Retrieval Augmented Code Generation and Summarization

Md Rizwan Parvez’, Wasi Uddin Ahmad®, Saikat Chakraborty’
Baishakhi Ray', Kai-Wei Chang’
§University of California, Los Angeles, fColumbia University
§{rizwam, wasiahmad, kwchang } @cs.ucla.edu, T{saikatc, rayb} @cs.columbia.edu

Abstract

Software developers write a lot of source code
and documentation during software develop-
ment. Intrinsically, developers often recall
parts of source code or code summaries that
they had written in the past while implement-
ing software or documenting them. To mimic
developers’ code or summary generation be-
havior, we propose a retrieval augmented
framework, REDCODER, that retrieves rel-
evant code or summaries from a retrieval
database and provides them as a supplement
to code generation or summarization mod-
els. REDCODER has a couple of uniqueness.
First, it extends the state-of-the-art dense re-
trieval technique to search for relevant code
or summaries. Second, it can work with re-
trieval databases that include unimodal (only
code or natural language description) or bi-
modal instances (code-description pairs). We
conduct experiments and extensive analysis on
two benchmark datasets of code generation
and summarization in Java and Python, and the
promising results endorse the effectiveness of
our proposed retrieval augmented framework.

1 Introduction

In recent years, automating source code generation
and summarization is receiving significant attention
due to its potential in increasing programmers’ pro-
ductivity and reducing developers’ tedious work-
load. Consequently, various approaches have been
explored in the literature to facilitate code genera-
tion (Yin and Neubig, 2017; Gu et al., 2016) and
code documentation/summarization (Ahmad et al.,
2020; Wei et al., 2019; Allamanis et al., 2018).
Despite initial success, most of the generated code
still suffers from poor code quality (Xu et al., 2021).
Therefore, the question remains—how to generate
better code from a given summary and vice versa.

Source code generation and summarization, how-
ever, are intrinsically complex and challenging.
They involve generating diverse token sequences

such as different variables, operators, keywords,
classes, and method names (Parvez et al., 2018),
which requires understanding the programming lan-
guages at lexical, syntax, and semantics levels.
To combat these issues, recent studies (e.g., Ah-
mad et al. (2021); Guo et al. (2021); Xu et al.
(2020); Feng et al. (2020a); Xu et al. (2020)) take
a learning-based approach—they train representa-
tions of code and the associated text by leveraging
existing high-quality source code and short text
descriptions available in open-source repositories
and question answering forums such as GitHub
and Stack Overflow. Then fine-tune the represen-
tation models on the downstream tasks. Although
these dataset contains high-quality human-written
code and text, since the existing approaches do not
directly leverage them during the generation pro-
cess, the gain achieved by these approaches is still
limited, especially when the source code is long.

To overcome this, we take advantage of the ex-
isting high-quality source code and their descrip-
tion by including them directly in the generation
process that are retrieved via information retrieval
technique. In this work, we present REDCODER,
a Retrieval augmentED CODe gEneration and
summaRization framework. While designing RED-
CODER, we take motivation from how developers
take advantage of existing resources. For example,
developers often search for relevant code in the
code repository, and if found, adapt the retrieved
code in their own context. Similarly, when an API
usage is unclear, they search in question answering
forums (e.g., StackOverflow) (Brandt et al., 2010;
Sadowski et al., 2015). Such an additional resource
helps developers to increase their development pro-
ductivity (Li et al., 2013).

We design REDCODER as a two-step process
(see Figure 1). In the first step, given the input (n/
text for code generation, or code snippet for sum-
marization) a retriever module retrieves relevant
source code (for code generation) or summaries

2719

Findings of the Association for Computational Linguistics: EMNLP 2021, pages 2719-2734
November 7-11, 2021. ©2021 Association for Computational Linguistics

Code ‘ ‘
Encoder |

return max (1) 1 = top_k(L, n/2 + 1)

O

return max (1)

.~ Stepl : Retrieval Step2: Generation K
'

. ¢ _o_dg _I-Ee_t_r}e_v_e_r _______ Retrieved Code Target Code
N Open Source H ‘ﬁ‘ ' - ;

! Database ' imitarity ! def meflan(L): defpmeciznl(T);

' ' X n = len(L) L = sorted(L)
. . Summary ! [1 = top_k(L, n/2 + 1) n = len(L)

' ' '

! 1

'

Y

e ...

return the median oﬂ
an unsorted array |

Code Summary

'
'
'
'
'
'
'
'
'
]
'
'
'
'
'
'
'
]
'
'

'
U—-—:{ Encoder H Decoder },:

Figure 1: Illustration of our proposed framework REDCODER for code generation. Given an input summary, we
first retrieve top-k candidate code (k=1 in this example). We then aggregate them and based on that a generator

module generates the target sequence.

(for code summarization) from a database.' Tn the
second step, a generator processes the retrieved
code/summary along with the original input to gen-
erate the target output. In this way, REDCODER
enhances the generation capability by augmenting
the input through retrieval. The two-step process
allows us to design a modular and configurable
framework for source code and summary gener-
ation. Various designs of retriever and generator
models can be incorporated into this framework.

Existing cross-encoder code retrievers being
computationally expensive, their applicability to
retrieve from a large database is limited (Humeau
et al., 2020). A natural choice would be to use
sparse term based retrievers such as TF-IDF or
BM25 (Robertson and Zaragoza, 2009). However,
the retriever module in REDCODER should ex-
hibit a good understanding of source code and pro-
grammers’ natural language, which is a non-trivial
task due to the syntactic and semantic structure of
the source code (Guo et al., 2021; Ahmad et al.,
2021). Such an expectation of searching for se-
mantically similar code and summary may not be
attainable by a sparse token level code retriever
(e.g., BM25). To that end, we design the retriever
module in REDCODER based on programming
languages (PL) and natural languages (NL) under-
standing models (e.g., GraphCodeBERT (Guo et al.,
2021)). This retriever module extends the state-of-
the-art dense retrieval technique (Karpukhin et al.,
2020) using two different encoders for encoding
the query and document.

As for the generator, REDCODER can handle
retrieval databases consisting of both unimodal
(only code or natural language description) and bi-
modal instances (code-description pairs) and makes
the best usage of all the auxiliary information that

'The database could be open source repositories
(e.g., GitHub) or developers’ forums (e.g., Stack Overflow).

Code Snippet

Input | def median(L): Output
L = sorted (L)

n = len(L)

1 = top_k(L, n/2 + 1)

return max (1)

Code
Summarization

Code
Generation

return the median of |
‘an unsorted array
Code Summary

Output Input

Figure 2: Example input/output for the code generation
and summarization tasks.

are available. Yet, to incorporate information, we
augment the retrieved information only in the in-
put level. It does not modify the underlying archi-
tecture of the generator module —preserving its
model agnostic characteristics.

We evaluate the effectiveness of REDCODER
on two popular programming languages (Java and
Python) on both code generation and code sum-
marization tasks. The empirical results show that,
REDCODER’s concept of retrieval augmented gen-
eration elevates the state-of-the-art code generation
from an Exact Match score of 18.6 to 23.4 and the
summary generation BLEU-4 score from 18.45
to 22.95 even when we forcefully remove the tar-
get candidate from the retrieved code or summary.
With further experiments, we establish the impor-
tance of both the retrieved code and retrieves sum-
mary in the generation process. The source code
for reproducing our experiments are at https:
//github.com/rizwan09/REDCODER.

2 Background

We first introduce the problem formulation and
discuss the fundamentals of the retriever and gen-
erator components that REDCODER is built upon.

2.1 Problem Formulation

Our goal is two folds: (i) code generation: Gener-
ating source code (C), given their natural language
description, such as code summaries, code com-
ments or code intents (S); (i) code summarization:
Generating natural language summaries S, given
source code snippets C. Fig 2 shows an example.

2720

https://github.com/rizwan09/REDCODER
https://github.com/rizwan09/REDCODER

Let X and Y denote a collection of input

and output sequences (X = S5y,...,5,, Y =
Ci,...,C, in code generation, X = C,...,C,,
Y =54,...,5, in summary generation). We as-

sume that we have access to a retrieval database
consisting of an extensive collection of source code
(e.g., aggregated from GitHub or Stack Overflow)
or summaries (e.g., docstrings, code comments)
(Yr). Note that, target sequences (Y') may or may
not be present in the retrieval database (Yr). Now,
given an input x € X, a retriever retrieves the
top-k relevant output sequences from the database:
V1,Ya, ...,V € Yr. Then the input sequence x
is augmented with the retrieved sequences to form
=z e V1 ®)y...®)., where @ denote the
concatenation operation. Finally, a generator gen-
erates the target output y € Y given z'. In the
following, we first discuss the base retriever and
generator modules used in REDCODER and then
how we improve these components is in Section 3.

2.2 Retriever: DPR

Information retrieval (IR) systems or retriever mod-
els are designed to retrieve the top-k relevant doc-
uments that presumably best provide the desired
information (Manning et al., 2008). Term-based
retrieval methods, a.k.a. sparse retrieval models,
such as TF-IDF or BM25 (Robertson and Zaragoza,
2009) use sparse vector representations to perform
lexical matching and compute relevance scores to
rank the documents based on a query.

On the other hand, dense retrieval methods en-
code documents into a fixed-size representations
and retrieve documents via maximum inner prod-
uct search (Sutskever et al., 2014; Guo et al., 2016).
Particularly of interests, Karpukhin et al. (2020)
propose a Dense Passage Retriever (DPR) model
for open-domain question answering (QA). It con-
sists of two encoders (Q(.) and P(.)) that encode
queries and passages, respectively. The similarity
of a query ¢ and a passage p is defined by the in-
ner product of their encoded vectors sim(p, q) =
Q(q)T - P(p). Given a query ¢, a positive (rele-
vant) passage p", and a set of n irrelevant passages
p; » DPR optimizes the classification loss:

6L<>’im(q,p+)

L=-1)
O cim(an’) ¢y gsimlan;)
Karpukhin et al. (2020) propose to fine-tune
DPR using in-batch negatives (Gillick et al., 2019;
Yih et al., 2011) with curated “hard” negatives us-

def copy(self, deep=True, data=None):
Retrieved self.variable.copy (deep=deep, \
Y data=data)
; ; (truncated view)
iDeep - copy an

iobservation dict f\\\\\‘

" Target

return {k:np.copy(v) \
for k,v in obs.items ()}

def copy_obs_dict (obs) :

Figure 3: An example retrieved code that is relevant yet
does not match the reference.

ing BM25 (candidates with high BM25 scores but
contain no sub-string that match the target). We
refer to Karpukhin et al. (2020) for details.

2.3 Generator: PLBART

PLBART (Ahmad et al., 2021) is a sequence-to-
sequence Transformer model (Vaswani et al., 2017)
that is pre-trained on a huge collection of source
code and natural language descriptions via denois-
ing autoencoding. PLBART has shown promise in
several software engineering applications, includ-
ing code generation and summarization. We adopt
PLBART as the generator module in our proposed
framework, REDCODER.

3 Proposed Framework: REDCODER

Our proposed code generation and summarization
framework, REDCODER generates the target code
or summary by augmenting the input x with rele-
vant code snippets or summaries. We build our re-
triever module by training a DPR model differently
from (Karpukhin et al., 2020). With an intelligent
scheme, we then augment the retrieved candidates
and their pairs (if available) to provide auxiliary
supervision to the generator. We briefly describe
the model components in this section.

3.1 Retriever: SCODE-R

Architecture The retriever module of RED-
CODRER is built upon the DPR model (Karpukhin
et al., 2020) and we call it SCODE-R (Summary
and CODE Retriever). SCODE-R composed of two
encoders that encode source code and natural lan-
guage summary. We use bidirectional Transformer
encoders (Vaswani et al., 2017) that are pre-trained
on source code and natural language summaries.
Specifically, we explore CodeBERT (Feng et al.,
2020b) and GraphCodeBERT (Guo et al., 2021) as
the code and summary encoders for SCODE-R.

Input/Output SCODE-R takes an input se-
quence x (code or summary) and retrieves a set
of relevant documents from a database of output
sequences Y (if the input is code, then the output

2721

Classification >

0000 O|[{————FF
T %Qooooo]
Code

1 = top_k(L, n/2 + 1)

return max (1)
= multiply(p, K)

{"Hard" negative source! | source code for return sun (V)
! code for summary-1 summary-1
"""""""""""""""""""""""""" : Source codes for

other in-batch

summaries

Hard negative example { Positive example } { Negative examples }

Figure 4: Training scheme of the retriever module
(SCODE-R) of our proposed framework REDCODER
for the code generation task. Unlike in open-domain
QA (Karpukhin et al., 2020), we do not use “hard” neg-
atives (e.g., candidates retrieved by BM25 that do not
exactly match the reference) during fine-tuning.

is summary and vice versa). SCODE-R returns
the the top-k output sequences {V1,Va, ..., i},
where sim(x,);) = sim(x,Y;)Vj > i.

Training We fine-tune SCODE-R using a set of
parallel examples (x;, y;) of code and summaries.
As mentioned in Section 2.2, DPR originally pro-
posed to be fine-tuned using in-batch negatives and
curated “hard” negatives from BM25 retrieved pas-
sages for open-domain QA. The key idea behind
“hard” negatives is to fine-tune DPR to distinguish
the target passage from relevant passages that do
not contain the target answer. However, unlike
open-domain QA, a retrieved code or summary that
is not the target could still benefit code generation
or summarization (verified in Section 6). We pro-
vide an example in Figure 3; although the retrieved
code does not match the target one but can facilitate
generating it. Therefore, we fine-tune SCODE-R
without any “hard” negatives. Specifically, for each
training instance (x;, y;), the corresponding output
y; 1s considered as positive and the other in-batch
outputs (i.e., the outputs of other instances in the
same batch - y1,...,Yi—1,Yi+1, - - - » Ypsz) S NEZA-
tives. Figure 4 shows an example of SCODE-R
fine-tuning for code generation task.

3.2 Generator: SCODE-G

We adopt PLBART as discussed in Section 2.3 as
the generator module of REDCODER and call it
SCODE-G (Summary and CODE Generator). The
input sequence x is concatenated with the top-k re-

Retrieved Codes

/Rank1: Y C
det median(L): Summary: median) |rorurn the median of an unsorted array

n = len(n) ©f @ sorted 1ist| |[copE SEP] def median(L): n=len(L) 1=
top_k(L, n/2+1) return max(l) [NL]
median of a sorted list [CODE_SEP] def
median (L) : n=len(L) return sorted(L)
Qi//z] [NL]

Input to Code Generator A

1 = top_k(L, n/2+1)
return max (1)
_ summary:
def median (L) :
n = len(L)
__return sorted(L) [n//2] ,/

/

Concatenated sequences

Teturn the median of
an unsorted array

Code Summary

Figure 5: REDCODER-EXT input for code generation.

trieved sequences to form the augmented input se-
quence, T =ze V1®Ys...0)Y). The augmented
input 2 is fed to PLBART to estimate pgen(y|:r').

Note that a source code often consists of doc-
strings, comments that can be extracted to form
code — summary pairs. In the retrieval databases,
code and summaries are either singleton (e.g., code
without a description or a problem statement with-
out any code) or parallel. Therefore, we consider
two retrieval settings that require separate modeling
consideration for the generator.

Case 1: Retrieve candidates are singleton In
this case, we concatenate the original input se-
quence z and the top-k retrieved candidates with a
special separator token.

@' = [esep] V) [esep] Yy ... [esep] V.

This is our default setting and we refer this as RED-
CODER in this work.

Case 2: Retrieve candidates are pairs In this
case, retrieved candidates are pair of code and natu-
ral language (NL) summary. We augment the input
sequence using both of them as follows.

=z [csep] V1 [nsep] X; [csep] Vo
[nsep] Xo ... [csep] Vi [nsep] Xy,

where X; and); are parallel sequences (e.g.,)}
is a piece of code and & is its corresponding sum-
mary for the code generation task) retrieved from
the database. We conjecture that the additional in-
formation X; complements the input sequence x
and verify its effectiveness in the experiments.
Note that retrieve candidates could be a mix of
singleton and pairs. In case of a singleton candi-
date, we simply replace X; or); with an empty
string. We refer this setting as REDCODER-EXT.
Although, REDCODER-EXT is a more general
setting which includes “Case 17, we study them
separately to understand how these two retrieval
settings benefit the target tasks. We illustrate an
example on code generation in Figure 5. In both

2722

Dataset Gen. | Sum. | Lang. Train Valid Test | |Code| | |Summary]|
CodeXGLUE % % Java 164,923 | 5,183 | 10,955 97 12
(Lu et al., 2021) Python | 251,820 | 13,914 | 14,918 99 14
Concode (Iyer et al., 2018) v X Java 100,000 | 2,000 | 2,000 27 72

Table 1: Dataset Statistics. Gen., and Sum. refers to code generation and summarization tasks respectively. Sum-
mary denotes a natural language description paired with each code. For Concode, the input summary includes the
corresponding environment variables and methods. All lengths are computed and averaged before tokenization.

cases, the augmented input 2' is truncated to match
PLBART’s maximum input length 512.

4 Experiment Setup

In order to investigate the effectiveness of our
framework, we perform a comprehensive study and
analysis on code generation and summarization in
two programming languages, Java and Python.

4.1 Datasets and Implementations

Datasets We perform evaluation on both the
tasks using the code summarization dataset from
CodeXGLUE (Lu et al., 2021). It is curated from
CodeSearchNet (Husain et al., 2019) by filtering
noisy examples. In addition, we conduct code
generation experiments in Java using the Concode
benchmark (Iyer et al., 2018). The dataset statistics
are summarized in Table 1.

Retrieval Databases To generate a source code
given its natural language description or a sum-
mary given the code, our proposed approach RED-
CODER first retrieves prospective candidates from
an existing code or summary database. We form
the code retrieval database using the deduplicated
source code (on average 1.4M functions in Java
and Python) that consists of both paired (59%)
and monolingual code, released in CodeSearch-
NET (Husain et al., 2019). As for building the
summary retrieval database, we extract the high
quality natural language summaries from the paired
instances in the training sets of CodeSearchNET.
As many of the summaries are duplicated, we also
consider the training sets in the other four avail-
able languages Ruby, Javascript, Go, and PHP.
We then further enlarge it by aggregating the ad-
ditional summaries from the CCSD corpus (Liu
et al., 2021). After performing deduplication, we
retain 1.1M unique code summaries and for evalu-
ating REDCODER-EXT, 20% of them can be used
as pairs with the corresponding Java and Python
source code. We provide the statistics of the re-
trieval databases in Appendix. Note that the re-
trieval databases contain code and summaries that

are curated from real developers’ open sourced
repositories on GitHub. By default, we exclude the
target code/summary from the retrieval database.

Implementations As mentioned in Section 3,
REDCODER has two disjoint components. First,
the dense retriever SCODE-R is implemented
adopting DPR (Karpukhin et al., 2020) and the
encoders in DPR are initialized from GrpahCode-
BERT available in the Huggingface API (Wolf
et al., 2020). In addition, we implement a baseline
BM25 retriever. We use the official codebase of
PLBART (Ahmad et al., 2021) and set max epoch
to 15, patience to 5, learning rate to 2 X 107°. We
tune the batch size in {8, 16, 32, 64, 72} and the
k value for top-k retrieval up to 10 for code gen-
eration and in range {10, 30, 50, 100} for code
summarization. As some candidate code and sum-
maries are short in length, we tune with this upper
bound of £ to accommodate as many candidates as
possible within PLBART’s maximum input length.

4.2 Evaluation Metrics

BLEU Following prior works (Ahmad et al.,
2021; Feng et al., 2020a), we compute the cor-
pus level BLEU (Papineni et al., 2002) and the
smoothed BLEU-4 (Lin and Och, 2004) scores for
code generation and summarization tasks.

CodeBLEU To demonstrate syntactic and seman-
tic data flow correctness of code generation models,
we report CodeBLEU (Ren et al., 2020). Code-
BLEU is a weighted average of lexical, abstract
syntax tree, and data flow match.

Exact Match (EM) indicates the percentage of
output sequences that exactly match the references.

4.3 Baseline Methods

We compare REDCODER w.r.t. a number of state-
of-the-art code models. We classify them into two
categories: (i) retrieval based models and (ii) gen-
erative models. We study both generative models
that are trained from scratch and are pre-trained on
programming and natural languages.

2723

Method Java Python
Type Name EM BLEU CodeBLEU | EM BLEU CodeBLEU
Retrieval BM25 0.00 4.90 16.00 0.00 6.63 13.49
Based SCODE-R 0.00 25.34 26.68 0.00 22.75 23.92
CodeBERT 0.00 8.38 14.52 0.00 4.06 10.42
Generative GraphCodeBERT 0.00 7.86 14.53 0.00 3.97 10.55
CodeGPT-adapted | 0.00 7.10 14.90 0.01 3.11 11.31
PLBART 0.00 10.10 14.96 0.00 4.89 12.01
Retrieval BM25 + PLBART | 0.10 11.37 15.52 0.03 6.99 13.89
Augmented | REDCODER 895 2692 31.15 8.88 22.74 28.93
Generative | REDCODER-EXT | 10.21 28.98 33.18 9.61 2443 30.21
Table 2: Results on code generation on CodeXGLUE (Lu et al., 2021).
Methods | EM BLEU CodeBLEU Methods | Python | Java
Retrieval based methods Retrieval based methods
BM?25 0.0 20.3 23.7 BM?25 1.92 1.82
SCODE-R 0.0 32.6 36.5 SCODE-R 14.98 15.87
S:élze;izve methods 1 513 T Generative methods
Guoetal. (2019) | 10.1 24.4 29.5 ifgfssfz‘rlmer igz? ig‘gz
Iyer et al. (2019) 122 26.6 -))
GPT-2 174 254 297 RoBERTa 18.14 16.47
CodeGPT-2 183 287 32.7 CodeBERT 19.06 | 17.65
CodeGPT-adapted | 20.1 328 36.0 GraphCodeBERT | 17.98 | 17.85
CodeBERT 18.0 287 314 PLBART 19.30 | 1845
GraphCodeBERT | 18.7 334 359 Retrieval augmented generative methods
PLBART 186 367 38.5 BM25 + PLBART 19.57 19.71
Retrieval augmented generative methods REDCODER 21.01 22.94
BM25+PLBART 21.4 40.2 41.8 REDCODER-EXT 20.91 22.95
REDCODER 234 41.6 43.4
REDCODER-EXT | 233 425 43.4 Table 4: Evaluation BLEU-4 score for code summa-

Table 3: Code generation results on Concode dataset.
SCODE-R was initialized with CodeBERT. Graph-
CodeBERT initialized results are similar.

Retrieval based models We examine two re-
triever baselines and consider the top-1 retrieved
candidate as the prediction.

o Dense Retriever We consider DPR as the dense
retriever baseline. We evaluate both the officially
released models trained on the natural language
open-domain QA task and a variant called DPR
(code) that we fine-tune on the evaluation datasets.
o Sparse Retriever The second baseline is a
sparse retriever that uses the BM25 algorithm to
compute relevance scores.

Generative models The generative models work
in a sequence-to-sequence (Seq2Seq) fashion.

¢ RoBERTa, RoBERTa (code) RoBERTa mod-
els (Liu et al., 2019) pre-trained on natural lan-
guage corpora, and source code from CodeSearch-
Net (Husain et al., 2019) respectively.

rization on CodeXGLUE. Baseline results are reported
from Ahmad et al. (2021).

e CodeBERT (Feng et al., 2020a) is pretrained
with a hybrid objective incorporating masked lan-
guage modeling (Devlin et al., 2019) and replaced
token detection (Clark et al., 2020).

e GraphCodeBERT (Guo et al., 2021) is pre-
trained by modeling the data flow graph of source
code. GraphCodeBERT holds the state-of-the-art
results on code search using CodeSearchNet.

e GPT-2, CodeGPT-2, and CodeGPT-adapted
are GPT-style models that are pre-trained on natural
language (Radford et al., 2019) and code corpora
CodeXGLUE (Lu et al., 2021).

o PLBART (Ahmad et al., 2021) is the generator
module of our proposed framework.

In addition, we train an LSTM based Seq2Seq
model with attention mechanism (Luong et al.,
2015) and a Transformer model (Vaswani et al.,
2017) on the benchmark datasets.

2724

Methods CodeXGLUE (Java) CodeXGLUE (Python) Concode (Java)
BLEU EM CodeBLEU | BLEU EM CodeBLEU | BLEU EM CodeBLEU
SCODE-R 36.6 21.0 37.9 356 192 35.1 70.3 61.7 72.0
REDCODER 36.3 294 414 32.1 275 38.0 76.7 67.5 76.5
REDCODER-EXT | 42.8 37.0 47.3 389 345 43.8 81.7 76.2 81.7

Table 5: Results on code generation keeping the target code in the retrieval database.

Settings | Methods Python | Java
RoBERTa 0.587 | 0.599
Cross- RoBERTa (code) 0.610 | 0.620
Encoder | CodeBERT 0.672 | 0.676
GraphCodeBERT | 0.692 | 0.691
Bi. DPR 0.093 | 0.064
Encoder DPR (code) 0.398 | 0.462
SCODE-R 0.690 | 0.686

Table 6: MRR results on code retrieval from the val-
idation and test set in CodeXGLUE. Our bi-encoder
retriever SCODE-R is comparable with other cross-
encoder models while it is much faster. DPR refers to
Karpukhin et al. (2020) and DPR (code) is trained with
BM25 “hard” negative training schema built upon our
source code datasets.

5 Results

5.1 Code Generation

Table 2 and Table 3 show the evaluation results
on code generation from summary descriptions
on CodeXGLUE, and Concode datasets, respec-
tively. First, we compare REDCODER with the
state-of-the-art code generation models. They
are transformers models pre-trained with differ-
ent objectives using external resources of differ-
ent sizes. Among them, the relatively strong base-
line PLBART has an EM score of 18 on the Con-
code dataset while it rarely generates any code that
matches the real target code in CodeXGLUE (See
Table 2) (more discussion on this is in Appendix).
The BLEU and CodeBLEU scores are also low.
Such result indicates that automated code lacks
quality and correctness without the proper supervi-
sion in the input to the generator.

Among the retriever-only models, SCODE-R
significantly outperforms BM25 (more comparison
isin § 6). As expected, the EM is zero as targets are
filtered from the retrieval, and CodeBLEU scores
are high as they are real code. However, although
the retrieved code does not exactly match the target
code, they are quite relevant (e.g., Figure 3; more in
Appendix). When comparing retrieval-only models
to generative models, it is interesting to note that
SCODE-R surpasses PLBART by a large margin on

CodeXGLUE (Table 2), suggesting that retrieved
code has high overlapping with target code that can
benefit the generation.

Overall, the retrieval augmented generative mod-
els excel in code generation. Our proposed frame-
work REDCODER outperforms PLBART by a
large margin, validating the advantage of reusing
existing codebases to help code generation. The
REDCODER-EXT gains are even higher. For
CodeXGLUE (Java, Python) and Concode, the
gains in BLEU are 18.88, 19.54, and 5.8. Com-
paring REDCODER to REDCODER-EXT shows
that BLEU scores on Concode and all metrics on
CodeXGLUE are improved by ~1%. These results
confirm our conjecture that complementing input
with paired summaries of the retrieved code help
code generation. We provide a qualitative exam-
ple in the Appendix to explain how the retrieved
information helps PLBART in generation.

5.2 Code Summarization

We compare REDCODER with three sets of base-
line methods for code summarization, and Table 4
shows the results. Among the two retrieval base
methods, SCODE-R performs significantly well,
confirming the advantages of dense retrieval over
its sparse counterpart. Out of the generative meth-
ods, PLBART excels on code summarization as
it leverages an extensive collection of natural lan-
guage descriptions during pre-training. As antici-
pated, retrieval augmented generative methods out-
perform the other two sets of models. We see
that the “BM25 + PLBART” model improves over
PLBART, confirming our conjecture that retrieval
augmented techniques have the promise to improve
code summarization. Our proposed framework
REDCODER and its variant REDCODER-EXT
outshine “BM25 + PLBART”, surpassing its per-
formance by ~1.5 and ~3.2 points for Python and
Java languages, respectively.

6 Analysis

In this Section, we analyze REDCODER’s perfor-
mance on the following points.

2725

- »”
A m—tm= CodeR-Java

M 25 =#=CodeR-Python
@) —e— BM25-Java

—

8 2047 === BM25-Python
%) -——r -
m - -

_
S !
LY
N
)
\
b
\
[]

5
1234567 8910
K

Figure 6: Recall@K for CodeR and BM25. CodeR
refers to SCODE-R used for source code retrieval.

Retrieval database includes the target sequence
Table 5 shows the code generation results when we
did not filter the target from the retrieval (summa-
rization results are in Appendix). As expected,
SCODE-R performances are much better than
those in Table 2, 3, and 4. In all cases, RED-
CODER gets more enhanced when target is present
in the retrieval database. For the code generation
task, we plot the recall@k curve for k£ upto 10
for both Java and Python on CodeXGLUE dataset
when the retrieval contains the target in Figure
6. As we can see, SCODE-R significantly out-
performs in both languages and for all k& values.

Bi-encoder SCODE-R vs cross-encoder retriev-
ers Table 6 shows the retrieval performance of
different alternative retrieval techniques that we
considered in REDCODER. SCODE-R performs
comparably well with GraphCodeBERT while be-
ing significantly faster and scalable (Humeau et al.,
2020). Note that, SCODE-R also uses Graph-
CodeBERT to initialize its encoders (see Figure 4).
However, SCODE-R’s design of using different
encoders for query and documents enables pre-
indexing of database and faster retrieval in practice.

Performance vs target length Figure 7 shows
the code generation performances of different mod-
els w.r.t. the target code length for Python. While
the generator model (PLBART)’s performance
consistently decreases with increasing code size,
the retriever (SCODE-R) performs consistently
well. Such consistent performance from SCODE-
R boosts performance of REDCODER (and also
REDCODER-EXT) significantly higher than the
generative model counterpart. For Java, we find
similar results (details in Appendix).

Performance vs #retrievals Figure 8 shows that
typically the performance improves more with
more retrievals on both tasks. However, roughly 5

® PLBART B Retrieved REDCODER
B REDCODER-EXT

40 60 8o 100 150

>150

Figure 7: (Python) Code gen. BLEU vs target len.

> 20 Java S 7 Python
Gen. Gen.
= w t?lrget ret. K w/(:1 target ret.
0 5.0
0 1 2 3 4 0 3 1 z
#Retrievals #Retrievals
CodeXGLUE (Java) gen. CodeXGLUE (Python) gen.
A T
o2 Java = Python
= Sum. = Sum.
g 20 w/o target ret. E 20 W target ret.
0 10 30 50 0 5 10 30 50
#Retrievals #Retrievals

CodeXGLUE (Java) sum. CodeXGLUE (Python) sum.

Figure 8: Code gen. and sum. performance vs #re-
trievals. In general performance improves with higher
number of augmented candidates.

code and 30 summaries work sufficiently well.

Human evaluation Finally, we evaluate the qual-
ity of code generated by SCODE-G using human
evaluation. In Table 7, we perform a human eval-
uation for code generation task on a subset of the
test set in CodeXGLUE (Python). In this study,
we compare REDCODER generated code with the
code retrieved by SCODE-R. Note that both RED-
CODER and SCODE-R using the same retrievers,
but REDCODER generates code using SCODE-
G, while SCODE-R outputs code written by real
programmers. We sample 30 instances where RED-
CODER generated code has a lower BLEU score
than that of the SCODE-R and investigate whether
the quality of code generated by them are signifi-
cantly different on these cases.

As programming requires a specific skill, we do
not evaluate the quality of the code generation us-
ing the mass crowd workers. We recruit 7 Ph.D.
students studying in computer science as volun-
teers” to score (1 to 5) code based on three criteria

*Before participating in the evaluation process, all the
participants are informed that it is a voluntary task and it may

2726

Model Human Evaluation Automatic Metric
Similarity Relevance Compilability | BLEU EM CodeBLEU

SCODE-R 2.09 3.00 3.16 11.56 0.00 16.66

REDCODER 2.06 2.94 3.10 10.70 0.07 18.31

Table 7: Human evaluation on code generation (CodeXGLUE-Python). REDCODER (SCODE-R + SCODE-G)
achieves similar scores as SCODE-R that directly retrieves developers’ written code which suggests that the quality
of the code generated by SCODE-G are competitive with real code from programmers’ perspective.

(1) similarity, and (ii) relevance w.r.t. the target code;
(iii) the compilability of the generated code.

The ratings show that both models receive simi-
lar scores, with a slightly higher score for SCODE-
R in terms of similarity to the target code, relevancy,
and compilability. This shows that the quality of
the code generated by SCODE-G are competitive
with real code from programmers’ perspective. In-
terestingly, REDCODER achieves higher scores
than SCODE-R in CodeBLEU and Exact Match
even on the cases where its BLEU score is lower.

7 Related Works

Code Summarization. In recent years, source
code summarization attracted a lot of attention
(Iyer et al., 2016; Liang and Zhu, 2018; Allamanis
etal., 2016; Hu et al., 2018b; Ahmad et al., 2020).
Many of these works view code as a sequence of to-
ken. Other approaches leverage the structural prop-
erties of code using Tree based model (Shido et al.,
2019; Harer et al., 2019; Hu et al., 2018a; LeClair
et al., 2019). In literature, several retrieval-based
methods were proposed that leverage retrieved in-
formation along with the input code. For example,
Zhang et al. (2020) retrieves similar code snippet
and use those as an auxiliary input for summa-
rization. On the other hand, Hayati et al. (2018)
retrieves related summaries for augmenting sum-
marization input. Different from these approaches,
REDCODER leverages both the retrieved code and
its summary to augment the input.

Code Generation. Generating source code is a
major stepping stone towards automated program-
ming. Yin and Neubig (2017), and Rabinovich
et al. (2017) proposed code generation as abstract
syntax tree generation to ensure its syntactic cor-
rectness. Recent advancements in pre-training lan-
guage models on unlabeled source code data (Lu
et al., 2021; Ahmad et al., 2021) showed colossal
promise towards learning code syntax and seman-
tics, resulting in improved code generation models.

take roughly 30 minutes to perform the evaluation.

Code Retrieval and Others. Numerous software
engineering applications require information re-
trieval. Sadowski et al. (2015); Xia et al. (2017);
Stolee et al. (2014); Sim et al. (2011) show that
developers search for related code, API examples
for implementing or adapting new APIs. Design
of REDCODER is inspired by developers’ behav-
ior while writing code. Developers use search en-
gines for retrieving off-the-shelf libraries (Hucka
and Graham, 2018), or “usable” source code (Rah-
man et al., 2018) for adapting in the development
process (Nasehi et al., 2012; Arwan et al., 2015;
Ponzanelli et al., 2014). Similarly, REDCODER
retrieves existing code or summaries and adapts
them to generate the target code or summary. In
contrast, Hashimoto et al. (2018) optimizes a joint
objective; Zhang et al. (2020); Liu et al. (2021)
do not consider any decoder pre-training, Lewis
et al. (2020) fine-tunes both of the retriever and the
generator end-to-end. For open domain QA, Izac-
ard and Grave (2021) propose a similar model of
alternative generator (multi-encoder uni-decoder).

8 Conclusion

We propose REDCODER to automate developers’
writing of code and documentation by reusing what
they have written previously. We evaluate RED-
CODER on two benchmark datasets and the results
demonstrate a significant performance boost with
the help of the retrieved information. In the future,
we want to extend REDCODER to support other
code automation tasks such as code translation.

Acknowledgments

We thank anonymous reviewers for their helpful
feedback. We also thank the UCLA NLP group for
helpful discussions, comments, and participating
voluntarily in the human evaluation. This work
was supported in part by NSF OAC-1920462, SHF-
2107405, SHF-1845893, 11S-2040961, IBM, and
VMWare. Any opinions, findings, and conclusions
expressed herein are those of the authors and do
not necessarily reflect those of the US Government.

2727

References

Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and
Kai-Wei Chang. 2020. A transformer-based ap-
proach for source code summarization. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 4998-5007,
Online. Association for Computational Linguistics.

Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi
Ray, and Kai-Wei Chang. 2021. Unified pre-training
for program understanding and generation. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics.

Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu,
and Charles Sutton. 2018. A survey of machine
learning for big code and naturalness. ACM Com-
puting Surveys (CSUR), 51(4):1-37.

Miltiadis Allamanis, Hao Peng, and Charles A. Sut-
ton. 2016. A convolutional attention network for
extreme summarization of source code. In Pro-
ceedings of the 33nd International Conference on
Machine Learning, ICML 2016, New York City,
NY, USA, June 19-24, 2016, volume 48 of JMLR
Workshop and Conference Proceedings, pages 2091—
2100. JMLR.org.

Achmad Arwan, Siti Rochimah, and Rizky Januar
Akbar. 2015. Source code retrieval on stackover-
flow using 1da. In 2015 3rd International Confer-
ence on Information and Communication Technol-
ogy (ICoICT), pages 295-299. IEEE.

Joel Brandt, Mira Dontcheva, Marcos Weskamp, and
Scott R Klemmer. 2010. Example-centric program-
ming: integrating web search into the development
environment. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems,

pages 513-522.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: Pre-
training text encoders as discriminators rather than
generators. In International Conference on Learn-
ing Representations.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan,
Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020a.
CodeBERT: A pre-trained model for programming
and natural languages. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2020,

pages 1536-1547, Online. Association for Compu-
tational Linguistics.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan,
Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020b.
CodeBERT: A pre-trained model for programming
and natural languages. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2020,
pages 1536-1547, Online. Association for Compu-
tational Linguistics.

Daniel Gillick, Sayali Kulkarni, Larry Lansing,
Alessandro Presta, Jason Baldridge, Eugene Ie, and
Diego Garcia-Olano. 2019. Learning dense repre-
sentations for entity retrieval. In Proceedings of
the 23rd Conference on Computational Natural Lan-
guage Learning (CoNLL), pages 528-537, Hong
Kong, China. Association for Computational Lin-
guistics.

Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and
Sunghun Kim. 2016. Deep api learning. In Proceed-
ings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering,

pages 631-642.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, Shujie Liu, Long Zhou, Nan Duan, Jian Yin,
Daxin Jiang, et al. 2021. Graphcodebert: Pre-
training code representations with data flow. In
International Conference on Learning Representa-
tions.

Daya Guo, Duyu Tang, Nan Duan, Ming Zhou, and
Jian Yin. 2019. Coupling retrieval and meta-
learning for context-dependent semantic parsing. In
Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 855—
866, Florence, Italy. Association for Computational
Linguistics.

Ruiqi Guo, Sanjiv Kumar, Krzysztof Choromanski, and
David Simcha. 2016. Quantization based fast inner
product search. In Artificial Intelligence and Statis-
tics, pages 482-490. PMLR.

Jacob Harer, Chris Reale, and Peter Chin. 2019. Tree-
transformer: A transformer-based method for cor-

rection of tree-structured data. arXiv preprint
arXiv:1908.00449.

Tatsunori B Hashimoto, Kelvin Guu, Yonatan Oren,
and Percy S Liang. 2018. A retrieve-and-edit frame-
work for predicting structured outputs. In Ad-
vances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc.

Shirley Anugrah Hayati, Raphael Olivier, Pravalika Av-
varu, Pengcheng Yin, Anthony Tomasic, and Gra-
ham Neubig. 2018. Retrieval-based neural code gen-
eration. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 925-930, Brussels, Belgium. Association for
Computational Linguistics.

2728

https://doi.org/10.18653/v1/2020.acl-main.449
https://doi.org/10.18653/v1/2020.acl-main.449
http://proceedings.mlr.press/v48/allamanis16.html
http://proceedings.mlr.press/v48/allamanis16.html
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/2020.findings-emnlp.139
https://www.aclweb.org/anthology/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/K19-1049
https://doi.org/10.18653/v1/K19-1049
https://openreview.net/forum?id=jLoC4ez43PZ
https://openreview.net/forum?id=jLoC4ez43PZ
https://doi.org/10.18653/v1/P19-1082
https://doi.org/10.18653/v1/P19-1082
https://arxiv.org/abs/1908.00449
https://arxiv.org/abs/1908.00449
https://arxiv.org/abs/1908.00449
https://proceedings.neurips.cc/paper/2018/file/cd17d3ce3b64f227987cd92cd701cc58-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/cd17d3ce3b64f227987cd92cd701cc58-Paper.pdf
https://doi.org/10.18653/v1/D18-1111
https://doi.org/10.18653/v1/D18-1111

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018a.
Deep code comment generation. In Proceedings
of the 26th Conference on Program Comprehension,
page 200-210, New York, NY, USA. Association for
Computing Machinery.

Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, and Zhi
Jin. 2018b. Summarizing source code with trans-
ferred api knowledge. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial
Intelligence, IJCAI-18, pages 2269-2275. Interna-
tional Joint Conferences on Artificial Intelligence
Organization.

Michael Hucka and Matthew J Graham. 2018. Soft-
ware search is not a science, even among scientists:
A survey of how scientists and engineers find soft-
ware. Journal of Systems and Software, 141:171—
191.

Samuel Humeau, Kurt Shuster, Marie-Anne Lachaux,
and Jason Weston. 2020. Poly-encoders: Architec-
tures and pre-training strategies for fast and accurate
multi-sentence scoring. In International Conference
on Learning Representations.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2019. Code-
searchnet challenge: Evaluating the state of seman-
tic code search. arXiv preprint arXiv:1909.09436.

Srinivasan Iyer, Alvin Cheung, and Luke Zettlemoyer.
2019. Learning programmatic idioms for scalable
semantic parsing. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 5426-5435, Hong Kong, China. As-
sociation for Computational Linguistics.

Srinivasan lyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2016. Summarizing source code
using a neural attention model. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2073-2083, Berlin, Germany. Association for
Computational Linguistics.

Srinivasan lyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2018. Mapping language to code
in programmatic context. In Proceedings of the
2018 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1643—-1652, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Gautier Izacard and Edouard Grave. 2021. Leveraging
passage retrieval with generative models for open
domain question answering. In Proceedings of the
16th Conference of the European Chapter of the As-
sociation for Computational Linguistics: Main Vol-
ume, pages 874-880, Online. Association for Com-
putational Linguistics.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Dangi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 6769—
6781, Online. Association for Computational Lin-
guistics.

Alexander LeClair, Siyuan Jiang, and Collin McMil-
lan. 2019. A neural model for generating natural
language summaries of program subroutines. In
Proceedings of the 41st International Conference on
Software Engineering, page 795-806. IEEE Press.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
taschel, Sebastian Riedel, and Douwe Kiela. 2020.
Retrieval-augmented generation for knowledge-
intensive nlp tasks. In Advances in Neural Infor-
mation Processing Systems, volume 33, pages 9459—
9474, Curran Associates, Inc.

Hongwei Li, Zhenchang Xing, Xin Peng, and Wenyun
Zhao. 2013. What help do developers seek, when
and how? In 2013 20th working conference on re-
verse engineering (WCRE), pages 142—151. IEEE.

Yuding Liang and Kenny Qili Zhu. 2018. Automatic
generation of text descriptive comments for code
blocks. In Thirty-Second AAAI Conference on Ar-
tificial Intelligence, pages 5229-5236.

Chin-Yew Lin and Franz Josef Och. 2004. ORANGE:
a method for evaluating automatic evaluation met-
rics for machine translation. In COLING 2004: Pro-
ceedings of the 20th International Conference on
Computational Linguistics, pages 501-507, Geneva,
Switzerland. COLING.

Shangqing Liu, Yu Chen, Xiaofei Xie, Jing Kai Siow,
and Yang Liu. 2021. Retrieval-augmented genera-
tion for code summarization via hybrid {gnn}. In
International Conference on Learning Representa-
tions.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, et al. 2021.
Codexglue: A machine learning benchmark dataset
for code understanding and generation. arXiv
preprint arXiv:2102.04664.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1412-1421, Lis-
bon, Portugal. Association for Computational Lin-
guistics.

2729

https://doi.org/10.1145/3196321.3196334
https://doi.org/10.24963/ijcai.2018/314
https://doi.org/10.24963/ijcai.2018/314
https://openreview.net/forum?id=SkxgnnNFvH
https://openreview.net/forum?id=SkxgnnNFvH
https://openreview.net/forum?id=SkxgnnNFvH
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/1909.09436
https://doi.org/10.18653/v1/D19-1545
https://doi.org/10.18653/v1/D19-1545
https://doi.org/10.18653/v1/P16-1195
https://doi.org/10.18653/v1/P16-1195
https://doi.org/10.18653/v1/D18-1192
https://doi.org/10.18653/v1/D18-1192
https://www.aclweb.org/anthology/2021.eacl-main.74
https://www.aclweb.org/anthology/2021.eacl-main.74
https://www.aclweb.org/anthology/2021.eacl-main.74
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.1109/ICSE.2019.00087
https://doi.org/10.1109/ICSE.2019.00087
https://proceedings.neurips.cc/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16492/16072
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16492/16072
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16492/16072
https://www.aclweb.org/anthology/C04-1072
https://www.aclweb.org/anthology/C04-1072
https://www.aclweb.org/anthology/C04-1072
https://openreview.net/forum?id=zv-typ1gPxA
https://openreview.net/forum?id=zv-typ1gPxA
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/2102.04664
https://arxiv.org/abs/2102.04664
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.18653/v1/D15-1166

CD Manning, P Raghavan, and H Schiitze. 2008. Xml
retrieval. In Introduction to Information Retrieval.
Cambridze University Press.

Seyed Mehdi Nasehi, Jonathan Sillito, Frank Maurer,
and Chris Burns. 2012. What makes a good code
example?: A study of programming q&a in stack-
overflow. In 2012 28th IEEE International Confer-
ence on Software Maintenance (ICSM), pages 25-34.
IEEE.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311-318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Md Rizwan Parvez, Saikat Chakraborty, Baishakhi Ray,
and Kai-Wei Chang. 2018. Building language mod-
els for text with named entities. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2373-2383, Melbourne, Australia. Associa-
tion for Computational Linguistics.

Luca Ponzanelli, Gabricle Bavota, Massimiliano
Di Penta, Rocco Oliveto, and Michele Lanza. 2014.
Mining stackoverflow to turn the ide into a self-
confident programming prompter. In Proceedings
of the 11th Working Conference on Mining Software
Repositories, pages 102-111.

Maxim Rabinovich, Mitchell Stern, and Dan Klein.
2017. Abstract syntax networks for code generation
and semantic parsing. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1139-
1149, Vancouver, Canada. Association for Computa-
tional Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Md Masudur Rahman, Jed Barson, Sydney Paul,
Joshua Kayani, Federico Andrés Lois, Sebastian Fer-
nandez Quezada, Christopher Parnin, Kathryn T
Stolee, and Baishakhi Ray. 2018. Evaluating how
developers use general-purpose web-search for code
retrieval. In Proceedings of the 15th International
Conference on Mining Software Repositories, pages
465-475.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie
Liu, Duyu Tang, Ming Zhou, Ambrosio Blanco, and
Shuai Ma. 2020. Codebleu: a method for auto-
matic evaluation of code synthesis. arXiv preprint
arXiv:2009.10297.

Stephen Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: BM25 and be-
yond. Now Publishers Inc.

Caitlin Sadowski, Kathryn T Stolee, and Sebastian El-
baum. 2015. How developers search for code: a case
study. In Proceedings of the 2015 10th joint meeting
on foundations of software engineering, pages 191—
201.

Yusuke Shido, Yasuaki Kobayashi, Akihiro Yamamoto,
Atsushi Miyamoto, and Tadayuki Matsumura. 2019.
Automatic source code summarization with ex-
tended tree-Istm. In International Joint Conference
on Neural Networks, IJCNN 2019 Budapest, Hun-
gary, July 14-19, 2019, pages 1-8. IEEE.

Susan Elliott Sim, Medha Umarji, Sukanya Ratano-
tayanon, and Cristina V Lopes. 2011. How well do
search engines support code retrieval on the web?
ACM Transactions on Software Engineering and
Methodology (TOSEM), 21(1):1-25.

Kathryn T Stolee, Sebastian Elbaum, and Daniel Do-
bos. 2014. Solving the search for source code. ACM
Transactions on Software Engineering and Method-

ology (TOSEM), 23(3):1-45.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Sys-
tems, volume 27, pages 3104-3112. Curran Asso-
ciates, Inc.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L. ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30, pages 5998—6008. Curran Asso-
ciates, Inc.

Bolin Wei, Ge Li, Xin Xia, Zhiyi Fu, and Zhi Jin. 2019.
Code generation as a dual task of code summariza-
tion. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems
32, pages 6563—6573. Curran Associates, Inc.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38—45, Online. Asso-
ciation for Computational Linguistics.

Xin Xia, Lingfeng Bao, David Lo, Pavneet Singh
Kochhar, Ahmed E Hassan, and Zhenchang Xing.
2017. What do developers search for on the web?
Empirical Software Engineering, 22(6):3149-3185.

Frank F. Xu, Zhengbao Jiang, Pengcheng Yin, Bogdan
Vasilescu, and Graham Neubig. 2020. Incorporating
external knowledge through pre-training for natural

2730

https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/P18-1221
https://doi.org/10.18653/v1/P18-1221
https://doi.org/10.18653/v1/P17-1105
https://doi.org/10.18653/v1/P17-1105
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://arxiv.org/abs/2009.10297
https://arxiv.org/abs/2009.10297
https://doi.org/10.1109/IJCNN.2019.8851751
https://doi.org/10.1109/IJCNN.2019.8851751
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/8883-code-generation-as-a-dual-task-of-code-summarization.pdf
http://papers.nips.cc/paper/8883-code-generation-as-a-dual-task-of-code-summarization.pdf
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.acl-main.538
https://doi.org/10.18653/v1/2020.acl-main.538

language to code generation. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 6045—6052, Online. As-
sociation for Computational Linguistics.

Frank F Xu, Bogdan Vasilescu, and Graham Neubig.
2021. In-ide code generation from natural lan-
guage: Promise and challenges. arXiv preprint
arXiv:2101.11149.

Wen-tau Yih, Kristina Toutanova, John C Platt, and
Christopher Meek. 2011. Learning discriminative
projections for text similarity measures. In Proceed-
ings of the fifteenth conference on computational nat-
ural language learning, pages 247-256.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.
In Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 440-450, Vancouver, Canada.
Association for Computational Linguistics.

Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun,
and Xudong Liu. 2020. Retrieval-based neural
source code summarization. In 2020 IEEE/ACM
42nd International Conference on Software Engi-
neering (ICSE), pages 1385-1397. IEEE.

2731

https://doi.org/10.18653/v1/2020.acl-main.538
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/P17-1041

Supplementary Material: Appendices

A Qualitative Example

In Figure 11, we show an example of generated
code by a baseline and different modules of RED-
CODER. The input summary asks to write a code
(in Java) to [get a MuxerStream given a position].

We show two of the corresponding retrieved
code, their summaries (for bimodal instances),
generated code of PLBART, REDCODER, and
REDCODER-EXT. As can be seen, PLBART gen-
erates a basic but relevant code; both retrieved code
(rank-1 and rank-3) contains the statements with
variable one of them is of (MuxerStream|
class, and another is from [DeMuxerStream | class.
REDCODER generates a somewhat correct code
of class and it takes the
argument too. Seemingly, while fusing the re-
trieved code, we suspect that as the tentative func-
tion name mentioned in the in-
put summary does not match the function name
(DeMuxerStream| of the rank-3 retrieved code, it
only adapts one line containing from rank-3
retrieved code (line #3) and takes the rests includ-
ing the function definition (i.e., line #1) from the
rank-1 retrieved code. Now when REDCODER-
EXT is allowed to leverage the summaries of the
retrieved code, it can match the summary of the
rank-3 retrieved code with the input, and that is
why it produces the (MuxerStream] class object
but with the [throw exceptions] from the rank-3 re-
trieved code.

B Performance Difference of PLBART
on CodeXGLUE and Concode

Concode is a relatively easier dataset for code gen-
eration and retrieval due to several pre-processing
steps taken by its authors. Along with additional
contexts (environment variables and methods) in
the input summary, Concode artifacts the target
code by replacing the specific variable names with
generic tokens.

1 void function (Element argo,

2 Formula argl) {

3 arg0.addElement (

4 "concode_string") .setText (

5 argl.getText ());

6 }

Therefore, we suspect that due to this, PLBART
achieves good EM score for Concode but not for
the generation of real code in CodeXGLUE.

Analogously for the retrieval models, code re-
trieved by BM25 have also a large word overlap-
ping with the targets in Concode in contrast to
CodeXGLUE (1st row in Table 2 and 3). Con-
sequently, BM25 retrieval boosts PLBART (i.e.,
BM25 + PLBART) more in Concode than that in
CodeXGLUE (3rd row for the bottom in Table 2
and 3). Overall, we anticipate all these skewness
in model performances are due to the dataset char-
acteristics.

2732

Retrieval Database
Dataset Lang. | Task | CSNet | CCSD | Concode | ISizel | INonparallell
pvon o | 7 L v | % || e
um. .
CodeXGLUE e | Gen [V X X 1.6M 543K
Sum. v v X 1.1M 903K
Concode Java Gen. X X v 104K 0

Table 8: Retrieval database statistics. “Size” refers to both of parallel and nonparallel code or summaries. As
Concode has a different data format, we only retrieve from itself. Nonparallel means the retrieval candidates are
only code (for code gen.) and only summaries (for code sum.). CSNet (CodeSearchNet), CCSD refer to Husain

et al. (2019) and Liu et al. (2021).

code target present | summary CodeXGLUE (Java) CodeXGLUE (Python)
retrieval | in retrieval retrieval | BLEU EM CodeBLEU | BLEU EM CodeBLEU

X X X 10.1 0.0 14.96 4.89 0.0 12.01

X 2692 895 31.15 22774 8.88 28.93

% X v 2898 10.21 33.18 2443 9.61 30.21

v X 36.33 2941 41.38 32.14 27.48 38.02

v 42.82 36.99 47.25 38.87 34.51 43.78

Table 9: Ablation results on source code generation using the retrieved code and its summary together when the

reference target code is absent and present in the retrieval database respectively.

CodeXGLUE-Python

CodeXGLUE-Java

Methods BLEU-4 ROUGE-L | BLEU-4 ROUGE-L
SCODE-R 46.6 338 43.0 557
REDCODER 47.0 55.4 50.4 58.8
REDCODER-EXT | 47.1 55.5 50.4 58.7

Table 10: Evaluation results of code summarization keeping the target summary in the retrieval database.

® Java B Python

4000 T

3000

2000 |

1000 T

60 8o

40

Code

Figure 9: #Code per target length.

100

Length

150 >150

2733

B PLBART B Retrieved

40

REDCODER
B REDCODER-EXT

60 80 100 150 >150

Code Length

Figure 10: BLEU vs target len. (Java)

Input summary: Get the MuxerStream at the given position.

PLBART Prediction [BLEU: 0.1439]

1 public MuxerStream getMuxerStream (int position) {
2 if (muxerStream == null) {
3 muxerStream = new MuxerStream (this, position)
4)
5 return muxerStream;
6 }
SCODER Retrieval (Rank-1) [BLEU: 0.4298]
1 public Muxer getMuxer () {
2 long cPtr = VideoJNI.MuxerStream_getMuxer (swigCPtr, this);
3 return (cPtr == 0) ? null : new Muxer (cPtr, false);
4}

Paired summary: Get the Muxer that this stream belongs to

SCODER Retrieval (Rank-3) [BLEU: 0.6740]

1 public DemuxerStream getStream (int streamIndex)

2 throws java.lang.InterruptedException, java.io.IOException {

3 long cPtr = VideoJNI.Demuxer_getStream(swigCPtr, this, streamIndex);
4 return (cPtr == 0) ? null : new DemuxerStream (cPtr, false);

5

REDCODER Prediction [BLEU: 0.6170]

1 public MuxerStream getMuxerStream (int position) {

2 long cPtr = VideoJNI.MuxerStream_getMuxer (swigCPtr, this, position);
3 return (cPtr == 0) ? null : new MuxerStream (cPtr, false);
4

REDCODER-ext Prediction [BLEU: 0.8062]

] public MuxerStream getMuxer (int streamIndex)

2 throws java.lang.InterruptedException, java.io.IOException {

3 long cPtr = VideoJNI.MuxerStream_getMuxer (swigCPtr, this, streamIndex);
4 return (cPtr == 0) ? null : new MuxerStream (cPtr, false);

5

Reference (Gold Output)

1 public MuxerStream getMuxer (int streamIndex)

2 throws java.lang.InterruptedException, Jjava.io.IOException {

3 long cPtr = VideoJNI.MuxerStream_ getMuxer (swigCPtr, this, streamIndex);
4 return (cPtr == 0) ? null : new MuxerStream (cPtr, false);

5

}

Figure 11: A qualitative example to show the effectiveness of retrieval-augmented generation as proposed in
REDCODER framework

2734

