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Abstract

Further pre-training language models on in-
domain data (domain-adaptive pre-training,
DAPT) or task-relevant data (task-adaptive pre-
training, TAPT) before fine-tuning has been
shown to improve downstream tasks’ perfor-
mances. However, in task-oriented dialog
modeling, we observe that further pre-training
MLM does not always boost the performance
on a downstream task. We find that DAPT is
beneficial in the low-resource setting, but as
the fine-tuning data size grows, DAPT becomes
less beneficial or even useless, and scaling the
size of DAPT data does not help. Through Rep-
resentational Similarity Analysis, we conclude
that more data for fine-tuning yields greater
change of the model’s representations and thus
reduces the influence of initialization.1

1 Introduction

Pre-trained models such as BERT (Devlin et al.,
2019) and GPT2 (Radford et al., 2019) have been
used in a wide range of NLP tasks and achieved
superior performance. These models usually follow
the pre-train and fine-tune paradigm, which adopts
unsupervised pre-training on large-scale corpora
and supervised fine-tuning for downstream task
adaption. However, the pre-training corpora are in
the general domain, while the data of downstream
tasks fall in more task-specific domains.

To bridge the data distribution gap, further pre-
training has been applied and shows consistent
improvements (Sun et al., 2019). According to
the training data used in this process, Gururangan
et al. (2020) termed domain-adaptive pre-training
(DAPT), which uses the data in the same domain
of the target task and task-adaptive pre-training
(TAPT), which uses much less unlabeled training
data from the target task than DAPT. They found

*Corresponding author.
1Codes are available at https://github.com/zqw

erty/ToDDAPT.

that DAPT masked LM leads to performance gains
under both high- and low-resource settings and
TAPT is beneficial with or without DAPT.

DAPT has shown effectiveness for task-oriented
dialog modeling. Wu et al. (2020) further pre-
trained BERT on 9 task-oriented dialog corpora and
outperformed BERT on four downstream tasks, es-
pecially in the few-shot setting. Gu et al. (2020) fur-
ther pre-trained GPT-2 on 13 dialog corpora rang-
ing from chitchats to task-oriented dialogs, leading
to better results on three task-oriented datasets.

However, does further pre-training always help?
Mehri et al. (2020) performed DAPT on 700M open-
domain dialogs and TAPT, but the resulting model
only outperforms BERT in 4 out of 7 task-oriented
dialog datasets. We also observe that replacing
BERT with TOD-BERT-mlm (Wu et al., 2020) that
is further pre-trained MLM on 101K task-oriented
dialogs does not always bring a significant differ-
ence on downstream tasks. So far, however, there
has been little discussion about when and why fur-
ther pre-training on in-domain data can boost the
performance on a downstream task and how the
DAPT data size can affect this.

In this paper, we conduct an empirical study on
the effect of further pre-training BERTBASE on
task-oriented dialogs. Our experiments are orga-
nized around the following research questions:

• RQ1 When can DAPT improve the perfor-
mance on a downstream task?

• RQ2 How does the amount of data for DAPT

affect the performance on a downstream task?
We evaluate further pre-trained models on five

downstream tasks involving seven task-oriented di-
alog datasets. Our main findings are summarized as
follows: (1) DAPT and TAPT do not always improve
fine-tuning performance: the effect varies for dif-
ferent tasks, models, and fine-tuning data sizes. (2)
DAPT is more beneficial in the low-resource setting.
As the fine-tuning data size grows, the model’s
representations change more, implying that the in-
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fluence of pre-training decays, thus the benefit of
DAPT decreases or even vanishes. (3) Increasing
the amount of data for DAPT mostly improves the
performance in the relative low-resource setting.

2 Experimental Setup

2.1 Further Pre-training

We further pre-train BERTBASE uncased model
using masked language modeling loss with 15% to-
kens masked. Our DAPT dataset consists of several
multi-turn task-oriented dialog datasets, including
Schema (Rastogi et al., 2020), Taskmaster-1&2
(Byrne et al., 2019), MetaLWOZ (Li et al., 2020),
MSR-E2E (Li et al., 2018), SMD (Eric et al., 2017),
Frames (El Asri et al., 2017), WOZ (Mrkšić et al.,
2017), and Camrest (Wen et al., 2017), which has
103K dialogs (13M words) in total. To investigate
RQ2, we also use 25%, 5% and 1% dialogs to
perform DAPT. For TAPT, we use the training set
of each downstream task. We use 95% dialogs for
training and select the best checkpoint with the low-
est MLM loss on the other 5% dialogs. To obtain
a training sample D1:t = {U1, S1, ..., Ut} where
Ui, Si are user’s utterance and system’s utterance
respectively, we randomly pick a dialog D and
sample a turn t ∈ [1, T ] uniformly, where T is the
length of D. Then all the utterances are concate-
nated into a sequence as the model input: "[CLS]
[USR] U1 [SEP] [SYS] S1 [SEP] ... [USR]
Ut [SEP]", where [USR] and [SYS] are two
special tokens prepended to user’s and system’s
utterances respectively. See Appendix A for the
hyper-parameter setting.

2.2 Evaluation

We conduct comprehensive evaluations on 5 down-
stream tasks. Models on these tasks are adapted
from TOD-BERT (Wu et al., 2020), DialoGLUE
(Mehri et al., 2020), or ConvLab-2 (Zhu et al.,
2020). See Appendix B for fine-tuning details.

Intent Classification (IC) is a sequence classifi-
cation problem, where models take an utterance as
input and predict its intent. We use three datasets:
HWU (Liu et al., 2019) that has 64 intents and 26K
utterances, BANKING (Casanueva et al., 2020) that
has 77 intents and 13K utterances, and OOS (Lar-
son et al., 2019) that has 151 intents and 24K utter-
ances. We pass the representation of [CLS] token
to a linear layer for prediction.

Slot Filling (SF) requires models to extract slots’
values in an utterance, which is often formulated

as a sequence tagging problem. We use REST8K
dataset (Coope et al., 2020) that has 5 slots and 8K
utterances. We add a linear layer on the top of the
tokens’ representations to predict BIO format tags.

Semantic Parsing (SP) aims at identifying both
intents and slots’ values in an utterance. We use
TOP dataset (Gupta et al., 2018) that has 45K
utterances spanning 25 intents and 36 slots and
MultiWOZ 2.3 dataset (Han et al., 2020) that has
10K dialogs and 143K utterances spanning 7 do-
mains, 13 intents, and 25 slots. We use two linear
layers to predict intent and tokens’ tags respec-
tively.

Dialog State Tracking (DST) is the task of rec-
ognizing user constraints throughout the conversa-
tion. We use MultiWOZ dataset version 2.1 (Eric
et al., 2020) that has 30 domain-slot pairs to track.
We adopt two BERT-based models: TripPy (Heck
et al., 2020) and TOD-DST (Wu et al., 2020). Both
models use BERT to encode dialog history.

Dialog Act Prediction (DAP) is a multi-label
sequence classification problem, where models pre-
dict the intents of the system response given the
dialog history. We use two datasets: MultiWOZ
and GSIM (Shah et al., 2018) that contains 6 in-
tents and 3K dialogs. For each intent, we feed the
representation of [CLS] token to a linear layer and
predict whether the intent is in the response.

As for evaluation metrics, we use accuracy for in-
tent prediction, macro-F1 for slot filling and dialog
act prediction, exact-match for semantic parsing,
and joint goal accuracy for dialog state tracking.

2.3 Representational Similarity Analysis

Representational similarity analysis (RSA) is a
technique to measure the similarity between mod-
els’ representations (Laakso and Cottrell, 2000).
Following Merchant et al. (2020), we encode sam-
ples from a test dataset and randomly select the
same n = 5000 tokens as stimuli, whose contex-
tual representations at each layer are used to com-
pute an n × n pairwise cosine similarity matrix.
The final similarity score between two models’ rep-
resentations at a certain layer is computed as the
Pearson correlation between the flattened upper
triangular of the two similarity matrices.

3 Empirical Analysis

3.1 Full Data Experiments

We fine-tune BERT, TOD-BERT-mlm (Wu et al.,
2020) that is further pre-trained on 9 task-oriented
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IC SF SP DST (MultiWOZ) DAP

HWU BANKING OOS REST8K TOP MultiWOZ TripPy TOD-DST MultiWOZ GSIM

BERT 91.14 92.61 84.76 95.32 81.49 76.94 58.39 44.63 79.67 45.46
- Std of 3 runs 0.48 0.23 1.21 0.25 0.21 0.14 0.24 0.28 0.44 0.02

TOD-BERT-mlm 91.17 92.82 84.35 95.50 80.86 78.20 58.59 47.66 81.47 45.78

DAPT (all data) 90.80 92.89 84.64 96.21 80.96 77.59 58.45 45.71 79.92 45.42
25% data 91.26 91.88 85.55 95.77 80.98 77.71 58.00 46.32 81.80 45.70
5% data 91.26 93.08 84.91 96.03 81.35 77.66 58.06 45.48 80.28 45.72
1% data 90.33 91.72 85.64 95.83 81.81 77.93 58.75 46.08 79.72 45.37

TAPT 91.91 92.24 87.45 95.76 81.57 77.66 58.49 45.85 80.57 45.56
DAPT+TAPT 91.17 92.89 85.02 96.03 81.17 77.73 59.12 45.85 78.92 45.70

∆DAPT -0.22 -0.21 0.42 0.63 -0.21 0.79 -0.08 1.27 0.76 0.10
∆TAPT 0.77 -0.37 2.69 0.43 -0.26 0.72 0.10 1.22 0.90 0.10

Table 1: Performance on downstream tasks. We report the means and standard deviations across three random
seeds for BERT. Note that TOD-BERT-mlm has pre-trained on MultiWOZ dataset. A task is in red if further pre-
training all outperform BERT by at least one standard deviation. The best task performances are boldfaced.

datasets including MultiWOZ, and our further pre-
trained models on downstream tasks using the same
hyper-parameters. The results are shown in Table 1.
To measure the performance variance, we fine-tune
BERT three times using different random seeds and
report means and standard deviations. We evaluate
the effect of DAPT, denoted by ∆DAPT, through
averaging the improvements of the models with
different DAPT data sizes (100%, 25%, 5%, 1%)
compared with BERT. Similarly, ∆TAPT is the ben-
efit of TAPT.

We find that ∆DAPT and ∆TAPT sometimes are
small or even negative, indicating that DAPT and
TAPT does not always improve performances
on downstream tasks. Consistently, TOD-BERT-
mlm does not always outperform BERT signifi-
cantly. Only on tasks in red in Table 1, the bene-
fits of further pre-training are larger than the stan-
dard deviations of BERT. In some cases, interest-
ingly, further pre-training can lead to inferior per-
formance. Even on the same MultiWOZ dataset,
further pre-training effects vary according to the
model architectures used (TripPy, TOD-DST) and
the downstream tasks (SP, DST, DAP). Compared
with DAPT and DAPT+TAPT, TAPT obtains simi-
lar results but requires much lower training cost,
which is worth trying before DAPT.

3.2 RQ1: When can DAPT improve the
performance on a downstream task?

Since further pre-training does not help in some
cases, we want to explore when DAPT can improve
the performance on a downstream task. We first
show that DAPT does improve the model’s LM abil-
ity on downstream datasets (Figure 1), and TAPT
can more efficiently improve this ability. This

Figure 1: Masked LM prediction accuracy of BERT,
DAPT with different data sizes, and TAPT models.

means that further pre-training does reduce the
data distribution gap (for LM) between pre-training
and fine-tuning but does not guarantee task perfor-
mance improvement.

A possible hypothesis is that further pre-
training encodes shallow domain knowledge
that has obvious influence only when there
are insufficient labeled data providing task-
specific knowledge for fine-tuning. By further
pre-training, a model learns the co-occurrence of
words and their context, which can be viewed as
a kind of statistics feature of the target domain.
When the fine-tuning data are deficient, this general
domain knowledge can alleviate the lack of task-
specific knowledge. However, models can learn to
encode task-specific knowledge directly through
fine-tuning when there are sufficient labeled data
and thus rely less on further pre-training.

To verify the hypothesis, we use RSA to assess
the representation similarity between fine-tuned
models and their initializations for different fine-
tuning data sizes. As illustrated in Figure 2, for
both BERT and the full data DAPT model, the
RSA similarity decreases as the fine-tuning data
size grows, especially on the top layers. We ob-
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Figure 2: RSA on OOS test set for BERT and DAPT
model with 1%, 10%, and 100% fine-tuning data sizes.

∆DAPT RSA avg. best DAPT

Fine-tune data 100% 10% 100% 10% 100% 10%

IC
HWU -0.22 0.46 0.73 0.83 5% 5%

BANKING -0.21 -0.53 0.74 0.82 5% 25%
OOS 0.42 1.02 0.69 0.77 1% 25%

SF REST8K 0.63 0.63 0.73 0.79 100% 25%

SP TOP -0.21 0.35 0.71 0.72 1% 5%
MultiWOZ 0.79 2.44 0.57 0.70 1% 100%

DST TripPy -0.08 1.44 0.52 0.56 1% 5%
TOD-DST 1.27 3.67 0.39 0.49 25% 100%

DAP MultiWOZ 0.76 0.35 0.26 0.45 25% 100%
GSIM 0.10 0.28 0.66 0.69 5% 25%

Table 2: Comparison of full and 10% data fine-tuning.
We use the same 10% data and average the performance
of 3 runs using different random seeds. The RSA simi-
larity averaged across layers is between full data DAPT
model and its fine-tuned counterpart. We also report
which DAPT data size performs best as "best DAPT".

serve similar trends for all tasks, supporting that
less fine-tuning data highlights the importance of
pre-training. We also fine-tune the models with
and without DAPT in the low-resource setting. Ta-
ble 2 compares the average performance gain of
DAPT (∆DAPT) and RSA similarity of full data
DAPT model and its fine-tuned counterpart (aver-
aged across layers) with full data and low-resource
fine-tuning. In the low-resource setting, RSA sim-
ilarity increases, and DAPT is more beneficial in
most cases, which means the knowledge learned
through DAPT is more useful when the fine-tuning
data are deficient.

3.3 RQ2: How does the amount of data for
DAPT affect the performance on a
downstream task?

We have shown that models can encode general
domain knowledge after DAPT and improve the per-

Figure 3: RSA on OOS test set between BERT and fur-
ther pre-training: 1%, 5%, 25%, and 100% data DAPT,
TAPT, and TAPT after full data DAPT.

formance on a downstream task in the low-resource
setting. However, how much gain can we obtain
by enlarging the DAPT data? To investigate this
question, we perform DAPT with 1%, 5%, 25%,
and 100% data, ranging from 1020 dialogs to 102K
dialogs. From Figure 1, we can see that the more
data used in DAPT, the stronger language model
on downstream datasets we can get. We also show
the change of the model’s representation caused by
further pre-training in Figure 3. Like fine-tuning,
using more data for DAPT brings greater change,
and the trend is similar for all tasks. It is also worth
noting that compared with DAPT, TAPT changes the
model more efficiently in the target dataset.

However, change brought by enlarging DAPT

data does not guarantee performance improve-
ment. We compare how much data the best DAPT

model used in both full data and low-resource fine-
tuning. As shown in Table 2, including more
data for DAPT may not always improve down-
stream task performance. Nevertheless, when
there are less fine-tuning data, the best model
needs more data for DAPT.

4 Conclusion

In this work, we conduct an empirical study to in-
vestigate the effect of further pre-training MLM on
task-oriented dialogs. Different from earlier find-
ings (Sun et al., 2019; Gururangan et al., 2020),
neither DAPT nor TAPT always improves perfor-
mances on downstream tasks in our experiments.
In the low-resource setting, however, DAPT is more
helpful, and the size of DAPT data needed to per-
form best increases. Through RSA, we find that
as the fine-tuning data grows, the impact of model
initialization fades away, which could be the ex-
planation. We also show that although further pre-
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training can improve the model’s LM ability on
downstream datasets, this may not contribute much
to downstream tasks under pre-train and fine-tune
paradigm, calling for novel pre-training objectives
and effective ways to use pre-trained models.
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A Pre-Training Details

A.1 Dataset Description
In this section, we present a detailed description of
the data we use for further pre-training.

Domain Adaptive Pre-Training (DAPT): We
use the pure text of several multi-turn task-oriented
dialog datasets for DAPT, including Schema2 (Ras-
togi et al., 2020), Taskmaster-1&23 (Byrne et al.,
2019), MetaLWOZ4 (Li et al., 2020), MSR-
E2E5 (Li et al., 2018), Frames6 (El Asri et al.,
2017), SMD7 (Eric et al., 2017), WOZ8 (Mrkšić
et al., 2017), and Camrest9 (Wen et al., 2017). Ta-
ble 3 shows the corpus statistics of each dataset.
Note that for Schema, we only use its train set as
the corpus, and for other datasets, we combine their
train, dev, and test sets. For validation, to evalu-
ate the pre-training performance on each corpus
separately, we split 5% of the dialogs from each
corpus and compute masked language modeling
losses on them respectively. For DAPT, we merge
the other 95% of each corpus. To reduce the gap
between pre-training and fine-tuning, we remove
system side utterances at the beginning and the end
in each dialog to ensure that the first sentence and
the last sentence of each dialog are both from the
user side.

Task Adaptive Pre-Training (TAPT): We use
the pure text of each downstream task dataset for
TAPT and delete the system side utterances at the
beginning and the end of each dialog. Similar to
DAPT, we use 95% dialogs for training and 5% for
validation.

A.2 Hyper-Parameters
In this section, we describe the hyper-parameters
we use for further pre-training and how we choose

2https://github.com/google-research-d
atasets/dstc8-schema-guided-dialogue

3https://github.com/google-research-d
atasets/Taskmaster

4https://www.microsoft.com/en-us/rese
arch/project/metalwoz/

5https://github.com/xiul-msr/e2e_dial
og_challenge

6https://www.microsoft.com/en-us/rese
arch/project/frames-dataset/#!download

7https://nlp.stanford.edu/blog/a-new-
multi-turn-multi-domain-task-oriented-di
alogue-dataset/

8https://github.com/nmrksic/neural-be
lief-tracker/tree/master/data/woz

9https://github.com/zhangzthu/ConvLab
2-Pretraining/tree/pretraining/data/camr
est

Dialogs Utterances Tokens

Schema* 16,142 313,822 3.14M
Taskmaster 30,483 540,311 4.96M
MetalWOZ 40,201 384,381 2.96M
MSR-E2E 10,087 65,451 0.744M
SMD 3,030 13,044 0.116M
Frames 1,369 19,445 0.247M
WOZ 1,200 8,824 1.00M
Camrest 676 4,812 0.0557M

SUM 103,188 1,350,090 13.2M

Table 3: Statistics of pre-training corpus from datasets.
The Schema corpus (marked with *) is obtained from
the train set and others are obtained by merging train,
dev, and test set.

them in our experiments.

Domain Adaptive Pre-Training (DAPT): In
DAPT, we further pre-train the BERTBASE un-
cased model from the official checkpoint in (Devlin
et al., 2019) with masked language modeling loss.
We use 100%, 25%, 5% and 1% dialogs to perform
DAPT respectively. For each setting, we search
the hyper-parameters and select the best model ac-
cording to MLM loss on valid set. We use Adam
optimizer with β1 = 0.9, β2 = 0.999, ε = 1e− 6,
L2 weight decay of 0.01, and linear decay of the
learning rate. We search maximum learning rate in
{5e-5, 1e-4, 3e-4}, warmup proportion in {0, 0.06,
0.1}, batch size in {64, 256}, max sequence length
in {256, 512}, training steps in {5K, 10K, 20K,
40K}. For other hyper-parameters, we keep them
the same as (Devlin et al., 2019). We further pre-
train our model on a single Quadro RTX 6000 GPU.
It takes 0.3 hours to finish 1K steps pre-training.

Task Adaptive Pre-Training (TAPT): In TAPT,
we search the hyper-parameters as in DAPT except
that we search training steps in {500, 1K, 2K, 5K,
10K}.

B Fine-Tuning Details

B.1 Dataset Description

In our experiments, we use seven downstream
datasets across five tasks, including HWU10 (Liu
et al., 2019), BANKING11 (Casanueva et al., 2020),

10https://github.com/xliuhw/NLU-Evalua
tion-Data

11https://github.com/PolyAI-LDN/task-s
pecific-datasets
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Corpus |Train| |Dev| |Test| Input Format Labels Metrics

Intent Classification

HWU† 8,954 1,076 1,076 Single-Turn Intent Accuracy
BANKING† 8,622 1,540 3,080 Single-Turn Intent Accuracy
OOS‡ 15,100 3,100 5,500 Single-Turn Intent Accuracy

Slot Filling

REST8K† 7,244 1,000 3,731 Single-Turn Intent, Slot Macro F1

Semantic Parsing

TOP† 31,279 4,462 9,042 Single-Turn Intent, Slot Exact Match
MultiWOZ 2.3♦ 8,434 999 1,000 Multi-Turn Intent, Slot Exact Match

Dialog State Tracking

MultiWOZ 2.1†‡ 8,434 999 1,000 Multi-Turn Dialog State Joint Goal Accuracy

Dialog Act Prediction

MultiWOZ 2.1‡ 8,434 999 1,000 Multi-Turn Dialog Act Macro F1
GSIM‡ 1,500 469 1,039 Multi-Turn Dialog Act Macro F1

Table 4: Downstream datasets information and the model architecture we used for each dataset. The sizes of
train/dev/test sets are the number of dialogs. Note that we mark MultiWOZ 2.1 in dialog state tracking with two
symbols, † and ‡, because we adopt two model architectures on this dataset: TripPy (Heck et al., 2020) from
DialoGLUE (Mehri et al., 2020) (†) and the DST model from TOD-BERT (Wu et al., 2020) (‡).

OOS12 (Larson et al., 2019), REST8K13 (Larson
et al., 2019), TOP14 (Gupta et al., 2018), MultiWOZ

2.115 (Eric et al., 2019), MultiWOZ 2.316 (Han et al.,
2020) and GSIM17 (Shah et al., 2018). All these
datasets are publicly available and can be down-
loaded directly from the Internet. The datasets
information is shown in Table 4.

B.2 Model Architectures for Downstream
Tasks

For different downstream tasks, we adopt task-
specific model architectures from the three works
as listed below and replaced the pre-trained
BERTBASE with our model. Note that for multi-
turn dialog inputs, we reverse the utterances as
described in Section 2.1. We keep the original
hyper-parameters in each work unchanged when
fine-tuning the model.

12https://github.com/clinc/oos-eval
13https://github.com/PolyAI-LDN/task-s

pecific-datasets
14http://fb.me/semanticparsingdialog
15https://github.com/budzianowski/mult

iwoz
16https://github.com/budzianowski/mult

iwoz
17https://github.com/google-research-d

atasets/simulated-dialogue

DialoGLUE DialoGLUE (Mehri et al., 2020) is
a benchmark for the language understanding of
task-oriented dialogs. Apart from the datasets, Di-
aloGLUE also provides the model architectures
built on the pre-trained BERT model for different
tasks. The datasets on which we adopt model archi-
tectures from DialoGLUE is marked as † in Table
4.

TOD-BERT TOD-BERT (Wu et al., 2020) is a
recent model for task-oriented dialogs understand-
ing. We use their models for dialog state tracking
and dialog act prediction, marked as ‡ in Table 4.

Convlab-2 Convlab-2 (Zhu et al., 2020) is an
open-source toolkit that helps researchers build,
evaluate and diagnose task-oriented dialog systems.
We mark the dataset on which we use the model
architecture from Convlab-2 as ♦ in Table 4.
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