zeman et al., 2017, 2018). In particular, the IWPT

2020 shared task on Parsing into Enhanced Uni-
versal Dependencies (Bouma et al., 2020) is worth
mentioning, because it is the predecessor of the cur-
rent IWPT 2021 shared task (Bouma et al., 2021).
All shared tasks contributed to rapid advancement
of language parsing technology, inter alia, the for-
mulation of groundbreaking parsing algorithms
and their publicly available implementations (e.g.
Nivre et al., 2006; McDonald et al., 2006; Straka
and Straková, 2017; Dozat et al., 2017; Rybak and
Wróblewska, 2018; He and Choi, 2020).

Dependency parsing is an important issue in var-
ious sophisticated downstream tasks, including but
not limited to sentiment analysis (Sun et al., 2019),
relation extraction (Zhang et al., 2018; Vashishth
et al., 2018; Guo et al., 2019), semantic role la-
belling (Wang et al., 2019), or question answering
(Khashabi et al., 2018). On the other hand, even
if EUD parsing aims at predicting semantically in-
formed structures, which seem to be appropriate
in advanced NLP tasks, it is not yet used in solv-
ing these tasks. An obstacle can be the availability
of the state-of-the-art EUD parsers, e.g. two top
systems at the IWPT 2020 EUD shared task (i.e.
Kanerva et al., 2020; Heinecke, 2020) are not pub-
licly available and therefore difficult to integrate
into NLU systems without having to implement
them from scratch. Meeting the potential expecta-
tions of NLU system architects, the source code
of COMBO with the new EUD parsing module
and the pre-trained models developed as part of our
solution submitted to this shared task are publicly
available.

The proposed solution to EUD parsing is based
on (1) Stanza tokeniser (Qi et al., 2020), (2)
COMBO (Klimaszewski and Wróblewska, 2021),
a data-driven language-independent system for
morphosyntactic prediction, i.e. part-of-speech tag-
ging, morphological analysis, lemmatisation, de-
pendency parsing, and EUD parsing (see Section
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3.3), (3) an algorithm that merges predicted la-
belled dependency arcs and predicted EUD arcs,
and builds the final EUD graphs (see Section
3.4), and (4) two linguistically motivated language-
independent rules that improve the final EUD
graphs (see Section 3.5). The first expansion rule
adds case information sublabels to EUD modifiers,
and the second one amends enhanced arcs com-
ing into the function words. These two rules are
integrated into the proposed EUD parsing system.

In the official evaluation, our EUD parser ranked
4th, obtaining an average ELAS of 83.79% and
EULAS of 85.20%.1 It is worth emphasising that
COMBO predicts labelled dependency trees with
an average LAS of 88.91%, only being slightly
outperformed by the ROBERTNLP system.

2 Shared task description

The IWPT 2021 EUD shared task consists in eval-
uating systems for parsing raw texts into Enhanced
Universal Dependencies. The systems are trained
and evaluated on data supplied by the organisers.

Data The shared task dataset includes tree-
banks for 17 languages from 4 language families.
The largest group in this collection is constituted
by Indo-European languages, i.e. Bulgarian, Czech,
Polish, Russian, Slovak, Ukrainian (Slavic), Dutch,
English, Swedish (Germanic), French, Italian (Ro-
mance), and Latvian, Lithuanian (Baltic). There
are also representatives of the Uralic (Finnic) lan-
guages, i.e. Estonian and Finnish, the Afro-Asiatic
(Semitic) languages – Arabic, and the Southern
Dravidian languages – Tamil. The datasets vary in
size and type of enhancements.

Enhancement types Various linguistic phenom-
ena are encoded in EUD graphs:

• propagation of conjuncts in coordination con-
structions (see Figure 1),

• null nodes encoding elided predicates in coor-
dination constructions (see Figure 2),

• additional subject relations in control and rais-
ing constructions (see Figure 3),

• coreference relations in relative clause con-
structions (see Figure 4),

1https://universaldependencies.org/
iwpt21/results_official_coarse.html

• detailed case information sublabels of
the modifiers (see Figure 5).

The store buys and sells cameras .

det nsubj
conj

punct

cc

obj

nsubj

obj

Figure 1: The EUD graph with the conjoined predicate;
the conjoined verbs (buys and sells) share the subject
(the store) and the object (cameras), and the propagated
relations are indicated with the bottom blue enhanced
edges.

John orders tea and Timothy � coffee

nsubj obj

conj
orphan

cc

nsubj obj

conj

cc

Figure 2: The EUD graph with an empty node � and
the bottom blue enhanced edges. The tree edges re-
moved from the EUD graph are dotted.

John tried to order coffee .

nsubj
xcomp

mark obj

punct

nsubj

Figure 3: The EUD graph with the bottom blue en-
hanced edge encoding subject control with the control
predicate try.

3 System overview

The EUD parsing system is built of the following
components: a data encoder boosted with a con-
textual language model (see Section 3.1), mor-
phosyntactic predictors (see Section 3.2), an EUD
predictor (see Section 3.3), an algorithm merging
predicted labelled dependency arcs and enhanced
dependency arcs (see Section 3.4), and a post-
processing module (see Section 3.5).
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the house that I bought

det

acl:relcl

nsubj
obj

ref

obj

Figure 4: The EUD graph representing a relative clause
modifying the noun house. The enhanced edges are
marked with the bottom blue arcs and the tree edge re-
moved from the EUD graph is dotted.

3.1 Data encoder
The encoder vectorises the tokenised input data.
The input tokens are first represented as a concate-
nation of a character-based word embedding esti-
mated during system training with a dilated convo-
lutional neural network (Yu and Koltun, 2016), and
a BERT-based embedding estimated as follows.
BERT-based language models (LM, Devlin et al.,
2019; Conneau et al., 2020) are not fine-tuned dur-
ing system training. Instead, we apply the scalar
mix technique based on Peters et al. (2018) to pro-
duce an embedding (h) for a word i as a weighted
sum of embeddings from all layers:

hi = γ
L∑

j=1

sjhij (1)

Parameters γ and sj are learnable weights, addition-
ally sj are softmax-normalised. L is the number
of transformer layers. At the point of using LM,
the data is already tokenised. If LM intra-tokeniser
splits a word into multiple subwords, the embed-
dings h are estimated for these subwords and av-
eraged. The vectors of words or averaged vectors
of subwords are finally transformed with one fully
connected (FC) layer.

The encoder with two BiLSTM layers (Hochre-
iter and Schmidhuber, 1997; Graves and Schmid-
huber, 2005) transforms the concatenations of
the character-based word embeddings and the trans-
formed BERT-based embeddings into token vec-
tors. The BiLSTM-transformed token embeddings
are used as input to morphosyntactic predictors and
the EUD parsing module.

3.2 Morphosyntactic predictors
The proposed approach is based on various mor-
phosyntactic predictions. Part-of-speech tags, mor-
phological features, and lemmata are used in

the post-processing step to extract case informa-
tion expanding enhanced sublabels of modifiers
(see Section 3.5). The merge algorithm (see Sec-
tion 3.4), in turn, combines labelled dependency
arcs with enhanced dependency arcs predicted by
EUD parsing module.

3.3 EUD predictor
The EUD parsing module consists of an enhanced
arc classifier and an enhanced label classifier.
The arc classifier utilises two single FC layers that
transform encoded token vectors into head and de-
pendent embeddings. These embeddings are used
to calculate an adjacency matrix (A) of an enhanced
graph.A is a n×nmatrix, where n is the number of
tokens in a sentence (plus the ROOT node). The ma-
trix element Aij corresponds to the dot product of
the i-th dependent embedding and the j-th head em-
bedding. The dot product indicates the certainty of
the edge between two tokens. The sigmoid function,
applied to each element of A, allows the network
to predict many heads for a given dependent, i.e.
EUD graphs are built.
The enhanced label classifier also applies two fully
connected layers to estimate head (ei) and depen-
dent (ej) embeddings (they differ from embed-
dings estimated in the enhanced arc prediction). En-
hanced dependency labels are predicted by a fully
connected layer with the softmax activation func-
tion which is given the dependent embedding con-
catenated with the head embedding.

ehead = FC (ei) (2)

edep = FC (ej) (3)

label = argmax (FC (ehead, edep)) (4)

The loss function is only propagated for those pairs
(i, j) that belong to ground truth (i.e. arcs existing
in the enhanced dependency graph).

3.4 Merge algorithm
The predicted enhanced graphs could be used
without further processing. However, their qual-
ity could definitely be improved if they exploited
information from the predicted dependency trees.
Enhanced dependency graphs appear to be heavily
tree-based (see the example EUD graphs in Sec-
tion 2). The EUD graphs include some additional
edges, empty nodes, and extended labels of mod-
ifiers (and conjuncts in some languages), or their
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structure is slightly transformed. We therefore de-
cided to merge the predicted trees and the predicted
enhanced graphs.

Algorithm 1: The merge algorithm
Input : T := (V,ET ) : tree

G := (V,EG) : graph
Output : EUD : the final EUD graph

1 EEUD = {};
2 for e in ET do
3 if label(e) 6= acl:relcl then
4 EEUD := EEUD + e;
5 for e in EG do
6 if e /∈ EEUD and

has no cycle(EEUD + e) then
7 EEUD := EEUD + e;
8 for e in ET do
9 if label(e) = acl:relcl then

10 EEUD := EEUD + e;
11 EUD := (V,EEUD);

The merge algorithm (see Algorithm 1) succes-
sively adds the predicted tree and graph edges to
the set of EUD edges, and then composes the final
EUD graph of these edges. It starts by selecting all
tree edges except for edges with the acl:relcl label.
The EUD graphs representing relative clauses con-
tain cycles (see Figure 4). Refraining from adding
the acl:relcl relations in this step, we attempt to
avoid the cycle problem thereafter. In the second
step, consecutive graph edges are added to the EUD
set as long as they do not form a cycle or there
are no edges with the same or a different label in
the EUD set (i.e. we eliminate duplicate edges). In
the last step, the acl:relcl relations are added to
the EUD set which is then used to compose a final
EUD graph.

We are aware that UD relations selected in
the first merging step do not contain case informa-
tion, e.g. the obl relation is transferred to the EUD
set, although this relation should be de facto la-
belled obl:because of, obl:for, or obl:outside. How-
ever, our preliminary experiments indicated that
the anticipated enhanced labels often had erroneous
case extensions, which could not even come from
a sentence. Correcting labels with accidental case
extensions would require defining a large number
of relabelling rules that would have to be adapted
to a particular language. Extending the modifier la-
bels rather than correcting them seems to be a more
transparent and simple procedure. We thus define

one rule that derives case information from au-
tomatically predicted morphological features and
lemmata (see Rule 1 in Section 3.5). The rule is
utilised in the post-processing step, which is the last
step of building the EUD graphs.

3.5 Post-processing
We define two rules that improve the automatically
predicted EUD graphs.

Rule 1 The first rule specifies case information
of the following modifiers: nmod (nominal modi-
fier), obl (oblique nominal), acl (clasual modifier
of nouns), advcl (adverbial clause modifier), and of
conjuncts (conj). The case information (lemma)
is derived from case/mark or cc dependents of
a modifier or a conjunct, respectively, and from
the modifier’s morphological attribute Case. Fig-
ure 5 exemplifies extending UD labels with case
information.2

On or about Sep 23 , 1999 ... placed

case

casecc
conj:or

nummod
punct

nummod

obl:about

Figure 5: The EUD graph with blue, bolded sublabels
representing case information. The text excerpt comes
from the sentence ”On or about September 23, 1999 a
request for service was placed by the above referenced
counterparty.”.

The rule is language-independent and UD-based.
However, as not all treebanks attribute case infor-
mation to their modifiers or conjuncts, the rule ap-
plies only to predefined languages, e.g. the conjunct
extension is only valid in English, Italian, Dutch,
and Swedish.

Rule 2 The second rule corrects enhanced edges
coming into the function words that are labelled
mark, punct, root, case, det, cc, cop, aux and ref.
They should not be assigned other dependency re-
lation types in EUD graphs. If a token and is as-
signed the cc grammatical function in a dependency
tree, and thus also in the corresponding EUD graph
(the first merge step), it cannot be simultaneously
a subject (nsubj), for example. If such an erroneous
nsubj relation exists, it is removed from the EUD
graph in line with the second rule.

2This sentence originates from the English dev set. As
the case extension of the obl label is derived from the structure
coordinating two prepositions (i.e. on and about), we wonder
about correctness of selecting only about as the case extension.
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Language Model name Reference

Arabic bert-base-arabertv2 Antoun et al. (2020)
English bert-base-cased Devlin et al. (2019)
French camembert-base Martin et al. (2020)
Finnish bert-base-finnish-cased-v1 Virtanen et al. (2019)
Polish herbert-large-cased Mroczkowski et al. (2021)
Others xlm-roberta-large Conneau et al. (2020)

Table 1: Language models used in the experiments. Names refer to Transformers library (Wolf et al., 2020).

4 Experimental setup

4.1 Segmentation and preprocessing

Stanza tokeniser (Qi et al., 2020) is used to split raw
text into sentences, split sentences into tokens, and
optionally to expand multi-words. We train a new
segmentation model for each language on the train-
ing data provided in the shared task.3 Whenever
there are several UD treebanks for a language, we
train the segmentation model on the concatenation
of all training datasets available for that language.
Multi-word expansion involves only two languages,
i.e. Arabic and Tamil, because it does not cause
substantial gains in parsing other languages.

In order to collapse empty nodes, training data
are preprocessed with the official UD script.4 De-
pendents of the collapsed empty nodes are assigned
new labels, corresponding to the empty node label
and the dependent label joined with the special
symbol >. During prediction, the collapsed labels
are expanded and empty nodes are added at the end
of a sentence, following He and Choi (2020). This
design decision is motivated by the fact that (1)
it is difficult to find a proper position of elided
tokens or phrases, especially in free word order
languages, and (2) the evaluation procedure does
not take an empty node position into account, i.e.
appending an empty node at the end of a sentence
does not downgrade the score. It is important to
note that designing a heuristic that identifies proper
positions of elided elements remains an open issue,
and appending empty nodes at the end of a sentence
is only a makeshift solution.

3It is not allowed to use versions of UD other
than 2.7 in the IWPT 2021 shared task (see
https://universaldependencies.org/iwpt21/
task_and_evaluation.html). As the publicly available
Stanza models are trained on UD 2.5, we have to train new
models on UD 2.7.

4https://github.com/UniversalDependencies/
tools/blob/master/enhanced_collapse_empty_
nodes.pl

Input data are encoded using BERT-based lan-
guage models. Depending on the language, either
language-specific BERT (Devlin et al., 2019) or
multilingual XLM-R (Conneau et al., 2020) is used
(see Table 1).

4.2 Morphosyntactic prediction
COMBO system (Klimaszewski and Wróblewska,
2021) is used to predict part-of-speech tags, mor-
phological features, lemmata, and dependency
trees. For the purpose of this task, we also imple-
ment a new EUD parsing module (see Section 3.3)
and integrate it with COMBO. Similarly to seg-
mentation models, we train one COMBO model
for a language on all treebanks provided for this
language in the shared task data using the default
training parameters (see Table 2).5

Hyperparameter Value

Optimiser Adam
(Kingma and Ba, 2015)

Learning rate 0.002
β1 and β2 0.9
Number of epochs 400
BiLSTM layers 2
BiLSTM dropout rate 0.33
LSTM hidden size 512
Arc projection size 512
Label projection size 128

Table 2: COMBO training parameters (the upper en-
tries) and model parameters (the bottom entries).

5 Results

The shared task submissions are evaluated with two
evaluation metrics: ELAS – LAS6 on enhanced de-

5All models are trained and tested on a single NVIDIA
V100 card.

6LAS (labelled attachment score) is the proportion of to-
kens that are assigned the correct head and dependency label
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pendencies, and EULAS – LAS on enhanced de-
pendencies where labels are restricted to the UD
relation types, i.e. sublabels are ignored. COMBO
ranks 4th, achieving 84.71% ELAS in the quali-
tative evaluation (an average over treebanks), and
83.79% ELAS in the coarse evaluation (an aver-
age over languages). In terms of EULAS, it ranks
4th achieving 86.30% in the qualitative evaluation,
and 5th achieving 85.20% in the coarse evalua-
tion. In addition to ELAS and EULAS metrics,
the systems are also compared in terms of qual-
ity of predicting labelled dependency trees mea-
sured with LAS (the secondary evaluation mea-
sure). In the LAS ranking, COMBO takes second
place achieving 88.91% in the qualitative evalua-
tion, and 87.84% in the coarse evaluation, being
slightly overcome by the ROBERTNLP system
(89.25% in the qualitative evaluation, and 89.18%
in the coarse evaluation). Table 3 presents the offi-
cial results of COMBO models per language.

Language LAS EULAS ELAS

Arabic 81.04 78.35 76.39
Bulgarian 89.52 87.41 86.67
Czech 93.30 90.57 89.08
Dutch 90.93 88.90 87.07
English 87.22 85.27 84.09
Estonian 87.53 85.56 84.02
Finnish 92.28 88.79 87.28
French 89.29 88.10 87.32
Italian 93.27 91.16 90.40
Latvian 90.25 86.22 84.57
Lithuanian 84.75 81.28 79.75
Polish 92.75 90.22 87.65
Russian 94.29 91.76 90.73
Slovak 91.72 88.53 87.04
Swedish 87.82 85.26 83.20
Tamil 56.28 53.49 52.27
Ukrainian 90.96 87.60 86.92
Average 87.84 85.20 83.79

Table 3: The official evaluation results per language.

Post-processing impact We measure the impact
of the post-processing step (i.e. extending graph
labels with case information and correcting edges
coming into the function words) on the develop-
ment data per language (see Table 4). Following
the training approach, we concatenate the datasets

according to the gold standard.

Language
Before After

EULAS ELAS EULAS ELAS

Arabic 77.46 57.32 77.89 76.40
Bulgarian 89.50 78.97 90.29 89.30
Czech 89.93 74.96 91.28 89.91
Dutch 87.96 76.22 88.94 87.64
English 85.13 74.40 85.49 84.30
Estonian 86.27 68.73 86.92 85.45
Finnish 86.98 72.08 87.92 86.44
French 90.48 89.99 91.10 90.62
Italian 89.84 75.47 91.10 90.31
Latvian 85.65 73.72 86.44 84.88
Lithuanian 82.37 63.56 83.41 82.32
Polish 90.08 77.97 90.64 87.64
Russian 90.43 75.93 91.03 90.10
Slovak 87.89 71.71 89.39 87.90
Swedish 85.62 73.59 86.09 84.07
Tamil 54.35 40.48 54.84 53.38
Ukrainian 88.30 73.51 89.13 88.52

Table 4: Impact of the post-processing step.

Language
Sentences Tokens

TGIF Stanza TGIF Stanza

Arabic 96.87 79.92 99.99 99.97
Dutch 94.32 83.82 99.90 99.89
Lithuanian 96.22 87.74 99.99 99.81
Swedish 99.03 93.64 99.86 99.44

Table 5: The quality of TGIF and Stanza segmentation
in the selected languages.

if a language has multiple treebanks. The sec-
ond rule modifies the graph structure. However,
as the EULAS scores are almost negligible, using
this rule seems questionable. The first rule, in turn,
does not modify the structure of EUD graphs, but
only their edge labels, and its impact on improving
ELAS scores is significant.

Segmentation drawback The official evaluation
results show significant discrepancies in the qual-
ity of tokenisation and sentence segmentation.
The highest differences in sentence segmentation
between TGIF, the winner of the shared task, and
Stanza used in our approach are shown in Table 5.
For example, there is a loss of more than 15 percent-
age points in sentence segmentation of the Arabic
texts. We therefore decide to investigate the im-
pact of the quality of sentence segmentation and
tokenisation on the final results. For this purpose,
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Language LAS EULAS ELAS

Arabic 81.04 (+4.51) 78.35 (+4.3) 76.39 (+4.24)
Dutch 90.93 (+1.52) 88.90 (+1.61) 87.07 (+1.59)
Lithuanian 84.75 (+1.35) 81.28 (+1.34) 79.75 (+1.31)
Swedish 87.82 (+1.24) 85.26 (+1.21) 83.20 (+1.17)

Table 6: Performance gain in predicting UD trees and EUD graphs of gold-standard tokanised test sentences from
the languages with the worst segmentation quality. The values in brackets show the improvement over the baseline
(i.e. Stanza tokenisation).

we conduct an additional experiment consisting
in predicting EUD graphs on the test data with
gold-standard tokenisation and sentence segmen-
tation. The results of this experiment show a gain
of around 1.5 pp for all tested languages except
Arabic with the gain over 4 pp (see Table 6).

6 Conclusion

We presented the COMBO-based solution to EUD
parsing which took part in the IWPT 2021 EUD
shared task. The proposed approach is hybrid,
i.e. based on machine learning and rule-based al-
gorithms. First, UD trees and EUD graphs (and
also morphosyntactic features of tokens, i.e. parts
of speech, morphological features, and lemmata)
are automatically predicted with the data-driven
COMBO system. Then, the predicted structures are
combined into the EUD graphs using the developed
rule-based merge algorithm. Finally, the labels of
modifiers and conjuncts in the merged EUD graphs
are extended with case information using an ex-
pansion rule. The proposed solution is simple and
language-independent. We recognise that we could
still improve the results, e.g. by defining language-
specific correction rules. However, our objective
was to build an easy-to-use system for predicting
EUD graphs that is publicly available and can be
efficiently use to solve sophisticated NLU tasks.
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Gosse Bouma, Djamé Seddah, and Daniel Zeman.
2020. Overview of the IWPT 2020 shared task on
parsing into enhanced Universal Dependencies. In
Proceedings of the 16th International Conference
on Parsing Technologies and the IWPT 2020 Shared
Task on Parsing into Enhanced Universal Dependen-
cies, pages 151–161, Online. Association for Com-
putational Linguistics.
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Abstract
We present the system submission from the
FASTPARSE team for the EUD Shared Task
at IWPT 2021. We engaged in the task last
year by focusing on efficiency. This year
we have focused on experimenting with new
ideas on a limited time budget. Our system is
based on splitting the EUD graph into several
trees, based on linguistic criteria. We predict
these trees using a sequence-labelling parser
and combine them into an EUD graph. The re-
sults were relatively poor, although not a total
disaster and could probably be improved with
some polishing of the system’s rough edges.

1 Introduction

In our group’s submission to the IWPT 2020
shared task on EUD parsing (Dehouck et al.,
2020), we focused on efficiency by applying dis-
tillation and training set reduction together with a
rule-based approach to convert EUD graphs to UD
trees that could be processed by an off-the-shelf
parser. Here we describe our entry to the 2021
edition (Bouma et al., 2021), where we keep the
focus on algorithmic simplification of graphs, as
well as a prioritisation of efficiency over raw ac-
curacy, but we take the chance to explore different
questions that we deem interesting in the context
of a breadth-first exploration of the search space of
parsing techniques, even if they are not (at least in
their current form) competitive in terms of pushing
speed or accuracy metrics.

In particular, we wanted to experiment with the
application of sequence labelling parsing (Strzyz
et al., 2019b) to the problem, which we apply to
graph parsing for the first time. And more in par-
ticular, with the use of a linguistics-oriented ap-
proach (à la Dehouck et al. (2020)) to guide the
parsing process by splitting the EUD graphs into
coherent components that can be then parsed by a
multitask learning system.

Sequence labelling, the task of assigning one
discrete label to each token of a sequence, has
long been used for various natural language pro-
cessing tasks whose output can naturally be repre-
sented in this form, such as PoS tagging or named
entity recognition. In the case of syntactic pars-
ing, sequence labelling can be applied after defin-
ing an encoding that casts each possible syntac-
tic tree for a sentence of length n as a sequence
of n labels. While an early attempt to apply it
to dependency parsing (Spoustová and Spousta,
2010) yielded subpar accuracy, the advances in
machine learning architectures in the last decade
have made this kind of approaches practically vi-
able both for constituency (Gómez-Rodrı́guez and
Vilares, 2018) and dependency parsing (Strzyz
et al., 2019b). However, to our knowledge, se-
quence labelling approaches have not previously
been tried for any sort of graph parsing.

One possible way of extending the search
space of a parsing approach is to apply the ap-
proach to parse a constant amount of subgraphs
(typically, two) whose union provides the fi-
nal output. This has been applied to go be-
yond noncrossing dependency trees in transition-
based dependency parsing by splitting trees into
two subsets of arcs (planes) such that there
cannot be crossings within each of them, but
their union (the final output) can have crossing
arcs (Gómez-Rodrı́guez and Nivre, 2010; Gómez-
Rodrı́guez and Nivre, 2013; Fernández-González
and Gómez-Rodrı́guez, 2018). In semantic pars-
ing, it has also be used to extend the search space
from noncrossing graphs to pagenumber-2 graphs
by Sun et al. (2017), who use graph-based pars-
ing to obtain two noncrossing graphs that are com-
bined by Lagrangian relaxation. In the context of
sequence labeling, this approach was recently ap-
plied by Strzyz et al. (2020) with similar goals and
methods as the transition-based parsers above.
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While all these approaches split the output with
the goal of relaxing noncrossing constraints, the
same can be applied to relax single-head con-
straints, i.e., go from tree to graph parsing. For
example, any graph with in-degree at most 2 can
trivially be expressed as the union of two trees.
Here we apply that idea in the context of sequence
labeling parsing, i.e., we try to generate several se-
quences of labels (via multitask learning), each of
which represents a tree, and which together form
an EUD graph.

However, all these splitting approaches share
an underlying question: which of the (exponen-
tially many) possible splits is more adequate for
the model to adequately learn the parsing prob-
lem? The work cited above applies purely algo-
rithmic criteria to choose a canonical split: lazy
criteria to minimise the number of plane (subset)
switches (Gómez-Rodrı́guez and Nivre, 2010) or
the number of arcs assigned to the second plane
(Strzyz et al., 2020), or systematic algorithms that
assign crossing arcs to alternating planes (Sun
et al., 2017). These provide splits that are related
to the full parse by systemantic structural criteria,
but not by linguistic criteria. Since it has been re-
peatedly shown that it is possible to jointly learn
different kinds of dependencies in such a way that
they complement each other (e.g. with syntac-
tic and semantic dependencies, as in (Henderson
et al., 2013; Zhou et al., 2020)) and sequence la-
beling parsing can benefit from integrating several
linguistic representations using multitask learning
(Strzyz et al., 2019a), what if we try to split parses
in a linguistically meaningful way, yielding sub-
sets of dependencies with a distinct meaning that
can then be jointly learned? Here we evaluate such
an approach.

2 Splitting graphs

The vast majority of nodes in a EUD graph only
has one incoming edge. If we were to only use

one edge per node, we would cover 94.15% of
the edges. Only allowing a maximum of two in-
coming edges covers 99.53 % edges, three covers
99.88%, and four covers 99.95%. Figure 2 shows
how many nodes have different numbers of incom-
ing edges. Note the logarithmic scale used for the
number of nodes. We believe that our graph split-
ting process results in covering a maximum of two
edges, although we have not checked it formally.
We attempted to split the trees in a linguistically

Figure 2: Counts of nodes with x number of incoming
edges.

grounded way. We first create what call the basic
tree which most closely corresponds to the rela-
tive UD tree. We then create a relative, control,
and conjunct tree. It is worth noting that, con-
trary to the work cited in the introduction where
parses are split into two disjoint subgraphs, here
we have four trees and all these trees can (and usu-
ally) overlap. We now describe the different trees
into which we split the graph, as well as the collat-
ing procedure to combine output trees again into
an EUD graph.

Basic tree This tree is made up of the EUD
edges that correspond directly to the UD edges.
With one exception for case marking. We add
a relative position for the lemma (rather than the
lemma itself). This means multi-word case mark-
ing is not covered. If no such edge exists we set

The tape was a way to signal priorities

DET

NSUBJ

COP

DET MARK

ACL:TO

ACL:-1

OBJ

ROOT

Figure 1: Basic tree split. Only ACL:TO changes to ACL:-1 for the relative lemma encoding.
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the edge to (0, root). Although there should be no
way this introduces cycles, we check for them any-
where and if any are found we use the Chu-Liu-
Edmonds algorithm (CLE) (Chu and Liu, 1965;
Edmonds, 1967), setting scores for expected edges
to a sufficiently high value so that they are pri-
oritised, while the others are set very low. If the
MST tree has a different edge than in the basic
tree, we set that edge to (0, root). If the CLE al-
gorithm changes the ref edge, we change the in-
coming edge to its head to (0, root). An example
is shown in Figure 1.

Relative clause tree We take the basic tree of a
graph and replace incoming edges to nodes with
ref edges. Again we check for cycles. This
tree type was based on an error. We thought that
the relative pronoun had two incoming edges: one
from the head of the relative clause and one from
the referent. This meant we unnecessarily split
the basic and relative trees. An example of this
is shown in Figure 3.

Conjunct tree We start from the basic tree.
When an edge is “conj” we replace it with the edge
in the EUD column that has the same rel as the
conj head edge. We use the same cycle check as
for the previous trees. An example is shown in
Figure 4.

Control tree We take the basic tree again and
this time replace the original nsubj edges of a node
when its head has an incoming xcomp or ccomp
edge with the other nsubj edge in the EUD graph
for the node. We handle potential cycles as usual.
An example is shown in Figure 5. Another er-
ror is introduced here, where we don’t swap in the
ccomp edges.

Cycles Only Arabic-PADT has issues with
acyclicity after running CLE. So we just collapse
the edges that have been changed (this accounts
for three instances in the training data).

Collating trees into graphs As we operated on
a limited time budget, the collating method is egre-
giously simple. For each node, we take the set of
unique edges from all the predicted edges across
all trees. When an edge exists between wi and wj

in more than one tree, we use the label from the
first occurrence which is typically that of the basic
tree.

Table 1 shows the EULAS and ELAS when
splitting the gold graphs and collating them again.

We clearly can cover most of the graph edges with
this procedure with Arabic enhanced labels being
very low. We believe that this is a bug, but it could
be due to some inherent unexpected characteristic
of our basic splitting procedure.

EULAS ELAS

ar-padt 94.04 81.91
bg-btb 97.09 97.06
cs-cac 94.72 93.18
cs-fictree 94.21 91.75
cs-pdt 94.41 92.36
en-ewt 97.44 97.44
en-gum 97.09 97.09
et-edt 95.61 92.35
et-ewt 95.75 91.27
fi-tdt 92.73 87.13
fr-sequoia 96.22 96.22
it-isdt 96.32 95.98
lt-alksnis 94.08 87.35
lv-lvtb 93.77 93.77
nl-alpino 98.07 98.01
nl-lassysmall 97.34 97.30
pl-lfg 99.02 99.02
pl-pdb 96.37 96.19
ru-syntagrus 97.97 97.68
sk-snk 96.23 94.18
sv-talbanken 96.31 96.31
ta-ttb 97.62 93.39
uk-iu 96.35 95.97

Table 1: Graphs formed from splitting the gold an-
notated development trees and subsequently collating
them again.

3 Parser

We use a BiLSTM network which has word
and character embeddings as input. We use a
sequence-labelling parser so the edges are pre-
dicted as separate labels for each token. Simi-
larly, the edge labels are predicted separetly. But
both label predictions are jointly trained with a
hard-sharing multi-task architecture with equal
weighted loss contributions. UDPipe 2.0 was
used for tokenization, lemmatization, and tagging.
FastText word embeddings were used but limit vo-
cab space to 50k tokens for memory constraints
(Bojanowski et al., 2017). We then train 4 parsers
for each treebank which are trained on the data
generated by splitting the graph, i.e. there is one
parser for the basic trees, one for the relative trees,
and so on. Then the parsers are used to predict
their respective tree type and these are all collated
to create the predicted graphs for each treebank.

Sequence labelling parser (SEQLAB) is a pars-
ing approach based on encoding trees as a se-
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They look like they were doberman pinchers who were shrunk
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ROOT

Figure 3: Relative tree split. Top full EUD graph, middle basic tree, bottom relative tree.

quence of one label per token in a sentence, so
parsing is reduced to a standard sequence labelling
problem (Spoustová and Spousta, 2010; Li et al.,
2018; Strzyz et al., 2019b).1 We choose to use
the original bracketing encoding from Strzyz et al.
(2019b), as it does not require UPOS tags on de-
coding (the other leading encoding does). While
there is a more recent bracketing encoding that
covers more non-projectivity (Strzyz et al., 2020),
this also involves splitting trees which we assumed
would add too much complexity on top of our
linguistic-based splitting. Our chosen encoding
represents a tree as sequence of tags composed of
left and right brackets representing each word’s in-
coming and outgoing arcs. Namely, the encoding
for wi is based on:

1We use refactored encoding/decoding functions from
https://github.com/mstrise/dep2label.

< — if εj(i−1) ∈ E ∧ j > i− 1

\— ×k | k =
∑

wj∈S

{
1 if j < i ∧ εij ∈ E
0 otherwise

/ — ×k | k =
∑

wj∈S

{
1 if i−1 < j ∧ ε(i−1)j ∈ E
0 otherwise

> — if εji ∧ j < i

We repurposed a PyTorch biaffine implementa-
tion and edit it to be a simple sequence-labelling
system, i.e. embedding layers, followed by a num-
ber of BiLSTM layers, and one MLP for predict-
ing bracket tags and another for edge labels. The
hyperparameters are shown in Table 2. The origi-
nal code for the biaffine is no longer available but
a similar version is still available.2 More details of
the system can be found in Anderson and Gómez-
Rodrı́guez (2021).

2https://github.com/yzhangcs/parser
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A clean and stable version is attached
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Figure 4: Conjunct tree split. Top full EUD graph, middle basic tree, bottom conjunct tree.
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Figure 5: Control tree split. Top full EUD graph, middle basic tree, bottom control tree.

171



That church had a boggin’ stench to it
<\ <\ / < <\\> / < \>

DET NSUBJ

DET

AMOD

OBJ

NMOD

CASE

ROOT

Figure 6: The bracketing encoding introduced by
Strzyz et al. (2019b).

Hyperparameter Value
Word embedding dimensions 300
Char embedding dimensions 100
Char BiLSTM dimensions 100
Embedding dropout 0.33
BiLSTM dimensions 500
BiLSTM layers 3
BiLSTM dropout 0.33
MLP layers 1
Learning rate 0.02
MLP dropout 0.33
Momentum 0.9
L2 norm λ 0.9
Annealing 0.75∧(t/5000)
ε 1×10−12

Optimiser Adam
Loss function cross entropy
Epochs 200
Min vocab freq. 1
Batch size 32
Patience 10

Table 2: Network hyperparameters.

4 Results

The results were rather underwhelming, but our
system wasn’t an abject failure. Figure 7 shows
the average performance of the parsers trained on
each tree type. The performance is pretty stable
across each type which is not surprising as the
overall structure doesn’t vary greatly. But the av-
erage performance on the collated trees is quite a
bit less as shown in Table 3. We decided to in-

Figure 7: Average performance of parser on each tree
type

EUAS 86.66
EULAS 72.02
ELAS 69.21

Table 3: Average scores over all treebanks.

clude EUAS which measures the unlabelled graph
structure. This shows that the parser does learn
the graph structure fairly well, but really strug-
gles with labelling the edges. This could be due
to appending the labels with the relative position-
ing of lemmas used for case marking making it
harder to predict even the basic label type. Fig-
ure 8 shows the breakdown of the three metrics for
each treebank. It is clear that for each treebank a
fairly accurate prediction of the graph structure is
achieved, but the labelled versions perform much
worse. Table 4 shows the full results of out sys-
tem on the test data. The performance across the
board is fairly weak and resulted in the worst sys-
tem which submitted predictions for the full tree-
bank set (and was second last overall).

5 Discussion and conclusion

The relative tree split was based on a mistake. We
should have left the REF edges in the basic tree
and added the NSUBJ label variant to the referent
in the relative tree. The way it is implemented, we
lose those edges. Despite this error, we can still re-
construct most of the edges in the graphs. Beyond
this, we can’t capture higher-order edges with this
method. We did try using a SWEEP tree, to cap-
ture certain 3rd degree edges. But it seemed as the
parser struggled to make sensible predictions and
subsequently time ran out before we could test this
thoroughly.

The collator is very naive. A major issue is in-
troducing extra dummy root edges due to the na-
ture of the split. Another thing we could have tried
would have been to collate edges from trees that
are only associated with the specific phenomenon
of a given tree (i.e. conjunct trees only propagating
conjunct edges.)

Also, looking at the difference in performance
between EUAS and ELAS, it seems the labelling
is bad. And the difference between EULAS and
ELAS suggests this isn’t just a matter of the case
marking messing things up. However, the use of
relative positional encoding of the case marking
might make it harder to learn the labels. Although,
the LAS for each tree type isn’t that low. So it
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Figure 8: Performance of parser on each treebank.

Language Tokens Words Sentences UPOS XPOS UFeats AllTags Lemmas UAS LAS CLAS MLAS BLEX EULAS ELAS

Arabic 99.98 94.58 82.09 91.68 88.96 89.14 88.65 90.37 69.84 64.88 59.10 54.18 56.33 61.13 53.74
Bulgarian 99.91 99.91 94.17 99.15 97.19 97.95 96.84 97.97 87.85 83.39 78.08 74.62 75.91 80.65 78.73
Czech 99.88 99.88 93.18 98.86 95.83 96.01 94.98 98.77 83.75 79.16 74.58 69.89 73.73 76.15 72.85
Dutch 99.74 99.74 69.26 96.79 95.29 96.44 94.61 97.06 79.85 74.37 65.23 60.10 63.06 70.49 68.89
English 98.38 99.06 88.92 95.85 95.30 94.16 91.39 96.04 82.36 77.99 73.46 64.94 70.55 74.51 73.00
Estonian 99.58 99.58 85.60 96.89 97.65 95.78 94.24 94.90 71.70 64.50 59.25 54.75 56.38 63.48 60.05
Finnish 99.70 99.68 88.65 97.84 56.14 96.44 54.29 92.11 69.06 62.46 55.58 51.73 51.40 63.20 57.71
French 99.65 99.23 94.35 97.05 99.23 91.11 90.28 97.45 84.03 77.14 67.40 57.56 65.57 74.65 73.18
Italian 99.93 99.84 98.76 98.52 98.44 98.23 97.66 98.66 88.16 84.92 77.15 73.97 75.79 82.11 78.32
Latvian 99.33 99.33 98.74 96.28 89.64 93.79 88.84 95.81 78.37 72.03 67.81 60.47 65.26 67.62 66.43
Lithuanian 99.91 99.91 87.87 95.97 90.37 91.07 89.41 93.61 61.39 53.55 47.68 41.70 44.66 52.52 48.27
Polish 99.40 99.83 97.52 98.50 93.04 90.80 87.70 97.87 84.32 78.28 73.23 63.04 71.69 74.62 71.52
Russian 99.60 99.60 98.80 98.86 99.60 88.97 88.76 98.33 87.09 83.23 79.62 66.43 78.39 80.13 78.56
Slovak 100.00 99.99 85.15 97.67 90.14 93.42 89.19 96.47 78.23 71.71 66.18 59.41 63.54 67.09 64.28
Swedish 99.18 99.18 93.54 97.25 95.57 88.82 87.63 93.60 78.88 73.11 68.64 56.05 63.96 69.37 67.26
Tamil 99.16 94.26 97.52 84.19 82.67 82.27 75.64 88.95 59.80 47.66 42.60 34.50 40.15 46.18 42.53
Ukrainian 99.85 99.81 96.61 97.89 94.22 94.18 93.13 97.39 76.26 70.79 65.07 59.24 63.42 65.41 63.42
Average 99.60 99.02 91.22 96.43 91.72 92.86 88.43 95.61 77.70 71.72 65.92 58.98 63.52 68.78 65.81

Table 4: Full results on test data per language.

could potentially be an issue about the way the
trees are collated. Perhaps a first step would be
to separate the relative case marking from the re-
lation labels and treat it as a separate task in the
MTL system.

We have presented a simple technique that can
easily be extended (and implemented better) but
manages to predict relatively accurate unlabelled
graphs. It also isn’t an utter failure when consid-
ering labelled edges, but it seems curious that the
performance drops so much compared to the unla-
belled performance.
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Abstract

This paper describes a system proposed for the
IWPT 2021 Shared Task on Parsing into En-
hanced Universal Dependencies (EUD). We
propose a Graph Rewriting based system for
computing Enhanced Universal Dependencies,
given the Basic Universal Dependencies (UD).

1 Introduction

The IWPT 2021 Shared Task on Parsing into En-
hanced Universal Dependencies (Bouma et al.,
2021) is a second edition of an equivalent shared
task in 2020 (Bouma et al., 2020). The goal of the
shared task is to produce EUD (Schuster and Man-
ning, 2016), with several new annotation layers
expressed on top of UD annotations (Nivre et al.,
2020).

In the previous shared task, there were two kinds
of approaches: producing EUD annotation from
raw text with machine learning methods or pro-
ducing EUD from UD with a rule-based approach
(with or without some learning to optimize rule
usage). Like (Heinecke, 2020) or (Dehouck et al.,
2020), our proposal corresponds to the second ap-
proach: we used an existing tool for producing
UD annotations and work only on the conversion
from UD to EUD. Unlike other rule-based ap-
proaches, we used GREW, a generic Graph Rewrit-
ing tool (Bonfante et al., 2018), in order to describe
the rules for enhancement.

Another specificity of our work is that we pri-
marily design our rules by following the guidelines.
Even if, in a secondary step and in the context of
the shared task, we adapt the system to the corpora
which diverge from the guidelines (section 2.6), we
can easily provide a system closer to the guidelines,
adpatable to languages specificities.

Our system achieved 81.58 ELAS score on the
task, starting from UDPIPE annotation with an

LAS of 85.77. In the paper, we present the sys-
tem, analyse the results and make some in-depth
analysis on French and English of discrepancies
between GOLDEUD data and the output of our
system starting GOLDUD annotations.

2 Description of the system

2.1 Parsing to UD

For this shared-task, we used the UDPIPE2 (Straka
et al., 2016) through the online service1 to produce
the UD annotation of the data. The models used for
each language are trained in UD version 2.6 on the
following corpora: Arabic-PADT, Bulgarian-BTB,
Czech-PDT, English-EWT, Estonian-EDT, Finnish-
TDT, French-GSD, Italian-ISDT, Lithuanian-
ALKSNIS, Dutch-Alpino, Polish-PDB, Slovak-
SNK, Swedish-Talbanken, Tamil-TTB, Ukrainian-
IU2.

2.2 GREW

The transformation UD to EUD is described with
the graph rewriting tool GREW3. Each rule is
defined by a pattern and a set of commands de-
scribing how to modify the graph. A dedicated
strategy mechanism allows for controlling rules ap-
plications (in which order subsets of rules must
be applied and how they must be iterated). A
global transformation system (rules and strategies)
is called a Graph Rewriting System (GRS).

2.3 Representation of EUD annotations

We use here the convention already adopted in the
Deep-Sequoia project (Candito et al., 2014), in
which dependencies are drawn in black when the

1https://lindat.mff.cuni.cz/services/
udpipe/

2The only modification done was on the Czech output
where 7 obvious errors on the lemmatisation makes the con-
version producing non valid data.

3https://grew.fr/
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relation exists both in UD layer and EUD layer,
in red when they are present in UD layer only
and in blue (and below) when they are present in
EUD layer only (see Figure 1). This prevents from
having two relations when both layers are identical
and make figures easier to read.

2.4 From UD to EUD

Our goal was to design a GRS, following the EUD
guidelines, to convert the UD annotations into
EUD annotations, but we observed that the conver-
sion system has to be adapted to each language and
to some particular annotation choices.

As the rules of a GRS are organized in strate-
gies, this adaptation is done by activating or not the
applications of subsets of rules in the definition of
the main strategy of a generic GRS. The rules are
freely available4.

2.4.1 The six types of enhancement
The EUD guidelines identify 6 types of enhance-
ments, and for each type, we have designed a subset
of rules to achieve it. We briefly describe the main
features of each subset.

Empty nodes for elided predicates Predicate eli-
sion is detected thanks to the presence of orphan
dependencies. They are mainly found in coordina-
tions and sometimes with parataxis relations. Fig-
ure 1 shows the UD annotation of a sentence with
ellipsis5.

First, a null node N is created and a dependency
N −obj→ trees is introduced from N to the
head of the second conjunct trees. The label
obj is determined by a parallelism with the depen-
dency sold −obj→ strawberries 6. The
dependency trees −cc→ and is also raised to
N.

In a second stage, all orphan dependencies
from the head of the second conjunct are trans-
formed into dependencies from the null node.
The labels of the new dependencies are deter-
mined from the context. In our example, the de-
pendency trees −orphan→ winter is trans-
formed into the dependency N −obl→ winter,
because N is a verb, winter a noun with a case
dependent.

4https://gitlab.inria.fr/grew/udtoeud
5All examples are extracted form the corpora used in the

task. Due to lack of space, expressions in square brackets,
which are not essential to our purpose, are skipped in the
annotation.

6Even if the subject is also a candidate, we always favour
the object in this case.

Propagation of incoming dependencies to con-
juncts The propagation of incoming dependen-
cies to the conjuncts of a coordination is system-
atical. The only difficulty concerns modifiers: if
a word H is modified by a coordination, the label
of the dependency from H to the head of the first
conjunct may need to be changed depending of
the POS of the second conjunct. In Figure 2, the
dependency come −obl→ parents has to be
propagated to the head of the other conjunct, the
adverb separately. Because of this POS, the la-
bel has to be changed and the dependency becomes
come −advmod→ separately.

Many gold corpora of the task do not take into
account differences of POS between the conjunct
heads and propagate the incoming dependencies
without changing their labels.

Propagation of outgoing dependencies from con-
juncts The main problem for this enhancement
comes from the ambiguity of the UD annotation
schema. It is not possible to distinguish a left de-
pendency on a coordination from a left dependency
on the first conjunct of the coordination because
both are attached to the head of the first conjunct.

But, it is necessary to remove the ambiguity in
order to know if one should propagate a left depen-
dency. This is more or less easy depending on the
type of the dependency. In Figure 3, the nsubj
and cop dependencies on the noun acteur must
be propagated on the head of the second conjunct
protagoniste. It is easy to design a specific
rule for each type of dependency to perform the
propagation, what we have done. But, if the de-
pendency is an advmod dependency, there is no
general criterion for removing the ambiguity. The
dependency on souvent should be propagated,
but not the dependencies on n’ and pas. This
depends on the modifier adverb but also on the con-
text. This is a point where our rule-based approach
marks its limits compared to learning approaches.
Of course, the answer depends strongly on the lan-
guage and we will see how to take into account the
specificity of each language in subsection 2.5.

For right dependencies, there is no ambiguity,
because a right dependent on the first conjunct that
follow all conjuncts is necessarily a dependent on
the coordination.

Additional subject relations for control and rais-
ing constructions Raising and control verbs take
an infinitive as a xcomp dependent and the en-

176



they
upos=PRON

sold
upos=VERB

strawberries
upos=NOUN

in
upos=ADP

summer
upos=NOUN

and
upos=CCONJ

ε
upos=VERB

trees
upos=NOUN

in
upos=ADP

winter
upos=NOUN

nsubj obj case casecc
orphanobl

conj

objcc
oblconj

Figure 1: They sold strawberries in summer [,] and [Christmas] trees in [the] winter

Would
upos=AUX

you
upos=PRON

come
upos=VERB

with
upos=ADP

your
upos=PRON

parents
upos=NOUN

or
upos=CCONJ

separately
upos=ADV

?
upos=PUNCT

nsubj nmod:poss cc
aux case conj

obl
punct

advmod

Figure 2: Would you come with your parents or separately ?

hanced subject of the infinitive is either the subject,
the direct object or the indirect object of the main
verb, if that argument exists. The choice between
the three possibilities depends on the lexical infor-
mation about the raising or control verbs. In our
approach, this means that we need lexicons per
language. Most often, we do not have such lexi-
cons and choose the subject of the main verb as the
subject of the infinitive, as this is the most likely.

Coreference in relative clause constructions
The relative clause enhancement adds ref depen-
dencies from the antecedent to the relative pronoun
and all dependencies targeting the relative pronoun
are moved to the antecedent.

In Figure 4, the sentence contains two rela-
tive pronouns, dont and qui. Let us focus on
qui. First, rules make an upward path from
the relative pronoun by following the dependen-
cies until finding an acl:relcl dependency. In
the example, this requires crossing a dependency
nsubj and then conj. As soon as the depen-
dency acl:relcl is reached, it is possible to add
the ref dependency, because its source is known,
it is the source of the dependency acl:relcl
and the antecedent of the relative pronoun, and
the target of the dependency as well, the relative
pronoun, which is kept in memory. In a second
stage, all dependencies targeting the relative pro-
noun are moved to the antecedent. In the example,
the dependency nécessite −nsubj→ qui is
transformed into the dependency nécessite
−nsubj→ entreprise.

Modifier labels that contain the preposition or
other case-marking information With regard
to this enhancement, we strictly follow the guide-
lines: if a case or mark dependent on a modifier
is a multiword expression, we add the form of the
expression to the dependency representing the mod-
ification; if it is a single word, we add the lemma
of the word.

The guidelines don’t cover the case of several
case or mark dependencies having the same
source. In Figure 5, the conjunction because and
the preposition in both depend on the same gover-
nor zone (dependencies in orange). We decide to
add the outermost dependent lemma to the modifier
dependency feel −advcl→ zone because it
is related to this dependency, whereas in has no
relationship to it.

If the two candidate dependents are consecutive,
we consider them as a single multiword and add
the concatenation of their lemmas to the modifier
dependency.

2.4.2 Rule ordering
The six types of enhancements are not totally in-
dependent, some of them interact, so the order of
application between the six corresponding subsets
of rules is not neutral. Figure 1 shows an inter-
action between the subset implementing ellipsis
processing and the subset implementing the propa-
gation of outgoing dependencies of a coordination.
If we apply the latter first, it is not possible to prop-
agate the dependency sold −nsubj→ they to
the second conjunct of the coordination because
its verb is elided. We must apply first the subset
creating a null node representing this verb.
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souvent
upos=ADV

Occident
upos=PROPN

n'
upos=ADV

est
upos=AUX

pas
upos=ADV

seulement
upos=ADV

acteur
upos=NOUN

mais
upos=CCONJ

protagoniste
upos=NOUN

advmod cc
advmod conj

cop
advmod

nsubj
advmod

cop
nsubj

advmod

Figure 3: souvent [, l’] Occident n’ est pas seulement [l’] acteur [,] mais [aussi le] protagoniste [des violations
des droits de l’ homme] (often[, the] West is not only [the] actor[,] but [also the] protagonist [of human rights
violations])

Une
upos=DET

entreprise
upos=NOUN

dont
upos=PRON

on
upos=PRON

reparlera
upos=VERB

et
upos=CCONJ

qui
upos=PRON

nécessite
upos=VERB

det nsubj nsubj
iobj cc

acl:relcl conj

ref
iobj

ref
nsubj

Figure 4: Une entreprise dont on reparlera et qui nécessite [un budget important] (A business that will be talked
about again and that requires [a large budget])

I
upos=PRON

feel
upos=VERB

so
upos=ADV

bad
upos=ADJ

because
upos=SCONJ

I
upos=PRON

was
upos=AUX

in
upos=ADP

the
upos=DET

zone
upos=NOUN

nsubj advmod det
xcomp case

cop
nsubj

mark
advcl

advcl:because

Figure 5: I feel so bad because I was [so] in the zone [that I didn’t even get her name]
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The subset of rules adding case or mark informa-
tion to modifier dependencies must be applied at
the end because it does not create any possibility
to apply another subset later.

The order between the application of the five
other subsets is relatively free. Figure 4 shows an
example of interaction between the subset relating
to relative clauses and the subset implementing the
propagation of incoming dependencies of a coor-
dination. We applied the former subset first and to
apply the second subset, we only need to propagate
the dependency entreprise −acl:relcl→
reparlera to the second conjunct of the coordi-
nation. But there is no problem to reverse the order
between the two subsets.

Even if the order chosen between the 6 subsets
aims at minimizing the number of rule applica-
tions, we cannot avoid applying some subsets a
second time. Figure 6 shows an example of rep-
etition in the subset application. To add the de-
pendency build −nsubj→ I, we need first to
apply the subset related to control verbs. We ob-
tain the dependency sell −nsubj→ I. Then
we apply the subset related to the propagation of
outgoing dependencies of a coordination. We ob-
tain the dependency use −nsubj→ I. Finally,
we apply the subset relative to control verbs a sec-
ond time and we obtain the last dependency build
−nsubj→ I.

All rules presented in this subsection constitute
the generic GRS used to convert the UD annotation
into the EUD for the 17 languages.

2.5 Adaptation to the specificities of languages

Rule packages are added to the generic GRS to
express specificities of language groups. In order
to be applied, they are inserted in the strategy at
carefully chosen positions in the generic strategy.

In this way, strategies can be designed adapted
to particular languages, by activating or not these
new packages.

Now, let us examine which types of rules can be
added to express specificities of certain languages.

Null Subject Languages Arabic, Bulgarian,
Czech, Estonian, Finnish, Italian, Polish, Russian,
Slovak, Tamil and Ukrainian are null subject lan-
guages. Their grammar permits verbs to lack an
explicit subject. This can be a problem for the
propagation of subjects of coordinated verbs.

Consider the Polish sentence “Moje gospo-
darstwo daje mi zabezpieczenie, mam gdzie wrócić

(My farm gives me security, I have a place to come
back to)”. The general rules of subject propagation
will propagate the subject gospodarstwo from the
verb daje to the coordinated verb mam, which is
incorrect because mam is at first person and does
not require any explicit subject. In order to avoid
the propagation, a specific rule marks all first and
second person finite verbs, so that they cannot re-
ceive a subject dependency. For the third person,
there is an ambiguity. In the Polish sentence ”Chło-
piec wstaje, otwiera drzwi”, there are two correct
translations in English: “The boy gets up, opens the
door” and “The boy gets up, he opens the door”,
because one can propagate the subject boy or not.
We chose to propagate the subject, which means
that in this case, there is no difference between null
subject languages and others.

Case addition to the dependency labels for mod-
ifiers For case-based languages, the labels of the
dependencies targeting modifiers are augmented
with their cases. The rule package implementing
this enhancement is trivial.

Left dependents of a coordination We designed
rules to propagate the left dependents of a coordi-
nation by dependency types. As we said before,
a left dependent on the first conjunct of a coordi-
nation is ambiguous: it can depend on the whole
coordination or only on the first conjunct. In order
to determine, for a given language if a given type of
dependency must be propagated or not, we tested
the two alternatives on the dev corpus of the shared
task and keep the alternative yielding the highest
score.

This method has important limits because it de-
pends on the annotation of the gold corpus. More-
over it is very coarse; for a given dependency
type, not all dependencies have the same behaviour:
some must be propagated, others not. It would be
necessary to refine the conversion rules but for that,
we need linguistic knowledge about the concerned
language.

Raising and control verbs The default rule we
use is to consider that the subject of the raised or
controlled verb is the subject of the main verb but
this is not always true. A language-specific lexicon
should indicate for each of these verbs which argu-
ment of the main verb is the subject of the raised or
controlled verb. From the training and development
corpora available for the task, we have created lexi-
cons for a five languages: Dutch, English, French,
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I
upos=PRON

decided
upos=VERB

to
upos=PART

sell
upos=VERB

and
upos=CCONJ

use
upos=VERB

to
upos=PART

build
upos=VERB

wikiHow
upos=PROPN

nsubj mark cc mark obj
xcomp conj xcomp

nsubj
nsubj

nsubj

Figure 6: [So] I decided to sell [eHow] and use [the proceeds] to build wikiHow.

Italian and Polish.

2.6 Adaptation to annotation choices
Some annotators of the gold corpora do not strictly
follow the guidelines. We have adapted our GRS
to their choices on some very specific points.

Dependency label extension specific to one
language In Dutch, enhancements for relative
clauses distinguish antecedents of relative pro-
nouns that play the deep role of subject and direct
object in the relative clause with the extensions
relsubj and relobj. We have designed spe-
cific rules to add this extension.

Enhancements partially taken into account
We have taken into account the fact that enhance-
ments are only partially achieved for Arabic, Bul-
garian, Estonian, French, Russian and Tamil.

Coordinating conjunction raising For the Ara-
bic, Dutch, English, Italian and Swedish treebanks,
the names of coordinating conjunctions are added
to the corresponding conj dependencies, in the
same way as for prepositions and subordinating
conjunction. We have taken this into account even
though it is not indicated in the guidelines.

Propagation of root dependencies According
to the guidelines, root incoming dependencies
of a coordination should be propagated like all
incoming dependencies, but some treebanks do not
and we take this into account.

The French and the Polish treebanks, the latter
partially, not only add subjects for raising and con-
trol verbs, as mentioned in the guidelines, but add
deep subjects for modifier infinitive and participial
clauses. Since this goes beyond the guidelines, we
do not consider these enhancements.

Table 1 summarizes the three kinds of adaptation
to the different languages.

3 Results

Data we submit to the task, called GREW(UDPIPE),
is the output of the application of a language spe-
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Figure 7: LAS of UDPIPE and ELAS of
GREW(UDPIPE)

cific GRS to the output of UDPIPE. Figure 7 shows
for each language, the LAS of UDPIPE and the
ELAS of GREW(UDPIPE). We can observe that
the final result highly depends on the UD annota-
tion quality produced by UDPIPE.

In addition to the results provided by the
orgnanisers, we make complementary analysis, fo-
cusing on the UD to EUD transformation. In Ta-
ble 2, we report the ELAS score obtained by our
system applied on the gold UD annotation as in-
put. We also recall the same measure reported last
year by two others systems (Dehouck et al., 2020;
Heinecke, 2020). The score of our system is in
most of the case between the two other proposal,
closed to Dehouck’s system except for Estonian
and Swedish.

4 Analysis of discrepancies with the gold
annotation In French and English

In order to better understand the behaviour of our
GRS, we made some manual inspection of the dif-
ference between the annotation GREW(GOLDUD)
and GOLDEUD. We focused on the two languages
for which we had the grammatical skills to analyze
the discrepancies: French and English.
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ar bg cs nl en et fi fr it lv lt pl ru sk sv ta uk
null subject X X X X X X X X X X X
left dep propag X X
left aux dep propag X
left case dep propag X X
left cop dep propag X X
left mark dep propag X X
case raising X X X X X X X X X X
subj control raising X X X X X
specific extens X
partial enhancement X X X X X X
coord conj raising X X X X
root propagation X X X X X X

Table 1: The three kinds of adaptation of the system. Top: adaptation to languages; middle: adding lexical
information; bottom: adaptation to specific annotations observed in dev data.

Language Dehouck Heinecke Our
Shared task 2020 2020 2021

Arabic 98.8 95.2 98.5
Bulgarian 98.6 97.8 97.6

Czech 97.9 94.7 97.6
Dutch 98.9 94.4 97.6

English 99.5 98.0 99.0
Estonian 99.2 92.6 93.9
Finnish 97.3 94.4 96.9
French 98.9 96.4 99.0
Italian 99.5 98.4 98.8
Latvian 95.7 91.0 92.1

Lithuanian 98.8 94.6 98.2
Polish 94.9 91.1 95.2

Russian 98.6 95.4 98.2
Slovak 98.8 95.4 98.1

Swedish 98.8 96.1 94.7
Tamil 99.3 97.0 98.3

Ukrainian 95.8 94.6 95.9
Average 98.2 95.1 97.0

Table 2: Evalutation of the rule-based systems on
Gold UD data: Dehouck (Dehouck et al., 2020), Hei-
necke (Heinecke, 2020) and our system

4.1 Discrepancies in French
For the French corpus, we observed 589 discrep-
ancies7 of the computed annotation with the gold
annotation, and we manually analyzed the first 100.
Table 3 details this analysis.

In order to explain mislabeling in the propaga-
tion of incoming dependencies of a coordination,
let us return to the example in Figure 2. In propagat-
ing incoming dependencies of a coordination that
is a modifier, we cannot automatically propagate
the label related to the first conjunct to the other
conjuncts, because we have to take into account the
POS of the heads of these conjuncts. This was not
taken into account for the two errors mentioned in
the table.

In the table, we have also distinguished errors
related to subject or object attributives from errors
related to raising and control verbs, because of their
particular property: the attributives may have other
POS than verb. For exemple, consider the sentence
ils laissent les troupes de la KFOR en paix (they
leave the KFOR troops in peace). The noun peace
has an enhanced subject, which is troops. The gold
annotation ignores this type of subject.

44 discrepancies come from the fact that the
gold annotation implements enhancements that are
not considered by the guidelines. Columns ¬EUD
gives a detailed analysis of these enhancements
with the number by type. Let us give an example to
explain the last type of these non-standard enhance-
ments. Consider the phrase l’occasion également
pour J.-P. Bruneau de présenter ses voeux (the oc-
casion also for J.-P. Bruneau to present his wishes).
The gold annotation indicates that J.-P. Bruneau
is the enhanced subject of present, which is not

7Number of differences computed by the diff Unix tool:
differences in consecutive lines are merged as one difference.
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EUD UD GRS ¬EUD
Total 47 1 8 44
Non-propagated incoming dependencies of a coordination 29
Non-propagated left outgoing dependencies of a coordination 6
Wrongly propagated left outgoing dependencies of a coordination 1
Non-propagated right outgoing dependencies of a coordination 2
Label errors in the propagation of incoming dependencies of a coordination 2
Forgotten subject of controlled verb 3 1
Verbs considered as control verbs by error 2
Forgotten subjects of subject attributes 3
Forgotten subjects of object attributes 2
Grammaticaly ill-formed sentence 1
Incorrect handling of light verb constructions 3
Subjects of epithet participles 28
Subjects of modifier infinitive or participial clauses 14
Subjects of infinitives in constructions NOUN + PREP + NOUN + de + INF 2

Table 3: Manual inspection of the 100 first discrepancies in French between GOLDEUD and GREW(GOLDUD).
Columns are: errors in EUD gold annotation, errors in UD gold annotation, errors produced by our GRS, EUD
gold annotations non described in guidelines.

considered by the guidelines.

4.2 Discrepancies in English

For the English test corpus, we observed 815 dis-
crepancies of the computed annotation with the
gold annotation, and we also manually inspected
the first 100. Table 4 gives a detailed analysis of
these errors with their number by type.

5 Conclusion

We have observed that many conversion problem
arise with the CASEDEPREL layer. This layer is of
course highly dependent of the language (because
lexical information is used in relation definitions).
This prevent the new relation to be universal and
we believe that this is counterproductive in the ob-
jective of a universal description among a large set
of languages.

In this paper, we have proposed a rule-based
system for computing EUD annotation from UD.
Our raw results are far behind the best systems of
the task. This can be explained by the fact that we
are dependent of the basic UD annotation provided
by another tool. Moreover, the manual inspection
we have made shows that, at least on English and
French, the GOLD test data used in the task are not
error-free and contains several annotations that are
not described in the guidelines. We can suspect that
this is in favour of the learning based approaches
which are designed to adapt to the annotated data,
completely ignoring the guidelines.

Despite its weakness, we believe that our system
have several benefits:

• It has highlighted some places where the
guidelines require precisions, like the pres-
ence of several case or mark on the same
head;

• It can be used for improving the existing EUD
data in the project by identiying annotation
error in the current EUD annotations; using
a different approach, we can guess that the
errors reported will be complementary to the
ones that can spotted with other methods;

• Thanks to the modular aspect of the GRS with
rules packages adpated to language specifici-
ties, it is usable as a starting point for adding
EUD annotation layer on languages where
there is no such data and where learning based
methods cannot be used.
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Abstract

This paper presents the system used in our sub-
mission to the IWPT 2021 Shared Task. This
year the official evaluation metrics was ELAS,
therefore dependency parsing might have been
avoided as well as other pipeline stages like
POS tagging and lemmatization. We neverthe-
less chose to deploy a combination of a de-
pendency parser and a graph parser. The de-
pendency parser is a biaffine parser, that uses
transformers for representing input sentences,
with no other feature. The graph parser is a se-
mantic parser that exploits a similar architec-
ture except for using a sigmoid crossentropy
loss function to return multiple values for the
predicted arcs. The final output is obtained by
merging the output of the two parsers. The de-
pendency parser achieves top or close to top
LAS performance with respect to other sys-
tems that report results on such metrics, except
on low resource languages (Tamil, Estonian,
Latvian).

1 System Overview

The shared task 2021 aims specifically at perform-
ing enhanced dependency parsing, starting from
raw text, in a multi-language setting consisting of
seventeen languages Bouma et al. (2021).

We concentrate on the syntactic parsing and en-
hancement stages, by exploiting existing tools for
tokenization, sentence splitting.

2 Syntactic parsing

State of the art dependency parsers currently of-
ten adopt the graph-based model, based on neural
networks for the choice of arcs and labels.

In particular the Bi-LSTM-based deep biaffine
neural dependency parser by Dozat and Manning
(2017) has been quite popular and used in three out
of five of the top submissions to the CoNLL 2018
Shared Task: Multilingual Parsing from Raw Text

to Universal Dependencies (Zeman et al., 2018),
in particular in the top non-ensemble submission
(Kanerva et al., 2018).

We trained our own models for each language on
the shared task treebanks using DiaParser, which
uses the Stanza tokenizer and multi-word splitter.

2.1 DiaParser

DiaParser is a dependency parser derived from Su-
par1, which exploits transformers to obtain con-
textualized word representations. Such represen-
tations are obtained by first applying the specific
transformer tokenizer, splitting them into word-
pieces, and then the embeddings for words is ob-
tained as the average of the wordpiece embeddings.

The code for the parser is available on GitHub2.
We exploit the idea to provide hints to the parser,

obtained from structural syntax probes (Hewitt and
Manning, 2019). We explored the idea to use a syn-
tax probe to extract hints for the parser to estimate
the most likely edges for the parse tree. Eventually
a quite simple solution proved effective: to extract
values from one of the attention layers of the trans-
former (typically layer 6) and add them to the score
of the biaffine layer with a trainable weight alpha.

One may consider a transformer as computing
three functions, the outputs To : Rn×d → Rn×d,
the hidden states Th : Rn×d → RL×n×d, and the
attention weights Ta : Rn×d → RH×L×n×n for H
heads and for L layers.

Given a sentence with n words w =
[w1, w2, ..., wn], we feed the parser with E =
[e1, ..., en], where ei = mixl(To(w))i is the scalar
mix of the top l layers of the outputs of the trans-
former T applied to w (Liu et al., 2019a).

The attentive parser estimates the probability of

1https://github.com/yzhangcs/parser
2https://github.com/Unipisa/diaparser
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each possible arc for sentence w as follows:
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where α is a learned weight and A are the attention
weights of the transformer T for a given layer l and
the given head h.

During prediction the syntactic parser applies
the Chu-Liu-Edmonds algoritm (Chu, 1965; ED-
MONDS, 1967) to ensure the well-formedness of
the parse tree, but only after a quick check that the
arcs contain cycles.

The results we obtained with such an extension
on the English development corpus where 92.21
UAS and 90.31 LAS, using Electra (Clark et al.,
2020) as transformer as well as for attention, a
small improvement with respect to 91.32 UAS and
89.33 LAS without using these features.

2.2 Semantic Graph Parser
The graph parser uses the approach of Dozat and
Manning (2018).

The graph parser shares the same architecture as
the biaffine dependency parser, except in for using
a sigmoid cross entropy loss function instead of a
softmax, to allow for multiple results. Those arcs
with a logit value greater than zero are retained.

S
(arc)
ij = {si,j ≥ 0}

P (y
(arc)
ij |w) = argmaxj(S

(arc)
i )

(2)

The scores of each pair of words in w can be
decoded into a graph by keeping only edges that
received a positive score. Labels are assigned to
each such predicted edge, choosing the highest-
scoring label for that edge.

The two losses of the edge and arc labels pre-
dictors are combined through an hyper-parameter
λ ∈ {0, 1}:

` = λ`(label) + (1− λ)`(edge) (3)

The methods does not ensure a fully connected
graph, hence we merge it with the tree produced by
the syntactic parser.

The final enhanced dependency arcs are obtained
as the union of the arcs predicted by the syntactic

and semantic parsers, with a check that no extra
arcs to the root are introduced.

3 System Description

3.1 Tokenization

DiaParser exploits the Stanza tokenizer and multi-
word splitter to perform sentence splitting, tok-
enization and multi-word splitting. It automatically
downloads tokenizer models for each language
from the Stanza repository. We trained a specific
MWT model for Italian, trained on the Italian UD
treebank Italian ISST, augmented with a special
list of sentences, representative of 75 categories
of verb conjugations and of articled prepositions,
which we contributed back to the official Stanza
distribution.

3.2 Experiments

The syntactic and semantic parsers were trained
separately on each language corpus, using language
specific transformer models, where available. For
languages with more than one corpus, they were
just concatenated together into a single corpus.

We used the following transformers for sentence
representations and attention weights:

Lang. Model
ar asafaya/bert-large-arabic
bg DeepPavlov/bert-base-bg-cs-pl-ru-cased
cs DeepPavlov/bert-base-bg-cs-pl-ru-cased
en google/electra-base-discriminator
fi TurkuNLP/bert-base-finnish-cased-v1
fr dbmdz/bert-base-french-europeana-cased
it dbmdz/electra-base-italian-xxl-cased-discriminator
nl wietsedv/bert-base-dutch-cased
ro DeepPavlov/rubert-base-cased
sv KB/bert-base-swedish-cased
uk dbmdz/electra-base-ukrainian-cased-discriminator

Table 1: Transformer models used for each language.

For all other languages we used
bert-base-multilingual-cased.

4 Settings and Results

4.1 Experimental Settings

In training, we used the official train and gold de-
velopment sets. We used the development set to
select the model hyper-parameters based on LAS
for the dependency parser and labeled F1 on en-
hanced dependencies for the semantic graph parser.

We use a batch size of 2000 tokens with the
AdamW (Loshchilov and Hutter, 2019) optimizer.
The hyper-parameters of our system are shown in
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Parameter Value
Arc hidden size 500
Rel hidden size 100
MLP dropout 33%
Transformer layers 4
Optimizer AdamW
Learning rate 5e-5
Warmup 0.1
Loss interpolation (λ) 0.1
batch size 2000

Table 2: Hyper parameters used in the experiments.

Table 2, which are mostly adopted from previous
work on dependency parsing.

4.2 Results

The official results are those labeled unipi-smax in
our submission, obtained through merging the out-
puts of the dependency and semantic graph parser.

Table 3 shows our team official results obtained
in tokenization, tagging, parsing and enhancement
on the test sets.

5 Pretrained Multilingual Model

After the submission deadline, we experimented
building a single model on the concatena-
tion of the training corpora of all languages.
The corpora was preprocessed to eliminate
empty nodes, which represent implicit nodes,
denoted with IDs such as 2.1 in the CoN-
LLU file format. We used the official script
enhanced collapse empty nodes.pl,
which collapses graphs reducing such empty
nodes into non-empty nodes and introducing new
dependency labels.

We used the official script to collapse graphs
through reducing such empty nodes into non-empty
nodes and introducing new dependency labels. In
the post-process, we add empty nodes according to
the dependency labels. As the official evaluation
only score the collapsed graphs, such a process
does not impact the system performance.

Then the enhanced dependency labels in the
training corpus were de-lexicalized, stripping lex-
ical information from labels, like in (Grünewald
and Friedrich, 2020), replacing them with place-
holders (e.g. obl:[case]) indicating where in the
dependency graph the lexical information is ex-
pected to be found. This process allowed us to
reduce the total number of enhanced dependency

labels from 6125 to 1282.
This also made it possible to fit the model to

be trained into the 32GB of memory of our V100
GPU. We run the training in parallel on 4 such
GPUs: each epoch took about 45 minutes and run
for 29 epochs.

The model was trained using contextualized
word embeddings from RoBERTa (Liu et al.,
2019b), more precisely xlm-roberta-large
from HuggingFace3 using a scalar mixture of the
top 4 hidden layers (Liu et al., 2019a).

Then the model was fine tuned on each language
with its specific language corpus. The enhanced
dependency labels in the output of the parser are
converted back to their lexical notation using a
heuristic processing similar to the one outlined in
(Grünewald and Friedrich, 2020):

Furthermore, for languages that have case mor-
phology, like Czech, the case is added to the label.

The multilingual model does provide significant
improvements for languages with smaller corpora,
in particular Latvian, Lithuanian and Tamil, as
shown in Table 4:

Notably Lithuanian improves on EULAS by 6.75
points. The ELAS scores do not improve as much,
possibly due to the ri-lexicalization algorithms that
may need tuning to each language.

6 Conclusions

We experimented using two parsers with the same
architecture to perform syntactic and semantic pars-
ing. We first trained parser models on the specific
corpus for each language. The final output is ob-
tained by merging the outputs of the two parsers.
This simple approach works reasonably well for
languages with large enough corpora.

To address the difficulty in handling low resource
languages, we explored building a single model
trained on all corpora and fine tuning it on each
specific corpora. Since enhanced dependency la-
bels contain lexical parts and the number of such
labels is quite large, we adopted a preprocessing
step to de-lexicalize the labels. The approach gave
promising results on some languages, but the back-
convertion algorithm that introduces the lexical
parts in the labels after parsing still needs to be
improved.

Given the similarity of the architectures of the
syntactic and semantic parsers, the prospect of per-
forming joint training is promising and has been

3https://huggingface.co/xlm-roberta-large
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Language Tok Sent UAS LAS EULAS ELAS
Arabic 99.96 80.83 86.19 81.97 79.79 77.17
Bulgarian 99.93 97.49 95.29 92.71 91.89 90.84
Czech 99.91 95.05 94.13 92.36 90.14 88.73
Dutch 99.82 70.55 90.12 87.69 84.92 84.14
English 98.36 91.34 90.64 88.47 87.75 87.11
Estonian 99.62 87.44 87.11 84.14 82.66 81.27
Finnish 99.60 91.90 94.25 92.76 90.61 89.62
French 99.78 96.44 93.47 90.30 88.91 87.43
Italian 99.77 98.75 95.03 93.65 92.52 91.81
Latvian 99.82 99.07 89.90 86.63 83.92 83.01
Lithuanian 99.84 88.11 82.75 78.31 74.61 71.31
Polish 99.41 98.35 94.93 92.71 90.94 88.31
Russian 99.59 99.03 94.51 93.32 91.49 90.90
Slovak 99.96 86.00 93.32 91.75 88.77 86.05
Swedish 99.45 93.53 90.86 88.53 86.61 84.91
Tamil 99.01 88.35 63.27 56.04 54.16 51.73
Ukrainian 99.85 96.75 93.68 91.92 89.41 87.51
Average 99.63 91.70 89.97 87.25 85.24 83.64

Table 3: UNIPI Official results on the test set.

Language Tok Sent UAS LAS EULAS ELAS
Latvian 99.82 99.07 89.90 86.63 87.54 84.78
Lithuanian 99.84 88.11 82.75 78.31 81.36 76.62
Slovak 99.96 86.00 93.32 91.75 91.47 81.17
Tamil 99.01 88.35 63.27 56.04 55.90 53.71

Table 4: Preliminary results with multi-language model.

considered but left for further research.
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Abstract

This paper describes the system used in sub-
mission from SHANGHAITECH team to the
IWPT 2021 Shared Task. Our system is a
graph-based parser with the technique of Au-
tomated Concatenation of Embeddings (ACE).
Because recent work found that better word
representations can be obtained by concate-
nating different types of embeddings, we use
ACE to automatically find the better concate-
nation of embeddings for the task of enhanced
universal dependencies. According to official
results averaged on 17 languages, our system
ranks 2nd over 9 teams.

1 Introduction

Compared to the Universal Dependencies (UD)
(Nivre et al., 2016), the Enhanced Universal De-
pendencies (EUD) (Bouma et al., 2020, 2021)1

makes some of the implicit relations between
words more explicit and augments some of the de-
pendency labels to facilitate the disambiguation of
types of arguments and modifiers. The represen-
tation of EUD is an enhanced graph with reen-
trancies, cycles, and empty nodes. Such represen-
tation can represent richer grammatical relations
than rooted trees, but it is harder to learn. To make
the learning process relatively easy, we transfer
the enhanced graph to a bi-lexical structure like
annotation of semantic dependency parsing (SDP)
(Oepen et al., 2015) by reducing reentrancies and
empty nodes into new labels. Therefore, many ap-
proaches for SDP can be adopted by EUD. Instead
of the second-order parser that was used in pre-
vious work (Wang et al., 2019, 2020b; Wang and
Tu, 2020), we apply the biaffine parser (Dozat and
Manning, 2018) which is one of the state-of-the-
art approaches of SDP for simplicity.

∗♠: Equal contributions.
1https://universaldependencies.org/u/

overview/enhanced-syntax.html

Recent developments on pre-trained contextual-
ized embeddings have significantly improved the
performance of structured prediction tasks in nat-
ural language processing. A lot of work has also
shown that word representations based on the con-
catenation of multiple pre-trained contextualized
embeddings and traditional non-contextualized
embeddings (such as word2vec (Mikolov et al.,
2013) and character embeddings (Santos and
Zadrozny, 2014)) can further improve perfor-
mance (Peters et al., 2018; Akbik et al., 2018;
Straková et al., 2019; Wang et al., 2020a). Wang
et al. (2021) proposed Automated Concatenation
of Embeddings to automate the process of find-
ing better concatenations of embeddings and fur-
ther improved performance of many tasks. We
utilize their method to find concatenations of pre-
trained embeddings as the input of the biaffine
parser for EUD. Because there are many contex-
tualized embeddings, such as XLMR (Conneau
et al., 2020a), BERT (Devlin et al., 2018) and Flair
(Akbik et al., 2018), non-contextualized embed-
dings, such as word2vec (Mikolov et al., 2013),
GloVe (Pennington et al., 2014), and fastText (Bo-
janowski et al., 2017), and character embeddings
(Santos and Zadrozny, 2014). The search space
of embeddings concatenation is large in size, be-
sides, we need to train models of 17 languages re-
spectively. Following Wang et al. (2021), we use
reinforcement learning to efficiently find the better
embeddings concatenation for each language. Ex-
perimental results averaged on 17 languages show
the effectiveness of our approach. Our system is
ranked 2nd over 9 teams in the official evaluation.

2 System Description

2.1 Data Pre-processing

We adopt the same data pre-processing method as
Wang et al. (2020b) which transfers EUD graphs
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to SDP graphs. For the reentrancies of the same
head and dependent on different labels in the EUD
graph, we combined these arcs into one and con-
catenate the labels of these arcs with a special
symbol ‘+‘ representing the combination of two
arcs. For the empty nodes in the EUD graph, there
is an official script that can reduce such empty
nodes into non-empty nodes with new dependency
labels2.

2.2 Approach

We follow the approach of Wang et al. (2021)3 to
build our system. Our system contains two parts:
an ACE module to determine embedding concate-
nation as inputs, a biaffine parser to predict edges’
existence and labels between each word pair. We
introduce these two parts respectively.

ACE Given a sentence with n words w =
[w1, w2, ..., wn], we first get the input representa-
tions V = [v1; · · · ;vi; · · · ;vn], V ∈ Rd×n for
the sentence, where vi is word representation of
i-th word and it is a concatenation of L types of
word embeddings:

vli = embedli(x); vi = [v1
i ;v2

i ; . . . ;vLi ]

where embedl is the model of l-th embeddings,
vi ∈ Rd, vli ∈ Rdl . dl is the hidden size
of embedl. Our ACE use a binary vector a =
[a1, · · · , al, · · · , aL] as an mask to choose a sub-
set of embeddings of L types and mask out the
rest. Thus, the embeddings become:

vi = [v1
i a1; . . . ;vlial; . . . ;v

L
i aL]

where al is a binary variable.
To learn this mask (i.e., embeddings concatena-

tion), we set a controller which interact with our
EUD parser to iteratively generate the embedding
mask from the search space. Defined the proba-
bility distribution of selecting an concatenation a
as P ctrl(a;θ) =

∏L
l=1 P

ctrl
l (al; θl). Each element

al of a is sampled independently from a Bernoulli
distribution, which is defined as:

P ctrl
l (al; θl)=

{
σ(θl) al=1

1−P ctrl
l (al=1; θl) al=0

(1)

2For more details, please refer to https:
//universaldependencies.org/iwpt20/task_
and_evaluation.html.

3https://github.com/Alibaba-NLP/ACE.
Our code will be released here as well.

where σ is the sigmoid function.
We use reinforcement learning and take the ac-

curacy on development set of our EUD parser as
reward signal R. The controller’s target is to max-
imize the expected reward J(θ) = EP ctrl(a;θ)[R]
through the policy gradient method (Williams,
1992). We defined the reward function as:

rt=
t−1∑

i=1

(Rt−Ri)γ
Hamm(at,ai)−1|at−ai| (2)

Where γ ∈ (0, 1). |at−ai| is a binary vector, rep-
resenting the change between current embedding
concatenation at at current time step t and ai at
previous time step i. Rt and Ri are the reward at
time step t and i. Hamm(at,ai) is the Hamming
distance of two concatenations.

Since calculating the exact expectation is in-
tractable in our approach, the gradient of J(θ) is
approximated by sampling only one selection fol-
lowing the distribution P ctrl(a;θ) at each step for
training efficiency. With the reward function, the
final formulation is:

∇θJt(θ) ≈
L∑

l=1

∇θ logP ctrl
l (atl ; θl)r

t
l (3)

EUD Parser After getting the representation V
of the sentence w, we use a three-layer BiLSTM
taking the representation as input:

R = BiLSTM(V )

Where R = [r1, . . . , rn] represents the output
from the BiLSTM. For the arc prediction and la-
bel prediction, we use two different feed-forward
networks and biaffine functions:

s
(arc)
ij = FNN Biaffine(arc)(ri, rj)

s
(label)
ij = FNN Biaffine(label)(ri, rj)

The arc probability distribution and the label prob-
ability distribution for each potential arc are:

P (arc)(y
(arc)
ij |w) = softmax([s

(arc)
ij ; 0])

P (label)(y
(label)
ij |w) = softmax(s

(label)
ij )

According to s
(arc)
ij , we first use MST (McDon-

ald et al., 2005) algorithm to get a tree structure,
then we additionally add arcs for the positions that
s

(arc)
ij > 0. Such method can get a EUD graph

and ensure the connectivity of the graph. Wang
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EMBEDDING (LANGUAGE) RESOURCE URL
fastText (all) Bojanowski et al. (2017) github.com/facebookresearch/fastText
M-BERT (all) Devlin et al. (2019) huggingface.co/bert-base-multilingual-cased
BERT (en, et, sk, ta, uk) Devlin et al. (2019) huggingface.co/bert-base-cased
BERT (ar) Safaya et al. (2020) huggingface.co/asafaya/bert-large-arabic
BERT (bg, cs, pl, ru) Arkhipov et al. (2019) huggingface.co/DeepPavlov/bert-base-bg-cs-pl-ru-cased
BERT (fi) Virtanen et al. (2019) huggingface.co/TurkuNLP/bert-base-finnish-cased-v1
BERT (fr) Martin et al. (2020) huggingface.co/camembert-base
BERT (it) dbmdz huggingface.co/dbmdz/bert-base-italian-cased
BERT (lt) U&R(2020) huggingface.co/EMBEDDIA/litlat-bert
BERT (lv) U&R(2020) huggingface.co/EMBEDDIA/litlat-bert
BERT (nl) wietsedv huggingface.co/wietsedv/bert-base-dutch-cased
BERT (sv) Malmsten et al. (2020) huggingface.co/KB/bert-base-swedish-cased
XLM-R (all) Conneau et al. (2020b) huggingface.co/xlm-roberta-large
RoBERTa (uk) youscan huggingface.co/youscan/ukr-roberta-base
RoBERTa (ru) Blinov and Avetisian (2020) huggingface.co/blinoff/roberta-base-russian-v0
RoBERTa (nl) Delobelle et al. (2020) huggingface.co/pdelobelle/robbert-v2-dutch-base
RoBERTa (others) Liu et al. (2019) huggingface.co/roberta-large
XLNet (en) Yang et al. (2019) huggingface.co/xlnet-large-cased

Table 1: The embeddings we used in our system. The URL is where we downloaded the embeddings. ‘all’ means
we use the model for all the languages. ‘other’ means we use this RoBERTa model for all the languages except the
uk, ru and nl.

et al. (2020b) shows that the non-projective tree
algorithm (MST) is better than the projective tree
algorithm (Eisner’s) for the EUD task. We select
the label with the highest score of each potential
arc.

Given any labeled sentence (w,Y ?), where Y ?

stands for a gold parse graph, to train the system,
we follow the approach of Wang et al. (2019) with
the cross entropy loss:

L(arc)(Λ) = −
∑

i,j

log(PΛ(y
?(arc)
ij |w))

L(label)(Λ) = −
∑

i,j

1(y
?(arc)
ij ) log(PΛ(y

?(label)
ij |w))

where Λ is the parameters of our system,
1(y

?(arc)
ij ) denotes the indicator function and

equals 1 when edge (i, j) exists in the gold parse
and 0 otherwise, and i, j ranges over all the tokens
w in the sentence. The two losses are combined
by a weighted average.

L = λL(label) + (1− λ)L(arc)

Where λ is a hyper-parameter.

3 Settings and Results

3.1 Experimental Settings

In training, we use the official development set
as the development set. We tune the hyper-
parameters on the development set and determine
the hyper-parameter values according to the la-
beled F1 score (LF1) which is the evaluation met-
ric used in SDP. LF1 measures the correctness of
each arc-label pair. We use a batch size of 2000

Language Fine-tuned XLM-R ACE
ELAS ELAS

Arabic 76.07 82.90
Bulgarian 87.92 91.46

Czech 91.64 92.95
Dutch 87.11 92.33

English 86.04 89.24
Estonian 87.13 89.37
Finnish 86.00 91.66
French 74.74 93.65
Italian 89.31 93.03

Latvian 84.83 90.11
Lithuanian 68.92 85.48

Polish 87.98 90.90
Russian 91.52 93.22
Slovak 85.26 90.92

Swedish 76.02 88.04
Tamil 38.66 69.84

Ukrainian 79.60 90.87
Average 81.10 87.98

Table 2: Compared ELAS scores on development set
of fine-tuning single XLM-R embedding and ACE.

tokens with the Adam (Kingma and Ba, 2015) op-
timizer. We set 30 steps of reinforcement learn-
ing, and the time of each reinforcement learning
step depends on the size of data set. The hyper-
parameters of our biaffine parser are shown in
Table 5, which are mostly adopted from previ-
ous work on dependency parsing. For the hyper-
parameters of our ACE module, we follow the set-
tings of Wang et al. (2021). We only use the tok-
enized words as the model input. For the sentence
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Team Name
Language TGIF Ours ROBERTNLP COMBO UNIPI DCU EPFL GREW FASTPARSE NUIG

Arabic 81.23 82.26 81.58 76.39 77.17 71.01 71.13 53.74 0.00
Bulgarian 93.63 92.52 93.16 86.67 90.84 92.44 88.83 78.73 78.45

Czech 92.24 91.78 90.21 89.08 88.73 89.93 87.66 72.85 0.00
Dutch 91.78 88.64 88.37 87.07 84.14 81.89 84.09 68.89 0.00

English 88.19 87.27 87.88 84.09 87.11 85.70 85.49 73.00 65.40
Estonian 88.38 86.66 86.55 84.02 81.27 84.35 78.19 60.05 54.03
Finnish 91.75 90.81 91.01 87.28 89.62 89.02 85.20 57.71 0.00
French 91.63 88.40 88.51 87.32 87.43 86.68 83.33 73.18 0.00
Italian 93.31 92.88 93.28 90.40 91.81 92.41 90.98 78.32 0.00

Latvian 90.23 89.17 88.82 84.57 83.01 86.96 77.45 66.43 56.67
Lithuanian 86.06 80.87 80.76 79.75 71.31 78.04 74.62 48.27 59.13

Polish 91.46 90.66 89.78 87.65 88.31 89.17 78.20 71.52 0.00
Russian 94.01 93.59 92.64 90.73 90.90 92.83 90.56 78.56 66.33
Slovak 94.96 90.25 89.66 87.04 86.05 89.59 86.92 64.28 67.45

Swedish 89.90 86.62 88.03 83.20 84.91 85.20 81.54 67.26 63.12
Tamil 65.58 58.94 59.33 52.27 51.73 39.32 58.69 42.53 0.00

Ukrainian 92.78 88.94 88.86 86.92 87.51 86.09 83.90 63.42 0.00
Avg. 89.24 87.07 86.97 83.79 83.64 83.57 81.58 65.81 30.03

Table 3: Official results of all systems.

Language Stanza Trankit
Tokens Words Sentences ELAS Tokens Words Sentences ELAS

Arabic 99.97 87.32 84.57 63.70 99.95 99.39 96.79 82.26
Bulgarian 99.93 99.93 97.49 92.59 99.78 99.78 98.79 92.52

Czech 99.92 99.92 95.03 91.50 99.93 99.92 97.56 91.78
Dutch 99.94 99.94 82.32 89.62 99.00 99.00 83.48 88.64

English 98.95 98.97 91.28 86.92 98.63 98.87 94.29 87.27
Estonian 99.68 99.68 90.26 86.44 99.39 99.39 94.85 86.66
Finnish 99.65 99.63 91.02 90.21 99.63 99.63 96.39 90.81
French 99.60 99.39 95.61 87.60 99.76 99.75 97.23 88.40
Italian 99.95 99.59 98.76 92.18 99.88 99.86 99.07 92.88
Latvian 99.78 99.78 98.85 89.26 99.74 99.74 98.69 89.17

Lithuanian 99.92 99.92 88.13 80.43 99.84 99.84 95.72 80.87
Polish 99.51 99.54 98.26 89.58 99.47 99.92 99.05 90.66

Russian 99.58 99.58 99.04 93.34 99.70 99.70 99.45 93.59
Slovak 99.96 99.96 86.27 89.01 99.95 99.94 95.31 90.25

Swedish 99.44 99.44 93.64 85.80 99.78 99.78 98.25 86.62
Tamil 99.92 86.95 98.76 46.70 98.33 94.19 100.00 58.94

Ukrainian 99.76 99.75 96.02 88.79 99.77 99.76 97.55 88.94
Average 99.73 98.19 93.25 84.92 99.56 99.32 96.62 87.07

Table 4: Comparison of different tokenization toolkits.

Hidden Layer Hidden Sizes
BiLSTM LSTM 3*768
Arc/Label 500
Embedding/LSTM Dropouts 33%
Loss Interpolation (λ) 0.025
Adam β1 0.9
Adam β2 0.9
Learning rate 2e−3

LR decay 0.5

Table 5: Hyper-parameters for our system.

and word segmentation, we used the pretrained
large model of trankit (Nguyen et al., 2021). The
embeddings we used in the ACE module for each

language are shown in Table 1. For transformer-
style embeddings, we only take the hidden states
of the topmost layer and we only take the first
piece subword representation as the multi-pieces
word representation. We built our codes based
on PyTorch (Paszke et al., 2019), and trained the
model for each language on a single Tesla V100
GPU.

3.2 Main Results

Table 2 shows the ELAS scores (defined as F1-
score over the set of enhanced dependencies in the
system output and the gold standard) on develop-
ment set of biaffine parser with fine-tuning sin-
gle XLM-R embedding and with our ACE mod-
ule. We can see that with ACE, the performance
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of most languages models is improved a lot.
Table 3 shows the results of official evaluations

of all teams. We only show the ELAS in the re-
sults. We can see that our model gets the 1st on
the Arabic language and gets the 2nd on averaged
ELAS over 17 languages.

3.3 Tokenization Performances of Different
Toolkits

In our experiments, we have tried two different to-
kenization toolkits. One is stanza (Qi et al., 2020)
which is from Standford NLP Group, the others
is trankit (Nguyen et al., 2021) which is a light-
weight Transformer-based Python Toolkit for mul-
tilingual NLP. We use pretrained models of the
two toolkits respectively. Furthermore, We train
tokenization model of stanza for each language.
Both settings of stanza are worse than trankit
on sentence segmentation score. Table 4 shows
the sentences and words segmentation scores of
stanza trained on each language and pretrained
trankit. We see that although stanza is better than
trankit on segmentation score of tokens, there is
a huge performance gap on segmentation score of
sentences between trankit and stanza. Therefore,
the final ELAS on test set tokenized by trankit is
better than stanza.

4 Conclusion

Our system is a parser with automated embeddings
concatenation and a biaffine encoder. Empirical
results show the effectiveness of ACE to enhanced
universal dependencies. Our system ranks 2nd
over 9 teams according to the official ELAS.
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Gosse Bouma, Djamé Seddah, and Daniel Zeman.
2021. From raw text to enhanced universal depen-
dencies: The parsing shared task at iwpt 2021. In
Proceedings of the 17th International Conference on
Parsing Technologies (IWPT 2021), pages 146–157,
Bangkok, Thailand (online). Association for Com-
putational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020a. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020b. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Pieter Delobelle, Thomas Winters, and Bettina
Berendt. 2020. RobBERT: a Dutch RoBERTa-based
Language Model. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
3255–3265, Online. Association for Computational
Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),

193



pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Timothy Dozat and Christopher D Manning. 2018.
Simpler but more accurate semantic dependency
parsing. arXiv preprint arXiv:1807.01396.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In International
Conference on Learning Representations.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Martin Malmsten, Love Börjeson, and Chris Haf-
fenden. 2020. Playing with words at the national
library of sweden – making a swedish bert.

Louis Martin, Benjamin Muller, Pedro Javier Or-
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Abstract

This paper presents our multilingual depen-
dency parsing system as used in the IWPT
2021 Shared Task on Parsing into Enhanced
Universal Dependencies. Our system consists
of an unfactorized biaffine classifier that op-
erates directly on fine-tuned XLM-R embed-
dings and generates enhanced UD graphs by
predicting the best dependency label (or ab-
sence of a dependency) for each pair of tokens.
To avoid sparsity issues resulting from lexi-
calized dependency labels, we replace lexical
items in relations with placeholders at training
and prediction time, later retrieving them from
the parse via a hybrid rule-based/machine-
learning system. In addition, we utilize model
ensembling at prediction time. Our system
achieves high parsing accuracy on the blind
test data, ranking 3rd out of 9 with an average
ELAS F1 score of 86.97.

1 Introduction

Enhanced Universal Dependencies (Schuster and
Manning, 2016) are an extension of the widely
used Universal Dependencies (UD) framework
for syntactic dependency annotation (de Marneffe
et al., 2014). To better model linguistic phenomena
such as coordination, raising/control, and relative
clauses, enhanced UD extends basic UD trees by
including additional dependencies between tokens
in order to make relations between content words
more explicit. While there is evidence for the utility
of enhanced dependencies in downstream applica-
tions (Schuster et al., 2017), adding them means
that dependency structures are not constrained to
trees any more, which makes parsing them a differ-
ent problem with its own set of challenges.

In the past, research on enhanced UD parsing
has mostly focused on rule-based methods for ex-
tracting enhanced graphs from existing basic trees
(Nyblom et al., 2013; Simi and Montemagni, 2018;

Submission Score

1. TGIF 89.24
2. ShanghaiTech 87.07
3. RobertNLP 86.97

Median 83.64

Table 1: Overview of IWPT 2021 results (avg.
ELAS F1 score). Full results can be found
at https://universaldependencies.org/

iwpt21/results.html.

Nivre et al., 2018). Furthermore, only a relatively
small number of UD treebanks is annotated with en-
hanced dependencies. Recently, however, interest
in enhanced UD has increased, most notably with
the IWPT 2020 Shared Task (Bouma et al., 2020),
which asked contestants to produce enhanced UD
graphs from raw text for 17 languages.

For our submission to the 2021 edition of
the Shared Task (Bouma et al., 2021), we
adapt our English-only submission from last year
(Grünewald and Friedrich, 2020) to all 17 lan-
guages that are part of the competition. The core
principles of our system remain the same:

• We do not rely on basic dependencies for
creating enhanced graphs. Instead, we di-
rectly parse from raw tokens into enhanced
UD graphs.

• We use an unfactorized biaffine classifier ar-
chitecture which predicts the most likely de-
pendency label (or absence of a dependency)
for each pair of tokens in the sentence, form-
ing a dependency graph from the union of
these predictions.

• Inputs to the biaffine classifier are extracted
directly from a fine-tuned transformer-based
language model.
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Instead of a strictly rule-based system as used by
Grünewald and Friedrich (2020), we use a hybrid
rule-based/machine-learning system to retrieve lex-
ical material for dependency labels at prediction
time (see Sec. 2.5). In order to further increase our
parser’s accuracy as well as its robustness across
treebanks, we use model ensembling.

As shown in Table 1, our system achieves high
parsing accuracy, ranking 3rd out of 9 with an aver-
age ELAS score of 86.97.

2 Our Model

This section describes the components of our parser
as submitted to the Shared Task.

2.1 Pre-processing

For tokenization and sentence segmentation, we
employ Trankitlarge (Nguyen et al., 2021), which
achieves state-of-the-art (or near state-of-the-art)
results for these tasks on the languages present in
the Shared Task. We use the default model for each
language.

2.2 Input Token Representation

We use the transformer-based, multilingual
XLM-Rlarge language model (Conneau et al., 2020)
to generate contextualized word embeddings for
the tokens of the input sentence, fine-tuning the
model while training our parser. We create the
wordpiece-tokenized input for XLM-R by feeding
each token into the XLM-R tokenizer. In addition,
we prepend a special [root] token to each sentence,
which serves as an artificial head of the root rela-
tion that must be present in every sentence. This
token receives a fixed, learned embedding instead
of a contextualized XLM-R embedding, but with
the same number of dimensions.

The final embedding ri for a token at position i is
extracted by forming a weighted sum of the internal
XLM-R layers at the position corresponding to the
first wordpiece of the original token. Following
Kondratyuk and Straka (2019), coefficients for this
weighted sum are learned during training, while
randomly dropping layers to prevent the model
from focusing on only a single layer.

2.3 Dependency Classification

Figure 1 shows an overview of our neural-network
based dependency classifier, which predicts rela-
tion labels (or absence of a relation) between pairs
of tokens.

Label scores

insteadcinnamon

... ... ...

UseInput tokens

XLM-R

hihead

Embeddings ri

objPredicted label

(Scalar mixture
of layers)        

hidep

Biaff.

Figure 1: Architecture of neural network predicting de-
pendency relations between pairs of tokens.

Classifier architecture. Our dependency classi-
fier follows the architecture proposed by Dozat and
Manning (2018), which is capable of producing
general (bi-lexical) dependency graph structures.
The approach works by creating, for each input
token embedding ri, a head representation hhead

i

and a dependent representation hdep
i via two single-

layer feedforward neural networks:

hhead
i = FNNhead(ri) (1)

hdep
i = FNNdep(ri) (2)

For each ordered pair (i, j) of tokens in the sen-
tence, their respective head and dependent repre-
sentations are then fed to a biaffine classifier (Eq.
3, Dozat and Manning, 2017), which outputs logits
si,j over the possible dependency labels.1

We encode the absence of a dependency relation
between two tokens as simply another label (∅).
This “unfactorized” approach is in contrast to a
“factorized” approach that first predicts presence or
absence of relations and then uses a second classi-
fier to predict labels. Dozat and Manning (2018)
found that the unfactorized approach performed on
par with the factorized approach for semantic de-
pendency parsing, and this finding has been shown
to also apply to enhanced UD parsing (Grünewald
et al., 2021).

Finally, we can extract a probability distribution

1Note that this means that each pair of tokens is fed to the
classifier twice as an ordered pair, once with i as the potential
head and j as the potential dependent, and once the other way
around.
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P (yi,j) over dependency labels from the logits:

Biaff(x1,x2) = x>1 Ux2 +W (x1 ⊕ x2) + b (3)

si,j = Biaff
(
hhead
i ,hdep

j

)
(4)

P (yi,j) = softmax(si,j) (5)

U, W and b in (3) are learned parameters; ⊕
denotes the concatenation operation. The model is
trained to minimize cross entropy loss w. r. t. the
true dependency label between each pair of tokens.

De-lexicalizing dependency labels. Because en-
hanced UD adds lexical information to certain de-
pendencies (e.g., obl:instead_of ), the number of
possible dependency labels is very large for most
treebanks, with up to over 1100 for Arabic-PADT.
Among the languages being part of the Shared
Task, French is an exception as its treebanks do
not make use of lexicalized labels. To avoid spar-
sity issues, we strip lexical information from la-
bels during training, instead replacing them with
placeholders (e.g., obl:[case]) indicating where
in the dependency graph the lexical information
is expected to be found (see Sec. 2.5 for a de-
tailed description of the reconstruction process).
This way, we can remove all lexicalized relations
from the label vocabulary, instead adding only a
much smaller number of placeholder labels. The
basic relation types affected by this process are
nmod, obl, acl, advcl, and conj. We keep all
other, non-lexicalized subtype labels, including
those that occur together with lexical material (e.g.,
obl:järgi:gen becomes obl:[case]:gen). Our proce-
dure reduces label counts substantially, e.g., to 59
for Arabic.

2.4 Assembling the Dependency Graph

The outputs P (yi,j) provided by the dependency
classifier can be regarded as a 3-dimensional ten-
sor, with one dimension corresponding to the to-
kens as heads, one dimension corresponding to
the tokens as dependents, and the third dimension
corresponding to the label set. Figure 2 gives a
two-dimensional view of this tensor, with each cell
containing the highest-scoring label for a head (row
label) and dependent (column label) pair.

Ensembling. Instead of continuing directly with
the predicted matrices as described above, we train
multiple models with different initializations for
each language and then ensemble them by averag-
ing their output probabilities during prediction. In

other words, we compute the probabilities of labels
P (yi,j) between two ordered tokens i and j as

P (yi,j) =
1

m

m∑

k=1

softmax(s(k)i,j ) (6)

where m is the number of models and s
(k)
i,j is the

unnormalized output vector of the k-th model for
the token pair (i, j).

For languages for which more than one training
treebank is available, we ensemble models trained
on different treebanks. For more details on this
procedure, see section Sec. 3.1.

Ensuring graph structure constraints. Using
the output tensors created via ensembling, we can
assemble a dependency graph by retrieving the
highest-scoring dependency (or ∅, i.e., no relation)
for each pair of tokens in the sentence and form-
ing their union (omitting the diagonal as enhanced
UD does not allow links starting and ending at the
same node). Although enhanced UD eliminates the
requirement that dependency graphs must be trees,
it maintains the structural constraint that every to-
ken must be reachable from the root of the graph.2

Although our system learns to produce graphs that
obey this constraint in the vast majority of cases,
there are cases where structurally invalid graphs are
retrieved. To make these graphs structurally valid,
we perform the following heuristic post-processing
steps:

1. If the graph has more than one root, we re-
move all but the most confidently predicted
root dependency.

2. If there are one or more nodes in the graph
that are not reachable from the root, we select
the most confidently predicted non-∅ edge
from a reachable to an unreachable node and
add it to the graph. We repeat this step until
every node is reachable from the root.

Removal of superfluous dependencies. UD
contains several relations that empirically only ap-
pear on their own, i.e., whose dependent may have
only one incoming edge of this type. These rela-
tions are fixed, flat, goeswith, punct, and cc. If our
parser erroneously predicts several of these rela-
tions for a single token (e.g., punctuation being

2Graphs in enhanced UD may have more than one root, but
empirically, the vast majority have only one root. Therefore,
we assume exactly one root for each dependency graph for
simplicity.
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[root] ∅ root ∅ ∅ ∅ ∅ ∅ ∅

Use ∅ ∅ obj ∅ ∅ obl:[case] ∅ obl:[case]

cinnamon ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

instead ∅ ∅ ∅ ∅ fixed ∅ ∅ ∅

of ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

sugar ∅ ∅ ∅ case ∅ ∅ ∅ conj:[cc]

or ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

sweetener ∅ ∅ ∅ ∅ ∅ ∅ cc ∅

Figure 2: Prediction matrix of the dependency classi-
fier. Cell entries show the highest-scoring label for each
ordered pair of tokens, with row/column labels indicat-
ing potential heads/dependents respectively.

Use cinnamon instead of sugar or sweetener

root

obj

obl:instead_of
case

fixed
conj:or

cc

obl:instead_of

Figure 3: Dependency graph with lexicalized labels.

attached to several tokens at once), we remove all
but the most confidently predicted dependency.

2.5 Label Lexicalization

As outlined in Sec. 2.3, lexical information is
stripped from dependency labels during training,
using the format base:[placeholder]. At prediction
time, we re-lexicalize predicted placeholder labels
using a two-step procedure. First, lexical mate-
rial is retrieved from the dependency graph using a
rule-based heuristic, and then a machine-learning
classifier is run on the output to correct potential
errors.

Re-lexicalization heuristic. The main rule of
our re-lexicalization heuristic checks if the token
has a dependent that is attached via the placeholder
of the de-lexicalized relation in question. If so, we
lexicalize the relation with the token of this depen-
dent. For example, in Figure 3, our parser predicts
obl:[case] and we hence re-lexicalize this relation
with the token(s) of the case dependents of “sugar.”
(Multiword expressions, such as “instead of”, are
handled by concatenating word forms linked by the
fixed relation.) In addition, there is a number of
more fine-grained rules to handle lexicalization in
the context of specific constructions such as coor-
dination. More details are reported by Grünewald

Treebank Heuristic Hybrid

Arabic-PADT 93.4 97.5
Czech-PDT 90.9 99.2
English-EWT 98.4 98.8
Estonian-EDT 98.8 99.8
Latvian-LVTB 99.4 99.7
Polish-PDB 91.8 98.9
Slovak-SNK 93.0 98.0
Tamil-TTB 16.1 66.1

Table 2: Re-lexicalization accuracy (%) on a selection
of gold development treebanks.

and Friedrich (2020).
As can be seen in Table 2, the rule-based heuris-

tic achieves good results in the case of English –
the language that it was initially designed for – and
for a number of other languages (e.g. Estonian and
Latvian), with re-lexicalization accuracies greater
than 98 % when evaluating on the gold develop-
ment data. However, it performs markedly worse
for some of the other languages in the Shared Task,
such as Arabic, Czech and (especially) Tamil. The
main reason for this is that the heuristic can only
retrieve word forms directly from the raw sentence,
whereas the lexical material in gold dependency
labels is lemmatized.

Rule-based label transducer. To increase re-
lexicalization accuracy, we perform a second step
after running the heuristic on the initial parser out-
put, automatically learning a “label transducer”
for each language from treebank data. For each
language, we train a RandomForest classifier
(Breiman, 2001) that takes as input the lexicalized
labels predicted by our heuristic as well as a repre-
sentation of its sentential context. The label trans-
ducer then predicts a new label, which may differ
from the initial prediction made by the heuristic. In
other words, the label transducer functions as an
ML-based error correction mechanism.

The input features for the classifier are (a) a one-
hot encoding of the lexicalized label predicted by
the heuristic, e.g., conj:als; and (b) a binary en-
coding of all tokens in the graph that are at most
1 dependency edge away from the endpoint of the
relation in question. The output space is the set
of lexicalized dependency labels as present in the
gold training data.

In few cases, the label transducer predicts a dif-
ferent base relation type compared to the one given
as input, i.e., it may transform an input of conj:als
into an output of nmod:in. As we observed that
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XLM-R embeddings
Embeddings dimension 1024
Token mask probability 0.15
Layer dropout 0.1
Hidden dropout 0.2
Attention dropout 0.2
Output dropout 0.5

Biaffine classifier
Hidden size 1024
Dropout 0.33

AdamW Optimizer
Batch size 32
LR schedule Noam
Warmup steps 1 epoch
Peak learning rate 4e−5

β1, β2 0.9, 0.999
Weight decay 0.0

Table 3: Basic hyperparameter values used in training.

such predictions are almost always incorrect, we
keep the heuristic’s output in these cases.

On the gold development data, we find that
including the ML-based transducer in the re-
lexicalization process leads to moderate to large
accuracy increases (see Table 2). This is the case
particularly for languages where lexical material in
dependencies often differs from the raw tokens in
the graph (e.g., Arabic and Tamil).

3 Experiments

This section describes our main submission, as well
as a number of additional experiments.

3.1 Experimental Settings

We use the provided training and development data
for training and validation, respectively. During
training, we use gold-segmented sentences and
gold tokenization.

For hyperparameter settings, we mostly stick
with the values of Grünewald and Friedrich (2020).
The exceptions are parameters related to the train-
ing process itself, where we use a batch size of 32 in
conjunction with an inverse square root (“Noam”)
learning rate schedule (Vaswani et al., 2017) that
reaches a peak LR of 4e−5 after one epoch of train-
ing. We found this configuration to yield results
comparable to our previous setup, but at noticeably
higher training efficiency. Table 3 shows the full
set of hyperparameters.

The above setup works robustly across lan-
guages, with Tamil being the only exception, reach-
ing only ca. 54 ELAS F1 on the development data.
For the low resource setting of parsing Tamil, we
hence use a batch size of 1, a lower learning rate

Language Ensemble composition

Czech 3xPDT, 1xCAC, 1xFictree
Dutch 3xAlpino, 2xLassySmall
English 3xEWT, 2xGUM
Estonian 4xEDT, 1xEWT
Polish 5xPDB

Table 4: Ensemble compositions for languages with
more than one training treebank.

(1e−5), as well as a longer warmup time (5 epochs)
and higher early stopping patience (40 epochs).

We train 5 models per language and ensemble
these models for our final predictions (see Sec. 2.4).
For languages with more than one training treebank,
we train models on all treebanks provided, with
more models trained on larger treebanks. The one
exception to this is Polish, where we found ensem-
bling of models trained on both the PDB and LFG
treebanks to yield worse results than just training
on PDB (likely due to systematic annotation differ-
ences). Table 4 shows the ensemble composition
for all languages with multiple training treebanks.

Each model is trained using a single nVidia Tesla
V100 GPU, stopping early when ELAS F1 score
on the development set does not improve for 20
epochs, or after at most 24 hours. Training time
varies substantially by treebank and correlates with
treebank size, with training being fastest for Tamil-
TTB (ca. 2 hours on average) and slowest for
Russian-SynTagRus and Czech-PDT (both run into
the 24-hour time limit).

3.2 Results of Submission

Table 5 shows the results (in terms of ELAS F1
score) on the blind test data for our main submis-
sion (rightmost column, ensemblehyb) as well as
the 1st- and 2nd-scoring submissions of the Shared
Task (TGIF and ShanghaiTech), as well as the me-
dian submission for each language. Our system
achieves an average ELAS F1 score of 86.97 %,
ranking 3rd with a margin of more than 3 points
over the median.

The best results achieved by our system are for
Bulgarian and Italian, each with ELAS F1 scores
of over 93. In contrast, Tamil is the language that
we perform by far the worst on, with an ELAS F1
score of around 59. In an extreme low-resource
scenario such as parsing Tamil (where the training
data consists of only 400 sentences), adaptions to
our framework will be necessary.
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Other teams RobertNLP
Language TGIF Shanghai Median single ensembleheur ensemblehyb

Arabic 81.23 82.26 76.39 81.37 81.12 81.58
Bulgarian 93.63 92.52 90.84 92.94 92.91 93.16
Czech 92.24 91.78 89.08 89.99 89.51 90.21
Dutch 91.78 88.64 84.14 88.02 88.21 88.37
English 88.19 87.27 85.70 87.29 87.89 87.88
Estonian 88.38 86.66 84.02 86.10 86.52 86.55
Finnish 91.75 90.81 89.02 90.77 90.97 91.01
French 91.63 88.40 87.32 88.59 88.51 88.51
Italian 93.31 92.88 91.81 93.00 93.16 93.28
Latvian 90.23 89.17 84.57 88.68 88.80 88.82
Lithuanian 86.06 80.87 78.04 80.98 80.76 80.76
Polish 91.46 90.66 88.31 89.49 89.54 89.78
Russian 94.01 93.59 90.90 92.55 92.33 92.64
Slovak 94.96 90.25 87.04 89.60 89.29 89.66
Swedish 89.90 86.62 84.91 87.72 88.02 88.03
Tamil 65.58 58.94 52.27 58.24 59.00 59.33
Ukrainian 92.78 88.94 86.92 88.56 88.86 88.86

Average 89.24 87.07 83.64 86.70 86.78 86.97

Table 5: Parsing results (ELAS F1) on blind test data in the IWPT 2021 Shared Task. ensemblehyb is our main
submission, using both the re-lexicalization heuristic and the label transducer.

3.3 Analysis of Results

To tease out the effects of re-lexicalization and
ensembling, we submitted two more experiments
on the blind test data after the official deadline.

Effect of re-lexicalization strategy. In a first ex-
periment, we did not use our machine learning-
based label transducer for re-lexicalization of la-
bels, instead relying only on the rule-based heuris-
tic. The results of this experiment can be found in
the column labelled “ensembleheur” in Table 5.

Using only the heuristic for label lexicalization
results in a modest, but noticeable accuracy hit
across languages, reducing the average ELAS F1
score by roughly 0.2. The languages most affected
are Czech (-0.70), Arabic (-0.46), Slovak (-0.35),
and Tamil (-0.33), in which differences between
lexical material in the sentence and their lemmas
included in lexicalized labels are frequent. In con-
trast, many languages see only small or no per-
formance drops (e.g. Lithuanian, Swedish); for
English, performance even increases very slightly
when removing the label transducer.

These results indicate that while using our hy-
brid system is beneficial, good results for most lan-
guages can also be achieved when relying solely on
our re-lexicalization heuristic. This makes it con-
ceivable that in conjunction with a high-accuracy
lemmatizer, a purely rule-based system may per-
form on par with a hybrid system, and we view this
as an interesting avenue for future work.

Effect of ensembling. In a second experiment,
we did not perform model ensembling for predic-
tion, instead only using a single model for each
language. The column labelled “single” in Table 5
reports the best results achieved for each language
when using only the best single model.

As can be seen, utilizing only a single model
per language results in a moderate average per-
formance drop of 0.27 ELAS F1 points. With
the exception of French and Lithuanian, all lan-
guages benefit from model ensembling, with Tamil
(+1.09), English (+0.59), Estonian (+0.45), and
Dutch (+0.35) showing the strongest improvements.
As the latter three include data from different tree-
banks in their blind test sets, this indicates that
ensembling may also help parser robustness when
mixing models trained on different datasets.

However, although the overall effect of ensem-
bling is notable, our parser nonetheless retains a
relatively strong performance even without it, and
still would have scored 3rd in the Shared Task if it
was only using single models.

4 Conclusion

In this paper, we have described our submission
to the IWPT 2021 Shared Task, which ranked
3rd out of 9 with an average ELAS F1 score of
86.97. Our model is an extension of the previously
English-only system (Grünewald and Friedrich,
2020), demonstrating that the same approach is
also yields very good results for other languages
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with only relatively minor modifications. In post-
submission ablation experiments, we find that our
parser benefits from model ensembling and a ma-
chine learning-assisted approach to label lexicaliza-
tion.

A remaining issue of our parser is its rather poor
performance in a low-resource setting (Tamil). Ad-
dressing this weakness, ideally while maintaining
the parser’s relatively simple core architecture, may
be a promising avenue for future work.
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Abstract

We describe the DCU-EPFL submission to
the IWPT 2021 Parsing Shared Task: From
Raw Text to Enhanced Universal Dependen-
cies. The task involves parsing Enhanced
UD graphs, which are an extension of the ba-
sic dependency trees designed to be more fa-
cilitative towards representing semantic struc-
ture. Evaluation is carried out on 29 tree-
banks in 17 languages and participants are re-
quired to parse the data from each language
starting from raw strings. Our approach uses
the Stanza pipeline to preprocess the text files,
XLM-RoBERTa to obtain contextualized to-
ken representations, and an edge-scoring and
labeling model to predict the enhanced graph.
Finally, we run a post-processing script to en-
sure all of our outputs are valid Enhanced UD
graphs. Our system places 6th out of 9 partici-
pants with a coarse Enhanced Labeled Attach-
ment Score (ELAS) of 83.57. We carry out
additional post-deadline experiments which in-
clude using Trankit for pre-processing, XLM-
RoBERTaLARGE, treebank concatenation, and
multitask learning between a basic and an en-
hanced dependency parser. All of these modi-
fications improve our initial score and our final
system has a coarse ELAS of 88.04.

1 Introduction

The IWPT 2021 Parsing Shared Task: From Raw
Text to Enhanced Universal Dependencies (Bouma
et al., 2021) is the second task involving the predic-
tion of Enhanced Universal Dependencies (EUD)
graphs1 following the 2020 task (Bouma et al.,
2020). EUD graphs are an extension of basic UD
trees, designed to be more useful in shallow natural
language understanding tasks (Schuster and Man-
ning, 2016) and lend themselves more easily to the

1https://universaldependencies.org/u/
overview/enhanced-syntax.html

representation of semantic structure than strict sur-
face structure dependency trees. In the shared task,
the enhanced graphs must be predicted from raw
text, i.e. participants must segment the input into
sentences and tokens. Participants are encouraged
to predict lemmas, Part-of-Speech (POS) tags, mor-
phological features and basic dependency trees as
well.

Our system, DCU-EPFL, uses a single multilin-
gual Transformer (Vaswani et al., 2017) encoder,
namely XLM-RoBERTa (XLM-R) (Conneau et al.,
2020), which is a multilingual RoBERTa model
(Liu et al., 2019), to obtain contextualized token
encodings. These are then passed to the enhanced
dependency parsing model. The system is straight-
forward to apply to new languages with enhanced
UD annotations. In the official submission, we use
the same hyper-parameters for all languages. Our
parsing component can produce arbitrary graphs,
including graph structures where words may have
multiple heads and cyclic graphs. Our system uses
the following three components:

1. Stanza (Qi et al., 2020) for sentence segmen-
tation, tokenization and the prediction of all
UD features apart from the enhanced graph.

2. A Transformer-based dependency parsing
model to predict Enhanced UD graphs.

3. A post-processor ensuring that every graph is
a rooted graph where all nodes are reachable
from the notional root token.

Our official system placed 6th out of 9 teams
with a coarse Enhanced Labeled Attachment Score
(ELAS) of 83.57. In a number of unofficial post-
evaluation experiments, we make four incremental
changes to our pipeline approach:

1. We replace the Stanza pre-processing pipeline
with Trankit (Nguyen et al., 2021).
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2. We use XLM-RLarge instead of XLM-RBase.

3. We concatenate treebanks from the same lan-
guage which have more than one training tree-
bank and concatenating English treebanks to
the Tamil training data.

4. We introduce a novel multitask model which
parses the basic UD tree and enhanced graph
in tandem.

All of these additional steps improved our evalua-
tion scores, and for our final system, which incor-
porates all additional modifications, our evaluation
score increases from 83.57 to 88.04. Our code is
publicly available.2

2 Related Work

In this section, we discuss the relevant literature
related to Enhanced Universal Dependencies.

2.1 Enhanced Universal Dependencies

Despite the recent wave of Deep Learning models
and accompanying analyses that show that such
models learn information about syntax, there is
still interest and merit in utilizing hierarchically
structured representations such as trees and seman-
tic representations to provide greater supervision
about what is taking place in a sentence (Oepen
et al., 2019). While dependency trees are often
used in downstream applications, their structural
restrictions may hinder the representation of con-
tent words (Schuster and Manning, 2016). The
Enhanced UD representation tries to fill this gap by
enabling more expressive graphs in the UD format,
which capture phenomena such as added subject
relations in control and raising, shared heads and
dependents in coordination, the insertion of null
nodes for elided predicates, co-reference in rela-
tive clause constructions and augmenting modifier
relations with prepositional or case-marking infor-
mation.

Schuster and Manning (2016) build on the Stan-
ford Dependencies (SD) initiative (de Marneffe
et al., 2006) and extend certain flavors of the SD
dependency graph representations to UD in the
form of enhanced UD relations for English. They
use a rule-based system that converts basic UD
trees to enhanced UD graphs based on dependency
structures identified to require enhancement. Nivre

2https://github.com/jbrry/
IWPT-2021-shared-task

et al. (2018) use rule-based and data-driven ap-
proaches in a cross-lingual setting for bootstrap-
ping enhanced UD representations in Swedish and
Italian and show that both techniques are capable
of annotating enhanced dependencies in different
languages.

2.2 The IWPT 2020 Shared Task on Parsing
Enhanced Universal Dependencies

The first shared task on parsing Enhanced Univer-
sal Dependencies (Bouma et al., 2020) brought
renewed attention to the problem of predicting en-
hanced UD graphs. Ten teams submitted to the task.
The winning system (Kanerva et al., 2020) utilized
the UDify model (Kondratyuk and Straka, 2019),
which uses a BERT model (Devlin et al., 2019)
as the encoder with multitask classifiers for POS-
tagging, morphological prediction and dependency
parsing built on top. They developed a system for
encoding the enhanced representation into the ba-
sic dependencies so it can be predicted in the same
way as a basic dependency tree but with enriched
dependency types that can then be converted into
the enhanced structure. In an unofficial submission
shortly after the task deadline, Wang et al. (2020)
outperform the winning system using second-order
inference methods with Mean-Field Variational In-
ference.

Most systems used pretrained Transformers
to obtain token representations, either by using
the Transformer directly (Kanerva et al., 2020;
Grünewald and Friedrich, 2020; He and Choi,
2020) or passing the encoded representation to BiL-
STM layers where they are combined with other
features such as context-free FastText word embed-
dings (Wang et al., 2020), character features and
features obtained from predicted POS tags, mor-
phological features and basic UD trees (Barry et al.,
2020), or are used as frozen embeddings (Hersh-
covich et al., 2020). The only transition-based sys-
tem among the participating teams (Hershcovich
et al., 2020) used a stack-LSTM architecture (Dyer
et al., 2015). Ek and Bernardy (2020) and Dehouck
et al. (2020) combine basic dependency parsers and
a rule-based system to generate EUD graphs from
the predicted trees.

3 Official System Overview

This section describes our official system, which
is the system we submitted prior to the competi-
tion deadline. The architecture of our system is
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Figure 1: DCU-EPFL Architecture.

shown in Figure 1.3 The raw text test files for
each language contain a mixture of test data cov-
ering multiple treebanks, so participants do not
know their exact domain. For our official system,
we choose the model trained on the treebank with
the most amount of training data in terms of sen-
tences for each language to process the test files.
This heuristic corresponds to using Czech-PDT for
Czech, Dutch-Alpino for Dutch, English-EWT for
English, Estonian-EDT for Estonian and Polish-
PDB for Polish.

3.1 Pre-processing
For sentence segmentation, tokenization and the
prediction of the base UD features (all UD features
apart from the enhanced dependency graphs and
miscellaneous items in CoNLL-U files), we use the
Stanza library (Qi et al., 2020) trained on version
2.7 of the UD treebanks for each treebank released
as part of the training data for the shared task.4

Note that our parser does not pre-suppose any input
features other than the input text but we predict
the base features using our pre-processing pipeline

3For the official system, we did not include the basic de-
pendency parser in a multitask setup.

4For Arabic, our Stanza Multi-word Token (MWT) ex-
pander predicted MWTs with a span of length 1 for two sen-
tences. In the UD guidelines, MWT span lengths must be
larger than one. To pass validation, we trained a UDPipe
tokenizer (Straka and Straková, 2017) with Word2Vec embed-
dings for Arabic instead.

for completeness and to enable possible additional
post-processing which involves altering enhanced
dependency labels with lemma information.

3.2 Enhanced UD Parsing
For the enhanced UD parser, we use a Trans-
former encoder in the form of XLM-R (Conneau
et al., 2020) with a first-order arc-factored model
which utilizes the edge and label scoring method
of (Kiperwasser and Goldberg, 2016). In initial
experiments, we found this model to perform better
than biaffine attention (Dozat and Manning, 2016)
for the task of EUD parsing. This finding was also
made by (Lindemann et al., 2019) and (Straka and
Straková, 2019) for the task of semantic parsing
across numerous Graphbanks (Oepen et al., 2019).
Straka and Straková (2019) suggest that biaffine at-
tention may be less suitable for predicting whether
an edge exists between any pair of nodes using a
predefined threshold and is perhaps more suited for
dependency parsing, where words are competing
with one another to be classified as the head in a
softmax layer. The consistency of these findings
across EUD and semantic parsing Graphbanks may
provide evidence that enhanced UD is closer to se-
mantic dependency parsing than basic UD parsing.

Parser Implementation Given a sentence x of
length n, our model computes vector representa-
tions R = (r1, r2, ..., rn) for the predicted tokens
(x1, x2, ..., xn). Since the WordPiece tokeniza-
tion (Wu et al., 2016) of XLM-R differs from the
tokenization used in UD, we track the mapping
I from XLM-R’s k-th sub-word unit of the j-th
input token produced by Stanza to the sub-word
unit’s position Ij,k in context of the sentence and
we consider the output vector eIj,1 of the first sub-
word unit of each word xj as its vector representa-
tion (rj):

E = XLMR(x1, x2, . . . , xn)

R = Filter(E, I)
(1)

where E = (e1, ..., eN ) are the output vectors of
all sub-word units,N being the total number of sub-
word units in the sentence, and Filter() chooses the
first embedding for each token. We add a dummy
representation of the same dimensionality for the
ROOT token to the sequence of vectors R but
mask out predictions from this token. Following
Kiperwasser and Goldberg (2016), these represen-
tations R = (r1, r2, ..., rn) are then passed to the
dependency parsing component, where the feature
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function φ is the concatenation of the representa-
tions of a potential head word xh and dependent
word xd, where ◦ denotes concatenation:

φ(h, d) = rh ◦ rd (2)

Edge Prediction We compute scores for all
n(n − 1) potential edges (h, d), h 6= d, with an
MLP:

shd
(arc) =MLP (arc)(φ(h, d)) (3)

The edge classifier computes scores for all possible
head-dependent pairs, and we compute a sigmoid
on the resulting matrix of scores to obtain probabil-
ities. We use an edge prediction threshold of 0.5,
i.e. we include all edges with a score above 0.5 in
the preliminary EUD graph. This enables words to
have multiple heads but it can also lead to words re-
ceiving no head, where we manually select the edge
that has the highest probability, and to fragmented
graphs, see post-processing in Section 3.3.

Label Prediction To label the graph, we then
choose a label for each edge using a separate clas-
sifier:

shd
(label) =MLP (label)(φ(h, d)) (4)

The scores for all possible labels are passed to a
softmax layer, which outputs the probability of
each label for edge (h, d) and we select the label
with the highest probability for each edge.

Loss Function For edge prediction, sigmoid
cross-entropy loss is used, and for label predic-
tion, as we want to select the label for each chosen
edge, softmax cross-entropy loss is used (Dozat
and Manning, 2018). We interpolate between the
loss given by the edge classifier and the loss given
by the label classifier (Dozat and Manning, 2018;
Wang et al., 2020) with a constant λ:

L = λL(label) + (1− λ)L(edge) (5)

Training details For the empty nodes which are
prevalent in enhanced UD graphs, we added them
into the graph, and offset the head indices to ac-
count for the new token(s) added to the graph. At
test time, we did not predict whether an elided to-
ken should be added to the graph. Due to time
constraints, we trained using the full lexicalized
enhanced dependency labels but intend to devise a
delexicalization and relexicalization procedure in
future work.

Hyperparameter Size
XLM-RBase Hidden Size 768
XLM-RLarge Hidden Size 1024
Edge Feedforward 300
Label Feedforward 300
Input Dropout 0.35
Dropout 0.35
Edge Prediction Threshold 0.5
Loss interpolation λ 0.10

Table 1: Hyperparameters of our EUD parsing model.

3.3 Post-processing

In the Enhanced UD guidelines, the predicted struc-
ture must be a connected graph where all nodes are
reachable from the notional root5. After predicting
the test files, we use the graph connection tool in
(Barry et al., 2020) to make sure that each sentence
is a connected graph. Specifically, we repeatedly
check for unreachable nodes and the number of un-
reachable nodes that can be reached from them. We
choose the candidate which maximises this number
(in the case there are ties, we choose the first node
in surface order) and makes it a child of the no-
tional ROOT, i.e. this node becomes an additional
root node. System outputs are then validated at
level 2 by the UD validator 6 to catch bugs prior to
submission.

4 Experiments

In this section, we discuss our official results and
then describe post-deadline experiments that im-
proved our submission’s score. Model hyperparam-
eters are listed in Table 1. The choice of XLM-R
encoder (Base or Large) determines the hyperpa-
rameters of the encoder part of our model. In our
official submission, we use XLM-RBase. A dropout
value of 0.35 is used for the input embeddings as
well as for the encoder and MLP networks. A loss
interpolation constant λ of 0.1 is used as in (Wang
et al., 2020).

4.1 Official Submission

For the official submission, we use the Stanza pre-
processing pipeline and our dependency parsing
model with XLM-RBase. The results are listed in

5In UD, the notional ROOT is the token with ID 0, whereas
a root node is any node that has 0 as its head.

6https://github.com/
UniversalDependencies/tools/blob/master/
validate.py
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Language
[1] [2] [3] [4] [5]

Official [1]+Trankit [2]+XLM-RLarge [3]+Concat [4]+MTL

Arabic 71.01 78.05(+24.2%) 79.51(+6.6%) - 81.72(+10.8%)
Bulgarian 92.44 92.47(+0.4%) 93.26(+10.5%) - 93.59(+4.9%)
Czech 89.93 90.28(+3.5%) 91.06(+8.1%) 91.43(+4.1%) 91.30(-1.5%)
Dutch 81.89 86.51(+25.5%) 87.67(+8.6%) 88.60(+7.5%) 89.51(+7.9%)
English 85.70 85.97(+1.8%) 86.94(+6.9%) 87.46(+3.9%) 87.28(-1.4%)
Estonian 84.35 84.54(+1.2%) 85.92(+8.9%) 86.68(+5.4%) 86.76(+0.6%)
Finnish 89.02 89.34(+2.9%) 90.79(+13.6%) - 91.16(+4.1%)
French 86.68 86.80(+0.9%) 89.12(+17.6%) - 90.38(+11.6%)
Italian 92.41 92.44(+0.4%) 93.35(+12.1%) - 93.47(+1.8%)
Latvian 86.96 86.85(-0.8%) 88.81(+14.9%) - 89.18(+3.3%)
Lithuanian 78.04 78.44(+1.8%) 82.09(+16.9%) - 83.47(+7.7%)
Polish 89.17 89.30(+1.2%) 90.20(+8.4%) 91.15(+9.7%) 90.46(-7.8%)
Russian 92.83 93.06(+3.2%) 93.95(+12.8%) - 94.09(+2.3%)
Slovak 89.59 90.81(+11.7%) 92.33(+16.5%) - 92.73(+5.2%)
Swedish 85.20 85.98(+5.3%) 88.10(+15.1%) - 88.64(+4.5%)
Tamil 39.32 40.64(+2.2%) 48.85(+13.8%) 61.14(+24.0%) 62.06(+2.4%)
Ukrainian 86.09 86.30(+1.5%) 89.44(+22.91%) - 90.91(+13.9%)
Average 83.57 84.58(+6.2%) 86.55(+12.7%) 87.48(+6.9%) 88.04(+4.5%)

Table 2: Evaluation scores on the official test data on the language-specific test files. All runs after Official
subsume Trankit pre-processing and all runs after Trankit subsume the XLM-RLarge model. All numbers inside
the parentheses are calculated as the relative error reduction of each column and its corresponding previous column.

column [1] of Table 2. Our official submission
placed 6th of 9 participants. The overall scores
submitted by each team are listed in Table 3. The
scores of two teams are close to our overall score:
Combo and Unipi placed 4th and 5th with scores
of 83.79 and 83.64 compared to our score of 83.57.
This grouping is outperformed by the top three
submissions TGIF, ShanghaiTech and RobertNLP
by a margin from 3.2 ELAS points (RobertNLP
vs. Combo) to 5.7 ELAS points (TGIF vs. DCU-
EPFL).

4.2 Trankit Pre-processing

In a post-deadline experiment, we replace
the Stanza pre-processing pipeline (which uses
Word2Vec and FastText embeddings as external in-
put features and a BiLSTM encoder) with Trankit
(Nguyen et al., 2021), which uses the Transformer
XLM-R as the encoder. The results from adopting
Trankit for sentence segmentation and tokeniza-
tion are listed in column [2] of Table 2. We no-
tice slight improvements for all languages, with
notable exceptions being Arabic, Dutch and Slo-
vak, where the better pre-processing accounts for a
24.2%, 25.5% and 11.7% relative error reduction.

4.3 XLM-RLarge

Our next modification is to leverage the XLM-
RLarge model. This model has roughly twice as
many parameters as the XLM-RBase model used in
our official submission. The results for combining
Trankit pre-processing and using XML-RLarge are
listed in column [3] of Table 2. The larger capacity
of the model translates to large relative error re-
ductions particularly for Finnish, French, Latvian,
Lithuanian, Swedish, Tamil and Ukrainian. Given
the improvements seen by adopting both Trankit for
pre-processing and the larger XLM-RLarge model,
we now incorporate these modifications into all
further experiments.

4.4 Treebank Concatenation
In our official system, we used just one treebank per
language. Our next experiment is to investigate the
effect of concatenating all treebanks with enhanced
UD annotations for a language. We hypothesize
that there could be a positive transfer from learn-
ing similar (within-language) treebanks and that it
would make our parser more robust to the multi-
ple domains in the test data. This means that for
Czech we concatenate the PDT, CAC and FicTree
treebanks, for Dutch, Alpino and LassySmall, for
English EWT and GUM, and for Estonian EDT

208



Language combo dcu-epfl fastparse grew nuig robertnlp shanghaitech tgif unipi off. reference our best run

Arabic 76.39 71.01 53.74 71.13 0.0 81.58 82.26 81.23 77.17 67.35 81.72
Bulgarian 86.67 92.44 78.73 88.83 78.45 93.16 92.52 93.63 90.84 85.81 93.59
Czech 89.08 89.93 72.85 87.66 0.0 90.21 91.78 92.24 88.73 78.44 91.30
Dutch 87.07 81.89 68.89 84.09 0.0 88.37 88.64 91.78 84.14 82.48 89.51
English 84.09 85.70 73.00 85.49 65.40 87.88 87.27 88.19 87.11 83.68 87.28
Estonian 84.02 84.35 60.05 78.19 54.03 86.55 86.66 88.38 81.27 76.86 86.76
Finnish 87.28 89.02 57.71 85.20 0.0 91.01 90.81 91.75 89.62 78.26 91.16
French 87.32 86.68 73.18 83.33 0.0 88.51 88.40 91.63 87.43 98.80 90.38
Italian 90.40 92.41 78.32 90.98 0.0 93.28 92.88 93.31 91.81 80.20 93.47
Latvian 84.57 86.96 66.43 77.45 56.67 88.82 89.17 90.23 83.01 79.32 89.18
Lithuanian 79.75 78.04 48.27 74.62 59.13 80.76 80.87 86.06 71.31 75.26 83.47
Polish 87.65 89.17 71.52 78.20 0.0 89.78 90.66 91.46 88.31 81.59 90.46
Russian 90.73 92.83 78.56 90.56 66.33 92.64 93.59 94.01 90.90 79.63 94.09
Slovak 87.04 89.59 64.28 86.92 67.45 89.66 90.25 94.96 86.05 76.42 92.73
Swedish 83.20 85.20 67.26 81.54 63.12 88.03 86.62 89.90 84.91 80.98 88.64
Tamil 52.27 39.32 42.53 58.69 0.0 59.33 58.94 65.58 51.73 75.44 62.06
Ukrainian 86.92 86.09 63.42 83.90 0.0 88.86 88.94 92.78 87.51 77.24 90.91
Average 83.79 83.57 65.81 81.58 30.03 86.97 87.07 89.24 83.64 79.87 88.04

Table 3: Evaluation scores on the official test data on the language-specific test files submitted by each team. We
also include the official reference system (off. reference) which copies the gold tree to the enhanced graph as well
as (our best run) which is our best post-deadline run, which corresponds to the +Concat+MTL run in Table 2.
The first and second top scoring models in each language are specified with black and blue color, respectively.

and EWT. For Tamil, we concatenate English EWT
and GUM training data to Tamil to address the very
poor evaluation score of our official submission,
taking inspiration from Wang et al. (2020) who
observe substantial positive effects when they add
Czech and English data to the Tamil treebank.7 The
results are listed in column [4] of Table 2. Treebank
concatenation helps for all languages but most no-
table is the improvement of over 12 points ELAS
or a relative error reduction of 24% for Tamil, the
language with the least amount of training data in
the task.

4.5 Joint Learning of Basic and Enhanced
Dependency Parsing

The official reference system submitted by the
shared task organizers which copies the gold trees
to the enhanced representation performs very well
with 79.87 ELAS (see Table 3). Thus, there is
evidence that the basic tree and enhanced graph
contain a lot of mutual information. Previous meth-
ods which have leveraged the basic representation
for producing EUD graphs (see Sec. 2) have fo-
cused on using heuristic rules to convert the basic
tree to EUD (Schuster and Manning, 2016; Ek and
Bernardy, 2020; Dehouck et al., 2020), using the
basic tree as input features to the enhanced pars-
ing model (Barry et al., 2020) or converting the
enhanced graph to a richer basic representation
(Kanerva et al., 2020).

7We did not include Czech to reduce training time.

In our final experiment, we try to leverage the
information from the basic tree by jointly learn-
ing to predict the enhanced graph and the basic
tree, testing whether performing basic dependency
parsing and EUD parsing in a multitask setup is
beneficial for EUD parsing. Given the positive
effects seen through concatenation, for those lan-
guages where we performed concatenation, we also
train multitask models on the concatenated versions
of treebanks. We use our EUD parsing model as
in Section 3 and integrate with additional basic
dependency parsing component (as shown in the
right part of Figure 1) which is the biaffine parsing
model of Dozat and Manning (2016) and train both
parsers jointly. The losses of the two components
are combined with equal weight. The results are
listed in column [5] of Table 2.

Single Treebanks First, we compare the multi-
task model to the XLM-RLarge run for languages
where we did not perform concatenation. Predict-
ing the basic tree and the enhanced graph in a multi-
task setting yields improvements for all languages,
particularly for Arabic, French and Ukrainian.

Multitask Model and Treebank Concatenation
When used alongside treebank concatenation, mul-
titask learning can help for Dutch, Estonian and
Tamil where it provides additional performance
gains. It is interesting to note that concatenation
alone is more helpful for Czech and English where
we see slight performance drops and multitask
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learning is not helpful when trained on concate-
nated Polish treebanks.

The positive contribution of multitask learning
for all languages when not performing treebank
concatenation, could mean that it would be useful
in settings where only one treebank with the en-
hanced representation is available for a language
and the basic tree could be used as auxiliary infor-
mation to predict the enhanced representation.

Comparison to Official Systems Our best un-
official run +Concat+MTL is added to Table 3.
Compared to the other official runs, the ELAS
scores of this run ranks in second place for 13/17
languages and places first for Italian and Russian.

5 Conclusion

We have described the DCU-EPFL submission to
the IWPT 2021 Shared Task on Parsing into En-
hanced Universal Dependencies. Our approach
uses a single multilingual Transformer encoder as
well as an enhanced dependency parsing compo-
nent. Our official system placed 6th out of 9 teams.
In post-deadline experiments, we show how our
submission can be improved by leveraging better
upstream pre-processing, a larger encoder, concate-
nating treebanks as well as introducing a multitask
parser that can parse the basic tree and enhanced
graphs jointly.
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Stefan Grünewald and Annemarie Friedrich. 2020.
RobertNLP at the IWPT 2020 shared task: Surpris-
ingly simple enhanced UD parsing for English. In
Proceedings of the 16th International Conference
on Parsing Technologies and the IWPT 2020 Shared
Task on Parsing into Enhanced Universal Dependen-
cies, pages 245–252, Online. Association for Com-
putational Linguistics.

Han He and Jinho D. Choi. 2020. Adaptation of mul-
tilingual transformer encoder for robust enhanced
Universal Dependency parsing. In Proceedings of
the 16th International Conference on Parsing Tech-
nologies and the IWPT 2020 Shared Task on Parsing
into Enhanced Universal Dependencies, pages 181–
191, Online. Association for Computational Linguis-
tics.

Daniel Hershcovich, Miryam de Lhoneux, Artur Kul-
mizev, Elham Pejhan, and Joakim Nivre. 2020.
Køpsala: Transition-based graph parsing via effi-
cient training and effective encoding. In Proceed-
ings of the 16th International Conference on Pars-
ing Technologies and the IWPT 2020 Shared Task
on Parsing into Enhanced Universal Dependencies,
pages 236–244, Online. Association for Computa-
tional Linguistics.

Jenna Kanerva, Filip Ginter, and Sampo Pyysalo. 2020.
Turku enhanced parser pipeline: From raw text to
enhanced graphs in the IWPT 2020 shared task. In
Proceedings of the 16th International Conference on
Parsing Technologies and the IWPT 2020 Shared
Task on Parsing into Enhanced Universal Dependen-
cies, pages 162–173, Online. Association for Com-
putational Linguistics.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional LSTM feature representations. Transactions
of the Association for Computational Linguistics,
4:313–327.

Dan Kondratyuk and Milan Straka. 2019. 75 lan-
guages, 1 model: Parsing Universal Dependencies
universally. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 2779–2795, Hong Kong, China. As-
sociation for Computational Linguistics.

Matthias Lindemann, Jonas Groschwitz, and Alexan-
der Koller. 2019. Compositional semantic parsing
across graphbanks. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 4576–4585, Florence, Italy. Asso-
ciation for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Marie-Catherine de Marneffe, Bill MacCartney, and
Christopher D. Manning. 2006. Generating typed
dependency parses from phrase structure trees. In
LREC.

Minh Van Nguyen, Viet Dac Lai, Amir Pouran
Ben Veyseh, and Thien Huu Nguyen. 2021. Trankit:
A light-weight transformer-based toolkit for multi-
lingual natural language processing. In Proceedings
of the 16th Conference of the European Chapter of
the Association for Computational Linguistics: Sys-
tem Demonstrations, pages 80–90, Online. Associa-
tion for Computational Linguistics.

Joakim Nivre, Paola Marongiu, Filip Ginter, Jenna
Kanerva, Simonetta Montemagni, Sebastian Schus-
ter, and Maria Simi. 2018. Enhancing Universal
Dependency treebanks: A case study. In Proceed-
ings of the Second Workshop on Universal Depen-
dencies (UDW 2018), pages 102–107, Brussels, Bel-
gium. Association for Computational Linguistics.

Stephan Oepen, Omri Abend, Jan Hajic, Daniel Her-
shcovich, Marco Kuhlmann, Tim O’Gorman, Nian-
wen Xue, Jayeol Chun, Milan Straka, and Zdenka
Uresova. 2019. MRP 2019: Cross-framework mean-
ing representation parsing. In Proceedings of the
Shared Task on Cross-Framework Meaning Repre-
sentation Parsing at the 2019 Conference on Natural
Language Learning, pages 1–27, Hong Kong. Asso-
ciation for Computational Linguistics.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton,
and Christopher D. Manning. 2020. Stanza: A
python natural language processing toolkit for many
human languages. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 101–
108, Online. Association for Computational Linguis-
tics.

Sebastian Schuster and Christopher D. Manning. 2016.
Enhanced English Universal Dependencies: An im-
proved representation for natural language under-
standing tasks. In Proceedings of the Tenth Inter-
national Conference on Language Resources and
Evaluation (LREC’16), pages 2371–2378, Portorož,
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POS tagging, lemmatizing and parsing UD 2.0 with
UDPipe. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 88–99, Vancouver, Canada.
Association for Computational Linguistics.

Milan Straka and Jana Straková. 2019. ÚFAL MRPipe
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Abstract

We present our contribution to the IWPT 2021
shared task on parsing into enhanced Universal
Dependencies. Our main system component
is a hybrid tree-graph parser that integrates (a)
predictions of spanning trees for the enhanced
graphs with (b) additional graph edges not
present in the spanning trees. We also adopt
a finetuning strategy where we first train a
language-generic parser on the concatenation
of data from all available languages, and then,
in a second step, finetune on each individual
language separately. Additionally, we develop
our own complete set of pre-processing mod-
ules relevant to the shared task, including to-
kenization, sentence segmentation, and multi-
word token expansion, based on pre-trained
XLM-R models and our own pre-training of
character-level language models. Our submis-
sion reaches a macro-average ELAS of 89.24
on the test set. It ranks top among all teams,
with a margin of more than 2 absolute ELAS
over the next best-performing submission, and
best score on 16 out of 17 languages.

1 Introduction

The Universal Dependencies (UD; Nivre
et al., 2016, 2020) initiative aims to provide
cross-linguistically consistent annotations for
dependency-based syntactic analysis, and includes
a large collection of treebanks (202 for 114
languages in UD 2.8). Progress on the UD parsing
problem has been steady (Zeman et al., 2017,
2018), but existing approaches mostly focus
on parsing into basic UD trees, where bilexical
dependency relations among surface words must
form single-rooted trees. While these trees indeed
contain rich syntactic information, the adherence to
tree representations can be insufficient for certain
constructions including coordination, gapping,
relative clauses, and argument sharing through
control and raising (Schuster and Manning, 2016).

The IWPT 2020 (Bouma et al., 2020) and 2021
(Bouma et al., 2021) shared tasks focus on parsing
into enhanced UD format, where the representation
is connected graphs, rather than rooted trees. The
extension from trees to graphs allows direct treat-
ment of a wider range of syntactic phenomena, but
it also poses a research challenge: how to design
parsers suitable for such enhanced UD graphs.

To address this setting, we propose to use a tree-
graph hybrid parser leveraging the following key
observation: since an enhanced UD graph must be
connected, it must contain a spanning tree as a sub-
graph. These spanning trees may differ from basic
UD trees, but still allow us to use existing tech-
niques developed for dependency parsing, includ-
ing applying algorithms for finding maximum span-
ning trees to serve as accurate global decoders. Any
additional dependency relations in the enhanced
graphs not appearing in the spanning trees are then
predicted on a per-edge basis. We find that this
tree-graph hybrid approach results in more accu-
rate predictions compared to a dependency graph
parser that is combined with postprocessing steps
to fix any graph connectivity issues.

Besides the enhanced graphs, the shared task set-
ting poses two additional challenges. Firstly, the
evaluation is on 17 languages from 4 language fami-
lies, and not all the languages have large collections
of annotated data: the lowest-resource language,
Tamil, contains merely 400 training sentences —
more than two magnitudes smaller than what is
available for Czech. To facilitate knowledge shar-
ing between high-resource and low-resource lan-
guages, we develop a two-stage finetuning strategy:
we first train a language-generic model on the con-
catenation of all available training treebanks from
all languages provided by the shared task, and then
finetune on each language individually.

Secondly, the shared task demands parsing from
raw text. This requires accurate text processing
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pipelines including modules for tokenization, sen-
tence splitting, and multi-word token expansion, in
addition to enhanced UD parsing. We build our
own models for all these components; notably, we
pre-train character-level masked language models
on Wikipedia data, leading to improvements on tok-
enization, the first component in the text processing
pipeline. Our multi-word token expanders combine
the strengths of pre-trained learning-based mod-
els and rule-based approaches, and achieve robust
results, especially on low-resource languages.

Our system submission integrates the aforemen-
tioned solutions to the three main challenges given
by the shared task, and ranks top among all sub-
missions, with a macro-average EULAS of 90.16
and ELAS of 89.24. Our system gives the best
evaluation scores on all languages except for Ara-
bic, and has large margins (more than 5 absolute
ELAS) over the second-best systems on Tamil and
Lithuanian, which are among languages with the
smallest training treebanks.

2 TGIF: Tree-Graph Integrated-Format
Parser for Enhanced UD

2.1 Tree and Graph Representations for
Enhanced UD

The basic syntactic layer in UD is a single-rooted
labeled dependency tree for each sentence, whereas
the enhanced UD layer only requires that the set
of dependency edges for each sentence form a con-
nected graph. In these connected graphs, each word
may have multiple parents, there may be multiple
roots for a sentence, and the graphs may contain
cycles, but there must exist one path from at least
one of the roots to each node.1

Accompanying the increase in expressiveness of
the enhanced UD representation is the challenge
to produce structures that correctly satisfy graph-
connectivity constraints during model inference.
We summarize the existing solutions proposed for
the previous run of the shared task at IWPT 2020
(Bouma et al., 2020) into four main categories:
• Tree-based: since the overlap between the en-
hanced UD graphs and the basic UD trees are typ-
ically significant, and any deviations tend to be
localized and tied to one of several certain syntac-
tic constructions (e.g, argument sharing in a control

1Enhanced UD graphs additionally allow insertion of
phonologically-empty nodes to recover elided elements in
gapping constructions. This is currently beyond the scope our
system and we use pre- and post-processing collapsing steps
to handle empty nodes (§5).

structure), one can repurpose tree-based parsers for
producing enhanced UD graphs. This category of
approaches include packing the additional edges
from an enhanced graph into the basic tree (Kan-
erva et al., 2020) and using either rule-based or
learning-based approaches to convert a basic UD
tree into an enhanced UD graph (Heinecke, 2020;
Dehouck et al., 2020; Attardi et al., 2020; Ek and
Bernardy, 2020).2

• Graph-based: alternatively, one can directly fo-
cus on the enhanced UD graph with a semantic
dependency graph parser that predicts the existence
and label of each candidate dependency edge. But
there is generally no guarantee that the set of pre-
dicted edges will form a connected graph, so a post-
processing step is typically employed to fix any
connectivity issues. This category of approaches
includes the work of Wang et al. (2020), Barry et al.
(2020), and Grünewald and Friedrich (2020).3

• Transition-based: Hershcovich et al. (2020) adapt
a transition-based solution. Their system explicitly
handles empty nodes through a specialized tran-
sition for inserting them; it relies on additional
post-processing to ensure connectivity.
• Tree-Graph Integrated: He and Choi (2020) in-
tegrate a tree parser and a graph parser,4 where
the tree parser produces the basic UD tree, and the
graph parser predicts any additional edges. During
inference, all nodes are automatically connected
through the tree parser, and the graph parser allows
flexibility in producing graph structures.5

The tree-based approaches are prone to error
propagation, since the predictions of the enhanced
layer rely heavily on the accuracy of basic UD
tree parsing. The graph-based and transition-based
approaches natively produce graph structures, but
they require post-processing to ensure connectivity.
Our system is a tree-graph integrated-format parser
that combines the strengths of the available global
inference algorithms for tree parsing and the flex-
ibility of a graph parser, without the need to use
post-processing to fix connectivity issues.

2The same idea has also been applied to the task of con-
junction propagation prediction (e.g., Grünewald et al., 2021).

3Barry et al.’s (2020) parsers use basic UD trees as features,
but the output space is not restricted by the basic trees.

4He and Choi (2020) describe their combo as an “ensemble”
but we prefer the term “integration” for both their method and
ours (which is inspired by theirs), since the two components
are not, strictly speaking, targeting same structures.

5The main difference from the tree-based approaches is
that the search space for additional graph edges is unaffected
by the predictions of basic UD trees in an integrated approach.
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Figure 1: An example with basic UD and enhanced UD
annotations above and below the text respectively. The
extracted spanning tree (§2.2) is bolded and is different
from the basic UD tree.

2.2 Spanning Tree Extraction

A connected graph must contain a spanning tree,
and conversely, if we first predict a spanning
tree over all nodes, and subsequently add addi-
tional edges, then the resulting graph remains con-
nected. Indeed, this property is leveraged in some
previously-proposed connectivity post-processing
steps (e.g., Wang et al., 2020), but extracting a span-
ning tree based on scores from graph-prediction
models creates a mismatch between training and
inference. He and Choi (2020) instead train tree
parsers and graph parsers separately and combine
their prediction during inference, but their tree
parsers are trained on basic UD trees whose edges
are not always present in the enhanced UD layer.

Our solution refines He and Choi’s (2020) ap-
proach: we train tree parsers to predict spanning
trees extracted from the enhanced UD graphs, in-
stead of basic UD trees, to minimize train-test mis-
match. See Figure 1 for an example. Spanning
tree extraction is in essence assignment of unique
head nodes to all nodes in a graph, subject to tree
constraints. For consistent extraction, we apply the
following rules:
• If a node has a unique head in the enhanced graph,
there is no ambiguity in head assignment.
• If a basic UD edge is present among the set of
incoming edges to a given node, include that basic
UD edge in the spanning tree.
• Otherwise, there must be multiple incoming
edges, none of which are present in the basic UD
tree. We pick the parent node that is the “highest”,
i.e., the closest to the root node, in the basic tree.

The above head assignment steps do not formally
guarantee that the extracted structures will be trees,
but empirically, we observe that the extraction re-
sults are indeed trees for all training sentences.6

6Dear Reviewer 1: your question here in the submitted
paper caused us to uncover a bug! Fixing it rectified the 4

2.3 Parameterization
Our parser architecture is adapted from that of
Dozat and Manning (2017, 2018), which forms
the basis for the prior graph-based approaches in
the IWPT 2020 shared task. We predict unlabeled
edges and labels separately, and for the unlabeled
edges, we use a combination of a tree parser and a
graph-edge prediction module.

Representation The first step is to extract con-
textual representations. For this purpose, we use
the pre-trained XLM-R model (Conneau et al., 2020),
which is trained on multilingual CommonCrawl
data and supports all 17 languages in the shared
task. The XLM-R feature extractor is finetuned along
with model training. Given a length-n input sen-
tence x = x1, . . . , xn and layer l, we extract

[xl0,x
l
1, . . . ,x

l
n] = XLM-Rl(<s>, x1, . . . , xn, </s>),

where inputs to the XLM-R model are a concatenated
sequence of word pieces from each UD word, we
denote the layer-l vector corresponding to the last
word piece in the word xi as xli, and the dummy
root representations x0s are taken from the special
<s> token at the beginning of the sequence.

Deep Biaffine Function All our parsing compo-
nents use deep biaffine functions (DBFs), which
score the interactions between pairs of words:

DBF(i, j) =vhead>
i Uvmod

j + bhead · vhead
i

+ bmod · vmod
j + b,

where vhead
i and vmod

j are non-linearly transformed
vectors from weighted average XLM-R vectors
across different layers:

vhead
i = ReLU

(
W head

∑
l

eα
head
l

∑
l′ e

αhead
l′

xli

)
,

and vmod
j is defined similarly. Each DBF has

its own trainable weight matrices U , W head, and
Wmod, vectors bhead and bmod, and scalars b,
{αhead

l } and {αmod
l }.

Tree Parser To estimate the probabilities of head
attachment for each token wj , we define

P (head(wj) = wi) = softmaxi(DBFtree(i, j)).

The tree parsing models are trained with cross-
entropy loss, and we use a non-projective maxi-
mum spanning tree algorithm (Chu and Liu, 1965;
Edmonds, 1967) for global inference.
training sentences that weren’t originally getting trees.
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Language Direct Training Generic FinetunedGraph+Fix Tree-Graph

Arabic 80.34 80.30 80.57 80.63
Bulgarian 91.81 92.00 91.69 92.30
Czech 92.93 92.98 92.94 92.98
Dutch 92.14 92.13 92.03 92.21
English 88.38 88.51 88.44 88.83
Estonian 89.53 89.42 89.22 89.40
Finnish 91.97 92.10 91.84 92.48
French 94.46 94.51 94.26 95.52
Italian 93.04 93.24 93.26 93.41
Latvian 88.47 88.42 88.38 89.78
Lithuanian 90.57 90.63 90.47 90.85
Polish 91.28 91.48 91.28 91.63
Russian 93.47 93.50 93.37 93.47
Slovak 93.70 93.83 94.00 95.44
Swedish 90.35 90.48 90.33 91.57
Tamil 66.24 66.82 67.35 68.95
Ukrainian 92.98 92.94 93.24 93.89

Average 89.51 89.61 89.57 90.20

Table 1: Dev-set ELAS (%) results, comparing
graph parsers with connectivity-fixing postprocessing
against tree-graph integrated models (§2) and compar-
ing parsers trained directly on each language, generic-
language parsers, and parsers finetuned on individual
languages from the generic-language checkpoint (§3).

Graph Parser In addition to the spanning trees,
we make independent predictions on the existence
of any extra edges in the enhanced UD graphs by

P (∃edgewi → wj) = sigmoid(DBFgraph(i, j)).

We train the graph parsing model with a cross en-
tropy objective, and during inference, any edges
with probabilities≥ 0.5 are included in the outputs.

Relation Labeler For each edge in the unlabeled
graph, we predict the relation label via

P (lbl(wi → wj) = r) = softmaxr(DBFrel-r(i, j)),

where we have as many deep biaffine functions as
the number of candidate relation labels in the data.
To reduce the large number of potential labels due
to lexicalization, the relation labeler operates on
a de-lexicalized version of the labels, and then a
re-lexicalization step expands the predicted labels
into their full forms (§5).

Training The above three components are sepa-
rately parameterized, and during training, we op-
timize for the sum of their corresponding cross-
entropy loss functions.

2.4 Empirical Comparisons
In Table 1, we compare our tree-graph integrated-
format parser with a fully graph-based approach.

The graph-based baseline uses the same feature ex-
tractor, graph parser, and relation labeler modules,
but it omits the tree parser for producing spanning
trees, and we apply post-processing steps to ensure
connectivity of the output graphs. Our tree-graph
integrated-format parser outperforms the graph-
based baseline on 12 out of the 17 test languages
(binomial test, p = 0.07).

3 TGIF: Two-Stage Generic- to
Individual-Language Finetuning

In addition to the tree-graph integration approach,
our system submission also features a two-stage
finetuning strategy. We first train a language-
generic model on the concatenation of all available
training treebanks in the shared task data regard-
less of their source languages, and then finetune on
each individual language in a second step.

This two-stage finetuning strategy is designed to
encourage knowledge sharing across different lan-
guages, especially from high-resource languages
to lower-resource ones. In our experiment results
as reported in Table 1, we find that this strategy
is indeed beneficial for the majority of languages,
especially those with small training corpora (e.g.,
2.13 and 1.01 absolute ELAS improvements on
Tamil and French respectively), though this comes
at the price of slightly decreased accuracies on
high-resource languages (e.g., −0.02 on Estonian
and −0.03 on Russian). Additionally, we find that
the language-generic model achieves reasonably
competitive performance when compared with the
set of models directly trained on each individual
language. This suggests that practitioners may opt
to use a single model for parsing all languages if
there is a need to lower disk and memory footprints,
without much loss in accuracy.

4 Pre-TGIF: Pre-Training Grants
Improvements Full-Stack

Inspired by the recent success of pre-trained lan-
guage models on a wide range of NLP tasks (Peters
et al., 2018; Devlin et al., 2019; Conneau et al.,
2020, inter alia), we build our own text process-
ing pipeline based on pre-trained language models.
Due to limited time and resources, we only focus
on components relevant to the shared task, which
include tokenization, sentence splitting, and multi-
word token (MWT) expansion.
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4.1 Tokenizers with Character-Level Masked
Language Model Pre-Training

We follow state-of-the-art strategies (Qi et al., 2020;
Nguyen et al., 2021) for tokenization and model
the task as a tagging problem on sequences of char-
acters. But in contrast to prior methods where tok-
enization and sentence segmentation are bundled
into the same prediction stage, we tackle tokeniza-
tion in isolation, and for each character, we make a
binary prediction as to whether a token ends at the
current character position or not.

An innovation in our tokenization is that we fine-
tune character-based language models trained on
Wikipedia data. In contrast, existing approaches
typically use randomly-initialized models (Qi et al.,
2020) or use pre-trained models on subword units
instead of characters (Nguyen et al., 2021).

We follow Devlin et al. (2019) and pre-train our
character-level sequence models using a masked
language modeling objective: during training, we
randomly replace 15% of the characters with a spe-
cial mask symbol and the models are trained to pre-
dict the identity of those characters in the original
texts. Due to computational resource constraints,
we adopt a small-sized architecture based on simple
recurrent units (Lei et al., 2018).7 We pre-train our
models on Wikipedia data8 and each model takes
roughly 2 days to complete 500k optimization steps
on a single GTX 2080Ti GPU.

4.2 Sentence Splitters

We split texts into sentences from sequences of
tokens instead of characters (Qi et al., 2020). Our
approach resembles that of Nguyen et al. (2021).9

This allows our models to condense information
from a wider range of contexts while still reading
the same number of input symbols. The sentence
splitters are trained to make binary predictions at
each token position on whether a sentence ends
there. We adopt the same two-stage finetuning
strategy as for our parsing modules based on pre-
trained XLM-R feature extractors (§3).

7Simple recurrent units are a fast variant of recurrent neural
networks. In our preliminary experiments, they result in lower
accuracies than long-short term memory networks (LSTMs),
but are 2-5 times faster, depending on sequence lengths.

8We extract Wikipedia texts using WikiExtractor (Attardi,
2015) from Wikipedia dumps dated 2021-04-01.

9An important difference is that our sentence splitters are
aware of token boundaries and the models are restricted from
making token-internal sentence splitting decisions.

4.3 Multi-Word Token (MWT) Expanders

The UD annotations distinguish between tokens
and words. A word corresponds to a consecutive
sequence of characters in the surface raw text and
may contain one or more syntactically-functioning
words. We break down the MWT expansion task
into first deciding whether or not to expand a given
token and then performing the actual expansion.
For the former, we train models to make a binary
prediction on each token, and we use pre-trained
XLM-R models as our feature extractors.

For the MWT expansion step once the tokens
are identified through our classifiers, we use a com-
bination of lexicon- and rule-based approaches. If
the token form is seen in the training data, we
adopt the most frequently used way to split it
into multiple words. Otherwise, we invoke a set
of language-specific handwritten rules developed
from and tuned on the training data; a typical rule
iteratively splits off an identified prefix or suffix
from the remainder of the token.

4.4 Lemmatizers

While the shared task requires lemmatized forms
for constructing the lexicalized enhanced UD la-
bels, we only need to predict lemmas for a small
percentage of words. Empirically, these words tend
to be function words and have a unique lemma per
word type. Thus, we use a full lexicon-based ap-
proach to (incomplete) lemmatization. Whenever a
lemma is needed during the label re-lexicalization
step, we look the word up in a dictionary extracted
from the training data.

4.5 Evaluation

We compare our text-processing pipeline compo-
nents with two state-of-the-art toolkits, Stanza (Qi
et al., 2020) and Trankit (Nguyen et al., 2021) in
Table 2. We train our models per-language instead
of per-treebank to accommodate the shared task
setting, so our models are at a disadvantage when
there are multiple training treebanks for a language
that have different tokenization/sentence splitting
conventions (e.g., English-EWT and English-GUM
handle word contractions differently). Despite this,
our models are highly competitive in terms of to-
kenization and MWT expansion, and we achieve
significantly better sentence segmentation results
across most treebanks. We hypothesize that a
sequence-to-sequence MWT expansion approach,
similar to the ones underlying Stanza and Trankit,
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Treebank Token Sentence Word
Stanza Trankit Ours Stanza Trankit Ours Stanza Trankit Ours

Arabic-PADT 99.98 99.95 99.99 80.43 96.79 96.87 97.88 99.39 98.70
Bulgarian-BTB 99.93 99.78 99.95 97.27 98.79 99.06 99.93 99.78 99.95
Czech-FicTree 99.97 99.98 99.97 98.60 99.50 99.54 99.96 99.98 99.96
Czech-CAC 99.99 99.99 99.99 100.00 100.00 100.00 99.97 99.98 99.99
Dutch-Alpino 99.96 99.43 99.86 89.98 90.65 94.45 99.96 99.43 99.86
Dutch-LassySmall 99.90 99.36 99.94 77.95 92.60 94.23 99.90 99.36 99.94
English-EWT 99.01 98.67 98.79 81.13 90.49 92.70 99.01 98.67 98.79
English-GUM 99.82 99.52 98.88 86.35 91.60 95.11 99.82 99.52 99.18
Estonian-EDT 99.96 99.75 99.95 93.32 96.58 96.60 99.96 99.75 99.95
Estonian-EWT 99.20 97.76 98.72 67.14 82.58 89.37 99.20 97.76 98.72
Finnish-TDT 99.77 99.71 99.76 93.05 97.22 98.26 99.73 99.72 99.73
French-Sequoia 99.90 99.81 99.88 88.79 94.07 96.82 99.58 99.78 99.84
Italian-ISDT 99.91 99.88 99.90 98.76 99.07 99.07 99.76 99.86 99.83
Latvian-LVTB 99.82 99.73 99.80 99.01 98.69 99.26 99.82 99.73 99.80
Lithuanian-ALKSNIS 99.87 99.84 99.99 88.79 95.72 96.22 99.87 99.84 99.99
Polish-LFG 99.95 98.34 99.84 99.83 99.57 99.88 99.95 98.34 99.89
Polish-PDB 99.87 99.93 99.49 98.39 98.71 99.66 99.83 99.92 99.84
Russian-SynTagRus 99.57 99.71 99.73 98.86 99.45 99.54 99.57 99.71 99.73
Slovak-SNK 99.97 99.94 99.95 90.93 98.49 96.72 99.97 99.94 99.94
Swedish-Talbanken 99.97 99.91 99.97 98.85 99.26 99.34 99.97 99.91 99.97
Tamil-TTB 99.58 98.33 99.63 95.08 100.00 100.00 91.42 94.44 95.34
Ukrainian-IU 99.81 99.77 99.86 96.65 97.55 98.38 99.79 99.76 99.84

Table 2: Test-set F1 scores for tokenization, sentence segmentation, and MWT expansion, comparing Stanza (Qi
et al., 2020), Trankit (Nguyen et al., 2021), and our system submission. Our system results are from the shared
task official evaluations; Stanza and Trankit results are reported in the Trankit documentation with models trained
on UD 2.5. Caveat: the results may not be strictly comparable due to treebank version mismatch.

may provide further gains to morphologically-rich
languages that cannot be sufficiently modeled via
handwritten rules, notably Arabic.

5 Other Technical Notes

Hyperparameters We report our hyperparame-
ters in the Appendix.

Empty nodes Enhanced UD graphs may contain
empty nodes in addition to the words in the surface
form. Our parser does not support empty nodes,
so we follow the official evaluation practice and
collapse relation paths with empty nodes into com-
posite relations during training and inference.

Multiple relations In some cases, there can be
multiple relations between the same pair of words.
We follow Wang et al. (2020) and merge all these re-
lations into a composite label, and re-expand them
during inference.

De-lexicalization and re-lexicalization Certain
types of relation labels include lexicalized informa-
tion, resulting in a large relation label set. For ex-
ample, nmod:in contains a lemma “in” that is taken
from the modifier with a case relation. To combat
this, we follow Grünewald and Friedrich’s (2020)

strategy and replace the lemmas10 with placehold-
ers consisting of their corresponding relation la-
bels. The previous example would result in a de-
lexicalized label of nmod:[case]. During infer-
ence, we apply a re-lexicalization step to recon-
struct the original full relation labels given our pre-
dicted graphs. We discard the lexicalized portions
of the relation labels when errors occur either in
de-lexicalization (unable to locate the source child
labels to match the lemmas) or re-lexicalization (un-
able to find corresponding placeholder relations).

Sequence length limit Pre-trained language
models typically have a limit on their input se-
quence lengths. The XLM-R model has a limit of
512 word pieces. For a small number of sentences
longer than that, we discard word-internal word
pieces, i.e., keep a prefix and a suffix of word
pieces, of the longest words to fit within limit.

Multiple Treebanks Per Language Each lan-
guage in the shared task can have one or more
treebanks for training and/or testing. During eval-
uation, there is no explicit information regarding
the source treebank of the piece of input text. In-
stead of handpicking a training treebank for each

10We find that using lemmas instead of word forms signifi-
cantly improves coverage of the lexicalized labels.
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Language combo dcu_epfl fastparse grew nuig robertnlp shanghaitech tgif (Ours) unipi

Arabic 76.39 71.01 53.74 71.13 – 81.58 82.26 81.23 77.13
Bulgarian 86.67 92.44 78.73 88.83 78.45 93.16 92.52 93.63 90.84
Czech 89.08 89.93 72.85 87.66 – 90.21 91.78 92.24 88.73
Dutch 87.07 81.89 68.89 84.09 – 88.37 88.64 91.78 84.14
English 84.09 85.70 73.00 85.49 65.40 87.88 87.27 88.19 87.11
Estonian 84.02 84.35 60.05 78.19 54.03 86.55 86.66 88.38 81.27
Finnish 87.28 89.02 57.71 85.20 – 91.01 90.81 91.75 89.62
French 87.32 86.68 73.18 83.33 – 88.51 88.40 91.63 87.43
Italian 90.40 92.41 78.32 90.98 – 93.28 92.88 93.31 91.81
Latvian 84.57 86.96 66.43 77.45 56.67 88.82 89.17 90.23 83.01
Lithuanian 79.75 78.04 48.27 74.62 59.13 80.76 80.87 86.06 71.31
Polish 87.65 89.17 71.52 78.20 – 89.78 90.66 91.46 88.31
Russian 90.73 92.83 78.56 90.56 66.33 92.64 93.59 94.01 90.90
Slovak 87.04 89.59 64.28 86.92 67.45 89.66 90.25 94.96 86.05
Swedish 83.20 85.20 67.26 81.54 63.12 88.03 86.62 89.90 84.91
Tamil 52.27 39.32 42.53 58.69 – 59.33 58.94 65.58 51.73
Ukrainian 86.92 86.09 63.42 83.90 – 88.86 88.94 92.78 87.51

Average 83.79 83.57 65.81 81.58 – 86.97 87.07 89.24 83.64
Rank 4 6 8 7 9 3 2 1 5

Table 3: Official ELAS (%) evaluation results. Our submission ranks first on 16 out of the 17 languages.

language, we simple train and validate on the con-
catenation of all available data for each language.

Training on a single GPU The XLM-R model has
large number of parameters, which makes it chal-
lenging to finetune on a single GPU. We use a batch
size of 1 and accumulate gradients across multiple
batches to lower the usage of GPU RAM. When
this strategy alone is insufficient, e.g., when train-
ing the language-generic model, we additionally
freeze the initial embedding layer of the model.

6 Official Evaluation

The shared task performs evaluation on UD tree-
banks that have enhanced UD annotations across
17 languages: Arabic (Hajič et al., 2009), Bul-
garian (Simov et al., 2004), Czech (Hladká et al.,
2010; Bejček et al., 2013; Jelínek, 2017), Dutch
(van der Beek et al., 2002; Bouma and van No-
ord, 2017), English (Silveira et al., 2014; Zeldes,
2017), Estonian (Muischnek et al., 2014, 2019),
Finnish (Haverinen et al., 2014; Pyysalo et al.,
2015), French (Candito et al., 2014; Seddah and
Candito, 2016), Italian (Bosco et al., 2013), Latvian
(Pretkalnin, a et al., 2018), Lithuanian (Bielinskienė
et al., 2016), Polish (Patejuk and Przepiórkowski,
2018; Wróblewska, 2018), Russian (Droganova
et al., 2018), Slovak (Zeman, 2018), Swedish
(Nivre and Megyesi, 2007), Tamil (Ramasamy
and Žabokrtský, 2012), Ukrainian (Kotsyba et al.,
2016), and multilingual parallel treebanks (Zeman
et al., 2017).
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Figure 2: The per-language delta ELAS between our
submission and the best performing system other than
ours, as a function of (the log of the) number of train-
ing sentences. (For Italian, the difference is quite small
but still positive.) Our models achieve larger improve-
ments on lower-resource languages.

Table 3 shows the official ELAS evaluation re-
sults of all 9 participating systems in the shared
task.11 Our system has the top performance on 16
out of 17 languages, and it is also the best in terms
of macro-average across all languages. On average,
we outperform the second best system by a margin
of more than 2 ELAS points in absolute terms, or
more than 15% in relative error reduction.

Figure 2 visualizes the “delta ELAS” between

11Reproduced from https://universaldependencies.
org/iwpt21/results.html.
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our submission and the best result other than ours
on a per-language basis, plotted against the train-
ing data size for each language. Our system sees
larger improvements on lower-resource languages,
where we have more than 5-point leads on Tamil
and Lithuanian, two languages among those with
the smallest number of training sentences.

7 Closing Remarks

Our submission to the IWPT 2021 shared task
combines three main techniques: (1) tree-graph
integrated-format parsing (graph → spanning
tree → additional edges) (2) two-stage generic-
to individual-language finetuning, and (3) pre-
processing pipelines powered by language model
pre-training. Each of the above contributes to our
system performance positively,12 and by combin-
ing all three techniques, our system achieves the
best ELAS results on 16 out of 17 languages, as
well as top macro-average across all languages,
among all system submissions. Additionally, our
system shows more relative strengths on lower-
resource languages.

Due to time and resource constraints, our sys-
tem adopts the same set of techniques across all
languages and we train a single set of models for
our primary submission. We leave it to future work
to explore language-specific methods and/or model
combination and ensemble techniques to further
enhance model accuracies.
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A Hyperparameters

Character-level Language Model Pre-training
Optimization:

Optimizer RAdam (Liu et al., 2020)
Batch size 128
Number of steps 500,000
Initial learning rate 3× 10−4

Weight decay 0.1
Gradient clipping 1.0

Simple Recurrent Units:
Sequence length limit 512
Vocab size 512
Embedding size 256
Hidden size 256
Numer of layers 8
Dropout 0.3

Tokenizer
Optimization:

Optimizer RAdam
Batch size 32
Initial learning rate 5× 10−5

Weight decay 0
Gradient clipping 1.0

Multi-layer Perceptrons (MLPs):
Number of layers 1
Hidden size 500
Dropout 0.5

Sentence Splitter, MWT Expander, and Parser
Pre-trained model XLM-R (Large)

Optimization:
Optimizer RAdam
Batch size 8
Initial learning rate 1× 10−5

Second-stage learning rate 1× 10−6

Weight decay 0
Gradient clipping 1.0

Tagger MLPs (Sentence Splitter, MWT Expander):
Number of layers 1
Hidden size 400
Dropout 0.5

Parser MLPs (Unlabeled Tree and Graph Parsers):
Number of layers 1
Hidden size 383
Dropout 0.33

Parser MLPs (Relation Labeler):
Number of layers 1
Hidden size 255
Dropout 0.33
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Abstract

We describe the NUIG solution for IWPT 2021
Shared Task of Enhanced Dependency (ED)
parsing in multiple languages. For this shared
task, we propose and evaluate an End-to-end
Seq2seq mBERT- based ED parser which pre-
dicts the ED-parse tree of a given input sen-
tence as a relative head-position tag-sequence.
Our proposed model is a multitasking neural-
network which performs five key tasks si-
multaneously namely UPOS-tagging, UFeat-
tagging, Lemmatization, Dependency-parsing
and ED-parsing. Furthermore we utilise the
linguistic typology available in the WALS
database to improve the ability of our proposed
end-to-end parser to transfer across languages.
Results show that our proposed Seq2seq ED-
parser performs on par with state-of-the-art
ED-parser despite having a much simpler de-
sign.

1 Introduction

The Enhanced Universal Dependency (EUD) Pars-
ing (Schuster and Manning, 2016; Nivre et al.,
2020) framework is an interesting extension of the
standard Dependency Parsing framework, which
provides additional significant syntactic and seman-
tic knowledge, that is missing in a standard depen-
dency parse-tree. Such additional knowledge can
be crucial for numerous downstream NLP tasks.

The IWPT 2021 Shared Task (Bouma et al.,
2021) requires the participants to perform the
enhanced dependency parsing of the given test-
sentences, in addition to predicting the sentence-
boundaries, token-boundaries, lemmatization, POS-
tags, morphological features and the basic depen-
dency relations. The participants are provided with
the blind test-corpora in 17 languages, and are ex-
pected to perform the enhanced dependency pars-
ing on each sentence within these test corpora and
submit the results (in the conllu format).

For this IWPT 2021 Shared Task (Bouma
et al., 2021) we propose and evaluate the per-
formance an End-to-end mBERT Based Se2seq
ED-Parser which performs five key tasks namely
UPOS-tagging, UFeats-prediction, Lemmatization,
Dependency-parsing and Enhanced Dependency-
parsing in multi-tasking settings.

Our proposed model is an extension of the pop-
ular UDify model (Kondratyuk and Straka, 2019)
which is the state-of-the-art mBERT based mul-
tilingual dependency parser, and is inspired by
(Li et al., 2018) which is an End-to-end Seq2seq
Dependency-Parser. We describe the UDify model
in Section 2.

We trained our proposed ED-Parser on a large
joint polyglot corpus created by concatenating all
the treebanks in the provided training dataset for
IWPT 2021 Shared Task, and evaluated it on eight
of the 17 provided blind test-corpora.

Furthermore, similar to previous approaches
(Ammar et al., 2016), we utilized the Linguis-
tic Typology knowledge available in World Atlas
of Language System (WALS) database (Haspel-
math, 2009) to improve the cross-lingual transfer-
ring ability of our proposed ED-parser. We fed
these typology features together with token-ids into
the proposed ED-parser. We describe the archi-
tecture of our End-to-end mBERT Based Se2seq
ED-Parser in detail in Section 3.

2 Background and Related Work

2.1 Seq2seq Dependency Parser

(Li et al., 2018) proposed a Seq2seq architecture to
perform the end-to-end dependency parsing. The
approach represented the entire dependency parse-
tree of a given input-sentence, as a relative head-
position tag-seq (of same length as the length of
the input sentence). Figure 1 depicts a labelled and
an unlabelled parse-tree represented by their re-
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Figure 1: Examples of dependency parse tree being represented as relative head-position tag sequence by (Li et al.,
2018)

Figure 2: Example Enhanced Dependency Parse trees represented as Relative Head-position tag-sequences

spective relative head-position tag-sequences. Sub-
sequently, the approach trains a standard LSTM-
based model to predict the relative head-position
tag for each token within an input-sentence. Re-
sults outlined in the paper show that this end-to-end
parser performs as well as the state-of-the-art deep
biaffine network (Dozat and Manning, 2016) while
being much simpler in design.

2.2 UDify

UDify is an mBERT based multilingual model
which simultaneously performs four key language-
processing tasks; these tasks are UPOS-tagging,
UFeat-tagging, Lemmatization and Dependency
Parsing, in a multitasking framework. The model
utilizes a single shared mBERT based encoder, and
four individual task-specific decoders, for each of
the four tasks respectively.

The mBERT Encoder takes in the entire sentence
as input, tokenizes it using pre-trained the Word-
Piece Tokenizer (Wu et al., 2016) and subsequently
outputs mBERT (Wu and Dredze, 2019) based

contextualized-embeddings for each word within
the input-sentence. We refer to original UDify
(Kondratyuk and Straka, 2019) paper for a detailed
description of the mechanism of computing/fine-
tuning such contextualized embeddings.

The decoders for both the UPOS-tagging and
UFeat-tagging tasks adopt a standard sequence-
tagging architecture with a softmax layer on the top.
These decoders accept the contextual embeddings
generated from the mBERT Encoder for each word
in the input sentence, and predicts its UPOS/Ufeats
tag.

For the Lemmatization task as well, the model
uses a standard sequence-tagger which predicts a
class-tag representing a unique edit script, for each
word. An edit-script is simply the sequence of
character operations to transform a word form to
its lemma-form.

For dependency-parsing, the model adopts the
popular deep biaffine architecture (Dozat and Man-
ning, 2016) for graph-based parsing, with LSTM-
encoder been replaced by the shared mBERT En-
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Figure 3: UDify model architecture. Figure from (Kon-
dratyuk and Straka, 2019).

coder.

Hyper-parameter Value
Dropout prob. 0.01
Bach-size 32
Number of steps per
epoch

Size of training corpus
/ 32

Epochs 150
BERT Model bert multi cased L-

12 H-768 A-12

Table 1: Hyper-parameters

3 mBERT based Seq2seq ED Parser

Figure 2b depicts the architecture of the proposed
ED parser. Our proposed End-to-end ED Parser is
an extension of the UDify (Kondratyuk and Straka,
2019) model described in section 2.2, with one ad-
ditional component namely the Relative Head Se-
quence predictor which predicts the relative head-
position of the tag-sequence representing the unla-
belled enhanced-dependency parse-tree of the input
sentence (as the fifth auxiliary task in the multitask-
ing UDify model).

3.1 ED parse-tree as relative head-position
tag sequence

Given a sentence of length T, its unlabelled ED
parse-tree can be represented by a relative-head
tag-seq of length T̂ such that T̂ ≥ 2T + 1. Figure
2 depicts the representations of sample unlabelled
enhanced-dependency parse-trees as their relative
sequences of relative head-position tags. Here, the
tag < b > represents the next-token whose heads
are pointed by the subsequently predicted relative-
head position tags (until the next < b > tag is
predicted).

3.2 Relative Head Sequence predictor
As evident in Figure 2b, our Relative Head
Sequence predictor is a standard LSTM based
Seq2seq neural-network (Sutskever et al., 2014)
which takes in the entire input-sentence encoding
vector as input, and sequentially predicts the rela-
tive head-position tag-sequence, one tag at a time.

3.2.1 Input sentence-encoding
The sentence-encoding eX ∈ Rd of any input sen-
tence X = x1, x2, ...xT is computed by applying
equation 1.

eX = W ∗ [BERT (X);TYl] + b (1)

Here BERT (X) is the output embedding-vector
from the UDify’s shared mBERT encoder for the
end-of-sentence token < /s > of input-sentence
and TYl is a Linguistic-typology vector of language
l being parsed. Each value within TYl represents a
single typology-feature from WALS (Haspelmath,
2009) database having a specific integer value.
Equation 1 involves the concatenation of the BERT-
output and the Typology vectors, followed by di-
mension reduction through a feed-forward network.
Feeding typology features together with the input
sentence could improve the cross-lingual transfer-
ring ability of the multilingual model, as shown by
(Ammar et al., 2016).

For the proposed model, we use all the word-
order and constituency features in WALS (Haspel-
math, 2009) database excluding trivially redundant
features as excluded by (Takamura et al., 2016).

3.2.2 Training
We trained our mBERT based Seq2seq ED Parser
on a single large joint-polyglot corpus, created by
concatenating all the treebanks available in the
training dataset provided for the IWPT 2021 Shared
task.
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Figure 4: Architecture of the Relative Head-position Sequence predictor

Figure 5: Architecture of the Label predictor

Before each training epoch, we randomly shuffle
all sentences in our polyglot training corpus, and
subsequently feed mixed batches of sentences from
this shuffled corpus into the model being trained,
where each batch may contain sentences from any
language or treebank (as done by authors of UDify
(Kondratyuk and Straka, 2019)).

We optimized the weights of our multitasking
model by minimizing the total loss as the sum of
sparse cross-entropy losses for all five tasks namely
UPOS-tagging, UFeat-tagging, Lemmatization, De-
pendency Parsing and Relative Head-position Se-
quence prediction.

3.2.3 Predicting
The ED parsing of any unknown input-sentence
X = x1, x2, ...xT can be performed by extracting
the most probable correct relative head-position
tag-sequence. The correct relative head-position

tag-sequence would satisfy following constraints.

1. Sequence should start with < b > and end
with < end >.

2. For each word in xi ∈ X , the relative head-
position tag assigned to it should be within
the range of the sentence. For example,
within the sentence “the house in front of
the hill”, the word ‘the’ can not have tags
L2, L3, L4, L5, L6 and the word ‘hill’ can not
have any right tags, as these are outside the
range of the sentence.

3. The label sequence should not generate any
cycles within the dependency tree.

4. One of the words should have the head at <
root > token.
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Language UPOS UFeats Lemmas UAS LAS ELAS
Bulgarian 98.81 35.97 97.40 93.37 90.03 78.45
English 95.17 32.77 95.76 87.07 84.46 65.40
Estonian 96.49 35.04 95.55 85.41 82.46 54.03
Latvian 96.12 35.61 95.45 88.51 85.19 56.67
Lithuanian 93.40 30.09 92.66 78.25 73.52 59.13
Russian 98.25 36.32 97.49 92.67 91.01 66.33
Slovak 96.62 22.68 94.61 90.09 87.49 67.45
Swedish 96.05 33.56 92.46 85.64 82.18 63.12

Table 2: Results achieved by our proposed End-to-end ED-parser

Model UPOS UFeats Lemmas UAS LAS EULAS ELAS
combo 97.62 94.95 94.39 91.55 89.14 86.41 85.01
dcu-epfl 96.32 91.81 95.15 87.44 84.3 87.67 86.89
fastparse 97.24 93.0 95.84 78.23 72.44 69.42 67.07
grew 97.24 93.0 95.84 89.6 87.03 85.18 82.95
robertnlp 97.89 94.06 0.01 93.15 90.4 89.25 88.44
shanghaitech 0.46 32.78 0.01 4.18 1.27 89.76 88.37
tgif 0.46 32.81 0.01 10.93 0.94 91.45 90.67
unipi 96.37 91.75 95.17 90.55 87.98 85.96 84.42
nuig 96.36 32.75 95.17 87.63 84.54 67.21 63.82

Table 3: Average results achieved by all ED parsers

5. The sequence should contain the number of
< b > tags equal to number of tokens in the
input sentence X .

We used dynamic programming with beam-search
to efficiently extract the most probable relative
head-position tag-sequence which satisfies the
above listed relative head-position tag-sequence,
out of all possible sequences.

3.3 Label Predictor

Figure 2c depicts the architecture of our Label pre-
dictor model. It is an mBERT based multi-class
classifier with a softmax layer on top. The model
takes as input the token-seq segment from the input
sentence ranging from head to tail, as well as its
corresponding predicted POS-tag sequence. The
model outputs the probabilities of all possible ED
dependency labels to be assigned to the given rela-
tion.

The Label-predictor is trained on all ED relation-
ships available in training dataset for IWPT 2021
Shared task. The parameters of the mBERT en-
coder of our Label predictor are initialized with
the parameters of the fine-tuned mBERT encoder
of our Relative Head-position tag-sequences.

4 Experiments

As already explained, our proposed End-to-end
Seq2seq ED-parser is trained on a large joint poly-
glot corpus created by concatenating all the tree-
banks in the provided training dataset for IWPT
2021 Shared Task. We evaluated our parser on test
corpora provided for the IWPT 2021 Shared Task
in eight distinct languages namely Bulgarian, Esto-
nian, English, Latvian, Lithuanian, Russian, Slovak
and Swedish. We outline the results achieved by
our proposed model in detail in Section 5. Table 1
outlines hyper-parameters used in the experiments.
These values are obtained by minimizing the train-
ing loss for English-EWT Corpus provided in the
dev dataset provided for IWPT 2021 Shared Task.

5 Results and Conclusion

Table 2 outlines results achieved by our proposed
End-to-end BERT Based Se2seq ED-Parser on all
eight blind test-corpora on which the model is eval-
uated, as calculated by the evaluation script for the
shared task.

Appendix A compares the results achieved by
our ED-parser with the results achieved by the
other participants of IWPT 2021 Shared tasks. Ta-
ble 3 outlines the average results achieved by all
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the models proposed in IWPT 2021 Shared task
for all eight test-languages. It is evident that our
models performs on par with other state-of-the-art
ED-parsers despite the fact that its much simpler
in design as it is an end-to-end design, and thus is
much easier to train and implement.
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A Results

This section compares the results achieved by our
ED-parser with the results achieved by the other
participants of IWPT 2021 Shared tasks.

Table 4: Results of all participants of IWPT 2021
Shared Task

Begin of Table
Language Models UPOS UFeats Lemma UAS LAS ELAS
Bulgarian combo 98.72 97.23 97.25 92.98 89.52 86.67

dcu-epfl 98.89 97.57 97.30 93.25 90.19 92.44
fastparse 99.15 97.95 97.97 87.85 83.39 78.73
grew 99.15 97.95 97.97 94.36 91.62 88.83
robertnlp 99.13 98.31 0.01 96.30 94.15 93.16
shanghaitech 0.00 35.92 0.01 5.80 1.54 92.52
tgif 0.00 35.98 0.01 10.58 1.13 93.63
unipi 98.81 97.57 97.40 95.29 92.71 90.84
nuig 98.81 35.97 97.40 93.37 90.03 78.45

English combo 95.74 93.54 95.26 89.61 87.22 84.09
dcu-epfl 94.96 93.53 95.66 86.45 83.64 85.70
fastparse 95.85 94.16 96.04 82.36 77.99 73.00
grew 95.85 94.16 96.04 89.22 86.83 85.49
robertnlp 96.24 94.44 0.00 90.79 88.48 87.88
shanghaitech 0.28 32.80 0.00 3.71 1.24 87.27
tgif 0.28 32.76 0.00 7.86 1.08 88.19
unipi 95.17 93.70 95.76 90.64 88.47 87.11
nuig 95.17 32.77 95.76 87.07 84.46 65.40

Estonian combo 97.42 96.57 86.09 90.00 87.53 84.02
dcu-epfl 96.46 95.30 95.58 85.31 82.35 84.35
fastparse 96.89 95.78 94.90 71.70 64.50 60.05
grew 96.89 95.78 94.90 86.62 83.85 78.19
robertnlp 97.09 96.46 0.00 90.02 87.59 86.55
shanghaitech 0.12 34.99 0.00 3.67 1.16 86.66
tgif 0.12 35.08 0.01 11.86 0.82 88.38
unipi 96.49 95.33 95.55 87.11 84.14 81.27
nuig 96.49 35.04 95.55 85.41 82.46 54.03

Latvian combo 97.35 94.97 96.53 92.91 90.25 84.57
dcu-epfl 95.95 93.59 95.34 88.47 85.10 86.96
fastparse 96.28 93.79 95.81 78.37 72.03 66.43
grew 96.28 93.79 95.81 88.32 85.27 77.45
robertnlp 97.61 95.18 0.03 93.62 91.25 88.82
shanghaitech 0.58 35.57 0.03 4.22 1.42 89.17
tgif 0.56 35.62 0.03 10.37 0.97 90.23
unipi 96.12 93.45 95.45 89.90 86.63 83.01
nuig 96.12 35.61 95.45 88.51 85.19 56.67

Lithuanian combo 97.26 95.05 93.76 88.03 84.75 79.75
dcu-epfl 93.47 87.74 92.71 78.36 73.25 78.04
fastparse 95.97 91.07 93.61 61.39 53.55 48.27
grew 95.97 91.07 93.61 82.54 78.65 74.62
robertnlp 97.42 93.20 0.00 90.49 83.27 80.76
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shanghaitech 1.51 30.12 0.00 5.12 1.77 80.87
tgif 1.51 30.20 0.00 10.89 1.24 86.06
unipi 93.40 87.14 92.66 82.75 78.31 71.31
nuig 93.40 30.09 92.66 78.25 73.52 59.13

Russian combo 98.94 98.04 98.16 95.37 94.29 90.73
dcu-epfl 98.19 87.67 97.39 92.61 90.97 92.83
fastparse 98.86 88.97 98.33 87.09 83.23 78.56
grew 98.86 88.97 98.33 94.22 92.97 90.56
robertnlp 99.06 89.51 0.00 95.65 94.64 92.64
shanghaitech 0.02 36.35 0.00 3.35 0.73 93.59
tgif 0.02 36.37 0.00 13.81 0.51 94.01
unipi 98.25 87.52 97.49 94.51 93.32 90.90
nuig 98.25 36.32 97.49 92.67 91.01 66.33

Slovak combo 97.88 95.03 95.61 93.19 91.72 87.04
dcu-epfl 96.55 91.15 94.72 89.27 86.60 89.59
fastparse 97.67 93.42 96.47 78.23 71.71 64.28
grew 97.67 93.42 96.47 92.27 90.45 86.92
robertnlp 98.28 95.54 0.00 96.16 93.88 89.66
shanghaitech 1.19 22.69 0.00 6.06 1.96 90.25
tgif 1.17 22.69 0.00 13.67 1.60 94.96
unipi 96.62 91.44 94.61 93.32 91.75 86.05
nuig 96.62 22.68 94.61 90.09 87.49 67.45

Swedish combo 97.67 89.19 92.45 90.31 87.82 83.20
dcu-epfl 96.12 87.92 92.47 85.83 82.30 85.20
fastparse 97.25 88.82 93.60 78.88 73.11 67.26
grew 97.25 88.82 93.60 89.26 86.59 81.54
robertnlp 98.30 89.87 0.00 92.15 89.92 88.03
shanghaitech 0.00 33.79 0.00 1.55 0.34 86.62
tgif 0.00 33.79 0.00 8.42 0.20 89.90
unipi 96.07 87.83 92.47 90.86 88.53 84.91
nuig 96.05 33.56 92.46 85.64 82.18 63.12

Language Models UPOS UFeats Lemmas UAS LAS ELAS
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