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Abstract

Respiratory insufficiency is a symptom that
requires hospitalization. This work investi-
gates whether it is possible to detect this condi-
tion by analyzing patient’s speech samples; the
analysis was performed on data collected dur-
ing the first wave of the COVID-19 pandemic
in 2020, and thus limited to respiratory insuf-
ficiency in COVID-19 patients. For that, a
dataset was created consisting of speech emis-
sions of both COVID-19 patients affected by
respiratory insufficiency and a control group.
This dataset was used to build a Convolution
Neural Network to detect respiratory insuffi-
ciency using speech emission MFCC represen-
tations. Methodologically, dealing with back-
ground noise was a challenge, so we also
collected background noise from COVID-19
wards where patients were located. Due to the
difficulty in filtering noise without eliminat-
ing crucial information, noise samples were in-
jected in the control group data to prevent bias.
Moreover, we investigated (i) two approaches
to address the duration variance of audios, and
(ii) the ideal number of noise samples to in-
ject in both patients and the control group to
prevent bias and overfitting. The techniques
developed reached 91.66% accuracy. Thus
we validated the project’s Leading Hypothe-
sis, namely that it is possible to detect respira-
tory insufficiency in speech utterances, under
real-life environmental conditions; we believe
our results justify further enquiries into the use
of automated speech analysis to support health
professionals in triage procedures.

1 Introduction

This work started as part of the academic initiative
to help in the effort to deal with the COVID-19
pandemic in a severely affected region in Brazil.
COVID-19 is an infectious disease caused by the

†Corresponding author:mfinger@ime.usp.br .

virus SARS-CoV-2. This illness is mainly associ-
ated to severe acute respiratory syndrome, although
it is harmful to other organs, like heart, kidney and
brain. About 82% of cases are mild or moderate,
while the rest are severe or grave, demanding hos-
pitalization or intensive care. The most vulnerable
groups are people over the 60’s, and people with
specific medical conditions such as diabetes, obe-
sity, hypertension and heart disease. According
to WHO1, in August 3 2020, more than 19.2 mil-
lion people in the world had contracted COVID-19,
with a Case Fatality Ratio of CFR=2.8%. Respira-
tory Insufficiency (RI) is a symptom that requires
hospitalization, which is aggravated due to a fre-
quent COVID-19 condition called silent hypoxia,
low blood oxygen concentration without breath
shortness (Tobin et al., 2020).

This work leading hypothesis states that it is
possible to detect respiratory insufficiency by an-
alyzing spoken utterances in real-life conditions,
typically a moderately large sentence, thus sub-
scribing to the view of speech as a biomarker. This
work aims at validating this leading hypothesis us-
ing deep learning techniques.

If the hypothesis holds, it will motivate further
enquiries on the use of automated speech analy-
sis to support health professionals; with infectious
diseases such as COVID-19, a serious concern in-
volves deciding whether an RI suspect should stay
in social isolation or be directed to a medical facil-
ity. Project SPIRA23 was initiated to investigate the
feasibility of supporting medical triage of patients
with COVID-19 symptoms by remotely detecting
respiratory insufficiency through automated speech
utterance analysis, where no other resources are

1https://covid19.who.int, visited May 24 2021.
2https://spira.ime.usp.br/
3In Portuguese, Sistema de detecção Precoce de

Insuficiência Respiratória por análise de Audio – system for
early detection of respiratory insufficiency via audio analysis.

mfinger@ime.usp.br
 https://covid19.who.int
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available other than a phone line or a cellphone
app. A positive result may motivate further re-
search into speech-based remote detection of res-
piratory problems originating from other causes,
such as heart condition, airway obstruction, severe
asthma, H1N1, etc.

This research started as a response to the peak
of the first COVID-19 wave in 2020, when health
infrastructure was overloaded, so no doctors nor
nurses were available for data collection, and
there was no triage point available for research.
Thus, COVID-19 patient utterances were collected
mostly by medical students at COVID-19 wards
from patients with blood oxygenation below 92%,
as an indication of respiratory insufficiency, and
control data was collected by voice donations over
the internet, assumed healthy, with no access to
blood oxygenation. Recordings were made in
out-of-studio conditions, using portable recording
equipment employed in noisy wards. On the other
hand, conditions for healthy voice donations over
the Internet and using diverse sound equipment had
a large variation. This audio data in-the-wild ap-
proach was assumed from the start as part of the
challenge of validating the leading hypothesis. Part
of the methodological novelty of this work lies on
how to deal with these conditions. This task re-
quired a multidisciplinary group involving medical
doctors, linguists, speech therapists and computer
scientists, all of which were aware of those condi-
tions and challenges facing us.

This work proposes a machine learning method
to detect respiratory insufficiency by analyzing
voice audio recordings of sentences long enough
to feature respiratory pauses in speech. The test
is very cheap, requiring only a voice sample from
each patient and maybe employed where no other
medical equipment is available.In order to tackle
the audio analysis, we propose the use of deep
artificial neural networks over Mel Frequency Cep-
stral Coefficients (MFCCs) (Logan et al., 2000)
extracted from patient’s audios.

The code and datasets are publicly avail-
able at https://github.com/SPIRA-COVID19/

SPIRA-ACL2021, under a CC BY-SA 4.0 license.

This paper is organized as follows: Section 2
discusses related work. In Section 3, the dataset ac-
quired, the preprocessing steps, the noise insertion
procedure, the proposed model and experiments
are described, respectively. Afterwards, the models
obtained are evaluated and discussed in Section

4. Finally, Section 5 presents the conclusions and
final thoughts.

2 Related work

COVID-19 is a recent disease. However, even be-
fore the eruption of the pandemic, we could already
find in the literature a few explorations of speech as
a biomarker (Botelho et al., 2019; Trancoso et al.,
2019; Nevler et al., 2019), with some recent recom-
mendations (Robin et al., 2020).

Several initiatives can be found on the Web that
record human voice in order to assess the presence
and the gravity of COVID-19, e.g. the COVID-
19 Sounds data collection initiative (Brown et al.,
2020) and startup initiative aiming to develop a
pre-diagnostic tool4. Those works aim to diagnose
COVID-19 from voice or breathing or coughing
sounds, and there are some initial positive results
on COVID-19 detection in asymptomatic individu-
als (Laguarta et al., 2020). Unlike our approach, no
work aimed specifically at respiratory insufficiency
or at patient triage, but they propose to employ
some form of artificial intelligence processing.

In similarity to our goals, there have been recent
proposals of applications for the triage of patients
using natural language processing of texts extracted
from radiology reports (Hassanpour et al., 2017)
and patient questionnaires (Spasić et al., 2019). So
language, both as text and now as speech, is being
used for patient screening.

Moreover, Neural Networks and Convolutional
Neural Networks (CNNs) have been used in noisy
environments mostly, but not exclusively, for fault
diagnosis (Zhang et al., 2018; Munir et al., 2019),
noise reduction in voice processing (Maas et al.,
2012) and medical ECG diagnosis (Acharya et al.,
2017). On the other hand, noise injection was a
technique used in the past to avoid overfitting in
training Neural Networks (Matsuoka, 1992; Grand-
valet et al., 1997; Zur et al., 2009), as opposed to
avoiding classification biases, as in our approach.

3 Methodology

In order to build a neural network model for the pro-
posed task, it is necessary to gather a dataset con-
taining voices of healthy individuals and COVID-
19 patients (Section 3.1). The resulting dataset re-
quired several preprocessing treatments and noise
treatment, as discussed in Sections 3.2 and 3.3. The
next step was to propose several neural models to

4https://www.voicemed.io/

https://github.com/SPIRA-COVID19/SPIRA-ACL2021
https://github.com/SPIRA-COVID19/SPIRA-ACL2021
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investigate the best one for the task (Section 3.4)
evaluated according to experiments carried over the
dataset (Section 3.5).

3.1 Dataset
The dataset creation was composed of two parts and
an “appendix”. The first part consisted of audios
gathered via Web by a system specifically designed
for this task5, from May to July of 2020. Healthy
volunteers were asked to donate audio samples via
a web interface. This allowed us to build our con-
trol group. In order to do that, the system URL was
disclosed through local news and social network-
ing. The resulting dataset part is composed, after
elimination of blank samples, of more than 6 thou-
sands voice donors. No blood oxygen saturation
information was available for the control group.

In the second part, we collected audios from pa-
tients infected by SARS-CoV-2 from June to July
of 2020. This collection was performed in COVID-
19 wards in two university hospitals, in São Paulo
city, Brazil, restricted to patients with blood oxy-
genation level (SpO2) inferior to 92%, as an indi-
cation of respiratory insufficiency. This allowed us
to collect 536 samples from patients in different
age groups. Several problems led to discarding
patient voice samples, chiefly among which were
collectors whispering during collection; a large set
of collection instructions was assembled during the
period in which voice collection took place. It is
important to note that São Paulo is a local and inter-
national hub, with a large migrant and immigrant
population. Hospitals received COVID-19 patients
from the city as well as from adjoining regions.
Collection was absolutely anonymous, so no one
knows who were the patients and controls, and no
ethnographic information is available. On the other
hand, this allowed us to release the data.

As a COVID-19 ward is a noisy environment,
an “appendix” was built for this dataset, consist-
ing of samples of pure background noise at the
ward (no voice), typically collected at the start of a
collection session. This is an important piece of in-
formation, as the ward noise is very different from
the background noise found in the control group,
and consists of a data bias that has to be controlled
during experiments.

The gathered audios contain three utterances:

• Utterance 1, a moderately long sentence con-
taining 31 syllables, designed by linguists to

5https://spira.ime.usp.br/coleta/

allow for spontaneous breathing breaks, while
being relatively simple to be spoken, even
by low literacy voice donors: “O amor ao
próximo ajuda a enfrentar o coronavı́rus com
a força que a gente precisa.” (“Love of neigh-
bor helps in strengthening the fight against
Coronavirus.”);

• Utterance 2, a well known nursery rhyme for
donors having reading difficulties, due to lack
or reading glasses in hospital, or other types
of reading impediments: “Batatinha quando
nasce, espalha a rama pelo chão, nenez-
inho quando dorme põe a mão ao coração”
(“When small potatoes germinate, branches
sprout on the ground; when baby sleeps, hands
rest over the heart”);

• Utterance 3, a widely known song, on the
lines of ”Happy birthday to you”: “Parabéns
a você, nesta data querida, muitas felicidades,
muitos anos de vida” (“Happy birthday to
you, on this dear date, lots of happiness, many
years of life”).

Collecting longer utterances was totally imprac-
tical in a COVID-19 ward. The collection had to
be adapted to what was possible in that context.

We identified several issues with the original
dataset that need to be addressed. First, there
is class imbalance, as we have fewer positive in-
stances (COVID-19 patients) than negative ones
(healthy individuals from the control group). Sec-
ond, it is sex imbalanced, as a greater number of
healthy women participated in the process than
healthy men. Additionally, there are more men in
COVID-19 wards than women. Third, there is an
age imbalance, as there are more elderly in hospital
care than young people in our observations. Fourth,
we also detected utterance imbalance, as utterance 1
was more common among patients; healthy people
typically recorded all proposed utterances. Fifth,
the control group presented popping and crack-
ling noise, possible due to the characteristics from
the recording devices. Furthermore, as mentioned
above, wards tend to be noisy environments.

We addressed most of the dataset issues by sam-
ple balancing, taking advantage of the greater num-
ber of control group samples. Only audios from
utterance 1 were selected and the number of sam-
ples used in experiments was balanced by class
and sex, but not by age, to avoid drastically reduc-
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Figure 1: Distribution of Ages in the Dataset

ing the available data. Overall age distribution is
presented in Figure 1.

We also had to discard audio containing the col-
lector’s (whispering) voice. The most serious issue
for bias removal, though, is the presence of ward
background noise in patient audios; we observed
that it is easier to insert ward noise in the control
group than to remove it from the patients’ signal.
This process will be addressed in Section 3.2.

The dataset was divided in training, validation
and test, as is usual in statistical learning. We
selected audios with the best signal-noise ratio to
use in the test set, and the second best audios were
used for validation. The aim of this partitioning is
to detect training overfitting.

Information of the resulting filtered dataset is
presented in Table 1.

3.2 Pre-processing

In general, the majority of the audios in the dataset
was sampled at 48kHz. We pre-processed these
files using Torch Audio 0.5.0 in the following way.
First, for dimensionality reduction reasons, we re-
sampled these audios at 16kHz. Second, we ex-
tracted the MFCCs using a 400ms window employ-
ing Fast Fourier Transform (FFT) (Brigham and
Morrow, 1967), with hop length 160 and 1,200
FFT components, of which we retained only 40
coefficients. Before the MFCC feature extraction
process though, we need to address the difference
of duration present in our data.

The duration of our samples in the dataset varies,
in which audios from the positive class are slightly
longer than audios from the negative class, as pre-
sented in Table 1. We have developed two ap-
proaches to deal with this phenomenon. First, we
applied padding in the instances during training.
This is equivalent to complete the audios with si-

lence so that all audios have the same duration.
Second, we have extracted fixed length fragments
from the audios. This approach aims to prevent the
model from performing the classification giving
too much importance to the audio length. In order
to augment the training data, windowing with 1 sec-
ond steps was applied to extract audio fragments.

3.3 Noise Insertion During Training

Ward noise is a serious bias source, as confirmed
by our preliminary experiments (Section 4). In
this scenario, a neural network can be biased dur-
ing training by focusing only on background noise.
One possible alternative would be noise filtering,
but besides the possibility of inserting extra biases
due to differential noise suppression in patient and
control audio samples, there is also the possibility
of suppressing important low-energy information
that allows for the distinction between healthy and
respiratory affected speech samples.

To address this issue, we decided to record pure
background noise samples from COVID-19 wards
and to inject into patients and control group audios.
In total, 16 samples with approximately 1 minute
each were recorded.

The inserted noise can also be a cause of bias,
as the model can extract specific features from the
noise recording. To avoid this kind of bias, we
decided to inject noise in all samples. We had
the option of inserting in training, validation and
testing samples, which will be described in Section
4. We can also control the amount of noise samples
inserted in each audio.

In our experiments, we investigate the ideal num-
ber of noise samples to inject in both patients and
the control group. This had a big impact in over-
fitting prevention, as a form of unbiased learning,
as described in Section 4. During training, at each
epoch, audio samples can be injected with one or
more distinct noise samples. Each time a given
audio is used for training, noise samples are drawn
from the noise base. Besides that, the start point
of each noise sample is also randomized. Finally,
we also draw a factor to change the intensity of the
sample. This factor is constrained by a maximum
amplitude value, which was determined from the
analysis of patient audio noises. The aim is to insert
noises as similar as possible to already pre-existing
noise. We also executed the same experiment three
times with different random seeds to obtain better
measures of the noise insertion impact.
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Table 1: Filtered dataset information

Sets Control Patients Total
Audios

Total
Duration

(s)Male Female
Mean

Duration
(s)

Male Female
Mean

Duration
(s)

Training 59 84 8.15 83 66 13.18 292 3110
Validation 8 8 7.75 8 8 10.78 32 296
Test 22 26 7.77 28 32 9.43 108 983

The test and validation sets were created in such
a way to allow overfitting detection as they are com-
posed mostly of audios with very limited amount
of noise. As a result, we cannot apply k-fold Cross
Validation and similar methods. We compensate
this by running the same experiment three times
with different random seeds. This fact, together
with the dynamic noise insertion during training,
allows us to obtain averaged accuracy for each ex-
periment.

3.4 Proposed Model

Several models were tested in preliminary experi-
ments and we describe the one that led to the best
results.

This process involved three main aspects: (a)
the topology and model parameters; (b) the main
hyper-parameters; (c) regularization. The last is
especially important, since our dataset contains
several issues that can lead to overfitting.

Regarding topology and model parameters, pre-
liminary experimental results showed that CNNs
applied to MFCCs are useful to analyze this kind
of problem. Other preliminary experiments in-
vestigated spectrograms and topologies like fully-
connected and recurrent networks, which showed
lower performance than the chosen topology. Fig-
ure 2 presents the chosen model’s main features
including layers, filters, kernels, number of neu-
rons and activation functions. The following con-
ventions are adopted in the figure: kernel size is
represented by K; convolutional dilation size (Yu
and Koltun, 2015) is represented by D; and fully
connected layers are represented by FC. The input
size is omitted because these parameters changed
according to the experiment and will be detailed
in Section 3.5. We investigated the use of Mish
activation function (Misra, 2019), due to its regular-
ization effects during training, which helps prevent
overfitting.

Regarding the main hyper-parameters, we have
used the Binary Cross-Entropy as loss, and Adam
optimizer (Kingma and Ba, 2014). The initial learn-

ing rate was set to 10−3, and the Noam’s decay
scheme (Vaswani et al., 2017) was applied on each
1,000 steps. For each experiment presented in Sec-
tion 3.5, we trained the model for 1,000 epochs
using a batch size of 30.

Regarding regularization, overfitting mitigation
is a major concern given our dataset noise charac-
teristics. Therefore, several approaches for regular-
ization were applied. Besides Mish as an activation
function, we used three other strategies. First, a
global weight decay of 0.01 was applied. Second,
a dropout of 0.70 was used in all layers, except in
the output layer. Last, we applied group normaliza-
tion (Wu and He, 2018) after each convolutional
layer. The group normalization was applied on
pairs of convolution filters. Therefore, the number
of groups is half the number of filters.

3.5 Experiments

For the experiments we explored three main as-
pects with respect to noise insertion and duration
variance: (a) overfitting impact; (b) padding vs
windowing approach (using four second windows
or adding padding); and (c) the ideal number of
noise samples. Table 2 presents the proposed ex-
periments and their results.

First we investigated if the model can overfit
when trained over original audios (experiments 1.x).
In this series of experiments, we trained the model
using both approaches of duration variance.

Second we analyzed two approaches to address
the duration variance: audio padded to the maxi-
mum length of the dataset; windowing using the ap-
proach described in Section 3.2 (experiments 2.x).
Specifically, we presented padding application only
in experiments 1.1 and 2.1 because experiments
showed that the windowed approach led to more
robust results. When padding is used, the accuracy
is calculated as usual. However, in windowed ex-
periments, several audio fragments are extracted
and their predictions averaged for the classification
decision. Regarding window size, we have chosen
four seconds, considering our smallest audio in the
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Figure 2: CNN topology proposed with four convolutional layers and two fully connected layers

Table 2: Proposed experiments and results

Description Exp. Duration
Approach

Noise Samples Accuracy
(without noise
in test samples)

Accuracy
(with noise
in test samples)

Training
time
(h)Patient Control

Overfitting
Analysis

1.1 Padding 0 0 98.15 ± 0.93 50.93 ± 0.53 4.25
1.2 Windowing 0 0 98.15 ± 0.53 50.93 ± 0.93 9.07

Duration
Variance
Analysis

2.1 Padding 0 1 61.11 ± 8.40 74.07 ± 1.93 4.77
2.2 Windowing 0 1 66.67 ± 3.74 86.11 ± 2.98 9.58

Noise
Insertion
Analysis

3.1 Windowing 1 1 80.56 ± 2.45 68.52 ± 1.41 6.57
3.2 Windowing 1 2 84.26 ± 6.17 83.33 ± 3.34 12.27
3.3 Windowing 2 2 88.89 ± 0.53 85.19 ± 0.93 13.00
3.4 Windowing 2 3 74.07 ± 5.10 85.19 ± 1.85 13.67
3.5 Windowing 3 3 91.67 ± 2.98 87.04 ± 0.93 14.70
3.6 Windowing 3 4 62.96 ± 8.35 74.07 ± 2.45 11.85
3.7 Windowing 4 4 88.89 ± 1.41 83.33 ± 1.07 10.40
3.8 Windowing 4 5 56.48 ± 5.10 72.22 ± 9.99 9.83
3.9 Windowing 5 5 70.37 ± 15.8 69.44 ± 9.27 10.55
3.10 Windowing 5 6 51.85 ± 3.51 61.11 ± 2.98 11.18
3.11 Windowing 6 6 74.07 ± 10.7 74.07 ± 8.83 11.98
3.12 Windowing 6 7 50.00 ± 0.53 54.63 ± 3.51 12.63

dataset contains 4.6 seconds and new data samples
can be even smaller.

Third we examine the ideal number of noise
samples to be inserted to prevent overfitting (ex-
periments 3.x), using the best duration approach
according to experiments 2.x. For each experiment,
we tested the model using both noise insertion and
no noise insertion to analyze performance.

Our model was implemented using Pytorch 1.5.1.
We ran the experiments on a NVIDIA Titan V
GPU with 12GB RAM in a server with Intel(R)
Core(TM) i7-8700 CPU and 16GB of RAM.

4 Results and Discussion

To better understand bias and overfitting we used
a test set containing only audios with a minimal
amount of noise. The accuracy of each experiment
is presented in Table 2, both with and without arti-
ficial insertion of ward noise in test samples.

Experiments 1.x showed the model is biased
without noise insertion in the training set. We note
a high accuracy in experiments 1.1 and 1.2 with-
out noise in training and testing; in contrast, when
noise is inserted in all test samples, it classifies all
samples as coming from patients. We interpret this
as a strong indication that the model is biased by
the presence of noise in the patient samples.

Experiments 2.x showed that windowing (2.2)
is preferable over padding (2.1), as described in
Section 3; the model performs better when the
windowed approach is used, that is, 66% using
windowing against 61% using padding. We con-
sider this as evidence of susceptibility to bias by
padding. In fact, padding inserts a considerable
amount of silence, specially in patient samples, and
the windowed approach works as a data augmenta-
tion technique, as more instances are generated in
this process.
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Experiment 3.x were used to determine the opti-
mal amount of noise insertion. Note that sometimes
better results were obtained without noise in test
samples and sometimes the other way around. In
general, the bias is greatly reduced by inserting at
least one noise sample on the negative instances.
As expected, the insertion of too much noise de-
creases the model performance. The best overall
accuracy was obtained in experiment 3.5, which
reached 91% accuracy in the task. For experiment
3.5, we obtained F1 = 0.90, without noise insertion;
with noise insertion, F1 = 0.87.

Figure 3 presents the loss variation of the best
model (experiment 3.5) during training. Early stop-
ping is used to get the best iterations after approxi-
mately 20k steps.
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Figure 3: Validation Loss for Experiment 3.5 during
Training

Figure 4 shows the model performance over the
number of noise samples inserted. With respect
to the number of noise samples, our experiments
suggest that a number of 2 to 4 noise insertions in
each audio provides best accuracy. In each case,
two possibilities have been tested, namely the inser-
tion of an equal number of noise samples in each
training audio, and the insertion of one extra noise
sample to control audio, assuming that patient au-
dios already have the original ward noise. It was
initially expected that the insertion of an extra noise
sample in control audios would produce better re-
sults; surprisingly, the opposite effect was observed.
The possible explanation for this observation is that
there are times when wards are calmer and silent
and the insertion of noise in control audios leads
to bias. This is especially true for testing samples,
due to the criteria used to build the testing set.

5 Conclusions and future work

In the effort to tackle the COVID-19, we have de-
veloped a method to classify real-life speech audio

Figure 4: Sample Noise Analysis for the Best Experi-
ments

signals on whether or not that signal originated
from a person suffering from respiratory insuffi-
ciency. In this effort, we obtained 91.67% accuracy,
thus validating the hypothesis that such a detection
is feasible, and that human speech can be treated
as a biomarker in this case.

One important consequence of this work was
the construction of a dataset containing voice sam-
ples of COVID-19 patients with respiratory insuffi-
ciency and also a set of samples of environmental
noise, which were central in treating real-life sound
samples. Noise insertion was chosen as the more
adequate option when contemplating the biases that
would be incurred by filtering procedures. In partic-
ular, it made sense to add ward noise to the existing
ward samples as a way to balance the biases that
were incurred by the necessary addition of ward
noise to control data. In this way, all data (patient
and control) suffered from similar manipulation,
avoiding editing bias, and experiments showed that
such a procedure produced best results. This aimed
at preventing the models from memorizing ward
noise and editing distortion information instead of
COVID-19 features.

There was a considerable difficulty to collect
voice data from infected patients during the pan-
demic. The size of the patient dataset reflects
the limitations on collections in COVID-19 wards.
Moreover, the use of audio from different environ-
ments was absolutely unavoidable, as we only had
access to patients in COVID-19 wards, where no
control subjects were available. Therefore, control
data had to be collected in a different environment.
As a result, the amount of data was scarce, and
data augmentation techniques were designed for
such a setting; our results indicate that it was not
an excessive amount of data augmentation, as con-
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sistent results were obtained over a large variety
of experiments. We hope that with the weakening
of the emergency situation, it could become eas-
ier to collect data from patients with respiratory
insufficiency.

Future work includes augmenting the dataset
with audios collected at the triage point, whether in
hospital admission rooms, or through a remote ad-
mission system. In this way, speech audio signals
from both sufferers and non-sufferers of respiratory
insufficiency would be obtained under similar con-
ditions. This would allow us to extend this study
to other respiratory illnesses besides COVID-19.
Also, other neural architectures can be explored, as
well as smarter feature engineering.
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