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Abstract

Paraphrase generation is an important
and challenging NLG problem. In this
work, we propose a new Identification-then-
Aggregation (IA) framework to tackle this
task. In the identification step, the input
tokens are sorted into two groups by a
novel Primary/Secondary Identification (PSI)
algorithm. In the aggregation step, these
groups are separately encoded, before being
aggregated by a custom designed decoder,
which autoregressively generates the para-
phrased sentence. In extensive experiments
on two benchmark datasets, we demonstrate
that our model outperforms previous studies
by a notable margin. We also show that the
proposed approach can generate paraphrases
in an interpretable and controllable way.

1 Introduction

Paraphrases refer to text (often sentences) that
share the same meaning but use different choices of
words and their ordering. Automatic generation of
paraphrases is a longstanding problem that is impor-
tant to many downstream NLP applications such as
question answering (Dong et al., 2017; Buck et al.,
2018), machine translation (Cho et al., 2014), and
semantic parsing (Su and Yan, 2017). Most early
research adopts the sequence-to-sequence model
(Prakash et al., 2016; Cao et al., 2017; Li et al.,
2018) to map the input text to its paraphrase by
processing and generating each word in a uniform
way. Rather than processing each word uniformly,
some recent studies tackles this task in a decompos-
able manner. For instance, Li et al. (2019) adopt
an external word aligner to extract paraphrasing
patterns at different levels of granularity and then
perform generation. Fu et al. (2019) first use source
words to predict their neighbors and then organize
the predicted neighbors into a complete sentence.

Figure 1: Examples of paraphrase pair sampled from
Quora and MSCOCO datasets in which the words in
red refer to the primary content and the rest of the
words make up the secondary content.

In this work, we investigate decomposable para-
phrase generation from a different perspective.
Specifically, we consider using a non-parametric
approach to label each token in an input sentence as
either (i) primary, or (ii) secondary. Intuitively, the
primary content of a sentence refers to the factual
information that defines the shared meaning of the
paraphrase pair. All other content is deemed as sec-
ondary, and typically controls the structure of the
sentence. In practice, this distinction is determined
by an algorithm that decides whether tokens are
primary or secondary, as described in §3. To better
illustrate our idea, in Figure 1, we show some exam-
ples sampled from Quora and MSCOCO (Lin et al.,
2014) datasets. We see that, for many cases, the
paraphrase pairs maintain the similar primary con-
tent (e.g., the phrases “baby elephants” and “baby
elephant” in the first example) while the secondary
content can be rephrased in several different ways.

Based on the above observation, we propose an
Identification-then-Aggregation (IA) framework to
address the paraphrase generation task. Given an
input sentence, generating a paraphrase follows a
two-stage process. First, the primary and secondary
content of the input sentence is identified via a
novel Primary/Secondary Identification (PSI) algo-
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rithm which is based on a common non-parametric
rank coefficient. Second, a new neural paraphrase
generation model aggregates the identified infor-
mation and generates the result. Specifically, the
proposed model consists of (1) two encoders which
separately process the identified primary and sec-
ondary content; and (2) an aggregation decoder
which integrates the processed results and gener-
ates the paraphrased sentence.

We test the proposed approach on two bench-
mark datasets with automatic and human evalu-
ation. The results show that our approach out-
performs previous studies and can generate para-
phrases in an interpretable and controllable way.

2 Related Work

The automatic generation of paraphrases is impor-
tant for many downstream NLP applications and
it has attracted a number of different approaches.
Early researches included rule-based approaches
(McKeown, 1979; Meteer and Shaked, 1988) and
data-driven methods (Madnani and Dorr, 2010).
With the advances of neural networks, recent ap-
proaches tackle this problem by treating it as a
sequence-to-sequence language generation task.
Prakash et al. (2016) proposed to modify the net-
works structure to improve the generation quality.
Cao et al. (2017), Wang et al. (2019), and Kazemne-
jad et al. (2020) proposed to improve the model per-
formance by leveraging external resources, includ-
ing phrase dictionary, semantic annotations, and
an off-the-shelf pre-trained neural retriever. Other
works proposed to adopt techniques like reinforce-
ment learning (Li et al., 2018) and unsupervised
learning (Roy and Grangier, 2019) for this task.

While achieving satisfactory results, these above
methods do not offer users the way to control the
generation process in a fine-grained way. To in-
corporate controllability into the generation model,
different approaches have been proposed. Iyyer
et al. (2018) trained the model to produce the para-
phrased sentence with a given syntax. Li et al.
(2019) proposed to adopt an external word aligner
to train the model to generate paraphrases from dif-
ferent levels. In Fu et al. (2019)’s work, the model
generates paraphrases by planning the neighbour
of words and realizing the complete sentence.

3 Primary/Secondary Identification

Given an input sentence, our goal is to identify
the primary content that are likely to appear in the

paraphrased sentence. To this end, we propose a
Primary/Secondary Identification (PSI) approach
which dynamically evaluates the importance of dif-
ferent parts of the input sentence. The parts with
high importance are deemed the primary content,
while the rest parts are deemed secondary content.

Token Importance Formally, given a paraphrase
pair X and Y, we define their pairwise similarity
as F(X,Y). To determine the importance of the i-
th token xi of X in relation to Y, we first compute
the pairwise similarity between X′ = X	 xi and
Y as F(X′,Y), where the 	 operator removes the
token xi from X. We assume that if the token xi
belongs to the primary content that is maintained
in both X and Y, then removing it from X will
cause a significant drop in the pairwise similarity
between X and Y. Based on this assumption, we
measure the importance of xi as the ratio of change
in the pairwise similarity score as

G(xi;X,Y) =
F(X,Y)−F(X′,Y)

F(X,Y)
. (1)

Intuitively, a higher G(xi;X,Y) means a larger
decrease in the pairwise similarity, indicating a
higher importance of the token xi and vice versa.

Similarity Measurement We now describe the
details of the function F(·, ·). Inspired by Zhelez-
niak et al. (2019), we measure the pairwise similar-
ity between X and Y based on a non-parametric
rank correlation coefficient. Specifically, given X
and Y, we first transform them into the represen-
tation matrices M(X) ∈ R|X|×D and M(Y) ∈
R|Y|×D via a D-dimensional pretrained embed-
dings. Then, the matrices are mapped into fixed
size context vectors x̂ ∈ R1×D and ŷ ∈ R1×D via
an element-wise max-pooling operation. Finally,
the pairwise similarity F(X,Y) is measured using
Spearman’s correlation coefficient ρ̂ of the context
vectors x̂ and ŷ as

F(X,Y) = 1−
6×

∑D
j=1(r[x̂j ]− r[ŷj ])2

D × (D2 − 1)
(2)

where r[x̂j ] denotes the integer rank of x̂j in the
context vector x̂ (similarly r[ŷj ]).

For a better illustration, in Table 1, we show sen-
tence sampled from Quora and MSCOCO datasets
along with their pairwise similarities. We see that
the numerical results are highly correlated with hu-
man judgement which empirically demonstrate the
effectiveness of our measurement method.
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Sentence 1 Sentence 2 Pairwise Similarity

What are the best games you
can play with just paper?

Which games can you play on paper in your free time
with your friends?

0.745

What can I do to become a professional chess player? 0.438
Should animals be used for testing medicines and drugs? 0.140

Three bears walking on dried grass
toward the green wooded area.

Two brown bears walking through a green, grassy area. 0.743
A simple plain clear vase with a dead twig and water inside. 0.439

A man using a phone next to a motorcycle. 0.128

Table 1: Examples of different sentence pairs (X,Y) and their corresponding pairwise similarity scores F(X,Y).

Algorithm 1: Primary/Secondary Identification
Input :Input sentence X = (x1, ..., x|X|);

Paraphrased sentence Y = (y1, ..., y|Y|);
Primary content threshold αp;
Importance measurement function G(·, ·, ·).

1 Xp ← {}; Xs ← {};
2 for i = 1 to N do
3 X′ ← X	 xi;
4 if G(xi;X,Y) > αp then
5 Xp ← xi and Xs ← [MASK];
6 else
7 Xp ← [MASK] and Xs ← xi;
8 end
9 end

10 Xp ← joinmask(Xp); Xs ← joinmask(Xs).;
Output :Primary Content Xp;

Secondary Content Xs.

Putting this together, the detailed description
for splitting the input sentence X into the primary
content Xp and secondary content Xs is given in
Algorithm 1, where the token [MASK] is used
as a special placeholder and the threshold αp is
tuned based on the performance on the validation
set1. The joinmask(·) operation joins consecutive
[MASK] tokens into a single [MASK] token. We
note that the incorporation of the [MASK] token is
crucial. Because, in this way, the generation model
could have access to the original source sentence
structure by simply overlapping the primary and
secondary content. In the experiments, we found
that removing [MASK] from the identified content
causes a significant drop in model performance as
the model can no longer have access to the original
sentence structure.

In Figure 2, we show the computed results from
PSI of an example presented in Figure 1. We can
see that the primary content is effectively identified.

Inference During inference, given an input sen-
tence, the primary and secondary content could
not be directly identified as Xp,Xs = PSI(X,Y)

1In this work, we set αp as 0.1 for all experiments based on
the model performance on the validation set.

Figure 2: For each token, the score from the PSI algo-
rithm is presented. The words in red is the identified
primary content and the rest words make up the sec-
ondary content.

since we do not have access to the target sentence
Y. To this end, we propose two alternative ap-
proaches. For the first one, we simply identify the
primary and secondary content using the input sen-
tence X as X′p,X

′
s = PSI(X,X). For the second

one, we train a neural sequence tagger S based on
the labels provided by PSI(X,Y). Then we extract
the content using the input X as X′p,X

′
s = S(X).

In the experiment section, we provide more de-
tailed comparisons between these approaches.

4 Neural Paraphrase Generator

Overview Given the input sentence X, it is first
partitioned into the primary and secondary con-
tent using the PSI algorithm. Then the identified
content is independently processed by the primary
encoder and the secondary encoder. Finally, an ag-
gregation decoder integrates the outputs from both
encoders and generates the result. In Figure 3, we
provide an illustration of the proposed framework.

Encoder Stacks In this work, we use the trans-
former architecture (Vaswani et al., 2017) to con-
struct the primary and secondary encoders. For-
mally, the Multi-Head Attention is defined as
MultiHead(Q,K,V), where Q, K, V are query,
key and value. Each encoder has NE layers. Given
the input X, the first layer operates as

V
(1)
X = MultiHead(E(X), E(X), E(X)), (3)

O
(1)
X = FFN(V

(1)
X ), (4)
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Figure 3: Overview of the proposed framework: Italic and Boldface denote the inputs and outputs at each stage.
For a better illustration, we separately draw the encoder and decoder of the paraphrase generator. (a) During
training, the primary and secondary content of the input sentence are identified by the PSI algorithm using the
input and target sentence. During inference, the content is identified solely based on the input sentence. (b) The
identified results are then encoded by separate encoders. (c) The aggregation decoder takes the encoded primary
and secondary content as input and produces the probability of the target sentence. It should be noted that, during
the training stage, the encoder and decoder are jointly trained in an end-to-end fashion.

where E(X) is the input sequence embedding and
FFN(·) is a feed-forward layer. For other layers:

V
(n)
X = MultiHead(O(n−1)

X ,O
(n−1)
X ,O

(n−1)
X ),

(5)

O
(n)
X = FFN(V

(n)
X ), (6)

where n = 2, ..., NE .
Given the primary content Xp and secondary

content Xs of the input sequence, their representa-
tions O(NE)

Xp
∈ R|Xp|×d and O

(NE)
Xs

∈ R|Xs|×d are
computed by the primary and secondary encoder
respectively and d is the model size.

Decoder Stacks We design an aggregation de-
coder to integrate information coming from both
encoders. Given the target sentence Y, it is first
encoded via a masked multi-head attention as

V
(1)
Ym

= Mask-MultiHead(E(Y), E(Y), E(Y)).
(7)

Then, the primary content attention module takes
the encoded primary content O(NE)

Xp
and V

(1)
Ym

as

input and produces the intermediate result V(1)

Yp
m

as

V
(1)

Yp
m
= MultiHead(V(1)

Ym
,O

(NE)
Xp

,O
(NE)
Xp

)).
(8)

Similarly, the result V(1)
Ys

m
from the encoded sec-

ondary content O(NE)
Xs

is computed as

V
(1)
Ys

m
= MultiHead(V(1)

Ym
,O

(NE)
Xs

,O
(NE)
Xs

)).
(9)

The first layer output O(1)
Y is then acquired as

V
(1)
Yi

= LayerNorm(V
(1)

Yp
m
+V

(1)
Ys

m
), (10)

O
(1)
Y = FFN(V

(1)
Yi

). (11)

The final output O(ND)
Y ∈ R|Y|×d is computed

via a stack of ND layers. The final probability of
Y is produced by a linear softmax operation.

Learning Finally, given the input primary con-
tent Xp, secondary content Xs and the target se-
quence Y, the learning objective is defined as

L =

|Y|∑
t=1

log p(Yt|Y<t,Xp,Xs). (12)

5 Datasets

We test our approach on two benchmark paraphrase
generation datasets: (1) Quora dataset2 and (2)
MSCOCO dataset (Lin et al., 2014).
2https://www.kaggle.com/c/quora-question-pairs
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The Quora dataset was developed for the task of
duplicated question detection. Each data instance
consists of one source sentence and one target sen-
tence. In the experiment, we randomly select one
sentence as the source and the other as the target.

The MSCOCO dataset was originally developed
for the image captioning task. In this dataset, each
image is associated with five human-written cap-
tions. Although there is no guarantee that these
captions must be paraphrases as they could de-
scribe different objects in the image, most of these
captions are generally close to each, therefore the
overall quality of this dataset is favorable and it is
widely used for the paraphrase generation task.

Following Li et al. (2019) and Fu et al. (2019),
for the Quora dataset, we split the size of training,
validation and test sets as 100k, 4k and 20k. The
MSCOCO dataset is split into 93k, 4k and 20k. The
maximum sentence length for these two datasets
is set as 16. The vocabulary size of the Quora and
MSCOCO datasest are set to be 8k and 11k.

6 Experiments

6.1 Model Comparisons
We compare the proposed model with several rep-
resentative baselines, including Residual-LSTM
(Prakash et al., 2016), β-VAE (Higgins et al., 2017),
Transformer (Vaswani et al., 2017), DNPG (Li
et al., 2019), LBOW-Topk and LBOW-Gumbel (Fu
et al., 2019)3. To compare different inference ap-
proaches, three variants of our model are used.

IANet+X: Given the input sentence X, this
model extracts the primary and secondary con-
tent using the approximated PSI(X,X) algorithm.
Then, the paraphrase generator produces the para-
phrased sentence using the identified content.

IANet+S: In this case, a neural sequence tagger
S is first trained based on the labels provided by
PSI(X,Y). During inference, the model extracts
the primary and secondary content of the input as
X′p,X

′
s = S(X) and then perform generation.

IANet+ref: In contrast to previous variants, this
model obtains the primary and secondary content
using the exact PSI(X,Y) algorithm against the
reference Y. The reason to include this model is
that, besides our proposed alternatives, there are
3The hyperparameter setups and optimization in all baseline
models are the same as their original works. For methods
that do not release their code, we directly use the results in
their original papers.

other options that we can use. We will explore
these options in the future work. But by evaluating
IANet+ref we can show an upper bound on how
much could be improved in this way.

6.2 Implementation Details
We implement our model with PyTorch (Paszke
et al., 2017). For the primary and secondary en-
coders, we use a 3-layer transformer with model
size of 256 and heads of 8. Since the decoder has
to integrate the information from both encoders,
we build it with a larger capacity. The number of
layers is set to 4. The model size and the attention
heads are set to be 512 and 8. For the sequence
tagger S that is used in the IANet+S model, we
use a 2-layer LSTM with hidden size of 512.

In the experiments, we adopt pretrained 300-
dimensional FastText Embeddings (Bojanowski
et al., 2017) to perform the PSI algorithm. Dur-
ing training , we use Adam (Kingma and Ba, 2015)
to optimize our model with a learning rate of 1e-4.
In all experiments, we set αp in Algorithm 1 as 0.1
based on the performance on the validation set.

6.3 Evaluation Metrics
Following previous studies (Prakash et al., 2016;
Fu et al., 2019; Li et al., 2019), we report results
on several automatic metrics, including BLEU (Pa-
pineni et al., 2002) and ROUGE (Lin, 2004). All
lower n-gram metrics (1-4 grams in BLEU and 1-2
grams in ROUGE) are reported. In addition, we
include iBLEU (i-B) (Sun and Zhou, 2012) as an-
other evaluation metric, which penalizes repeating
the source sentence in its paraphrase.

6.4 Main Results
Table 2 lists the results on both datasets. We
see that the transformer baseline already achieves
pretty strong results. This is because the capac-
ity of transformer model is large enough to fit the
datasets quite well. Nonetheless, in most of the
evaluation metrics, our model outperforms previ-
ous studies by a notable margin, demonstrating the
effectiveness of the proposed approach.

By comparing different variants of our model,
we see that IANet-ref achieves the best results on
all metrics. This is expected as it uses the reference
sentence in determining the primary and secondary
content. It is worth emphasising that the IANet+ref
model, like everything else, does not receive the
target sentence, it just gets inputs X and has their
primary and secondary content more accurately
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Quora
Models B-1 B-2 B-3 B-4 i-B R-1 R-2 R-L

Residual-LSTM (Prakash et al., 2016) 53.59 39.49 30.25 23.69 15.93 55.10 33.86 53.61
β-VAE, β = 10−4 (Higgins et al., 2017) 47.86 33.21 24.96 19.73 10.28 47.62 25.49 45.46

Transformer (Vaswani et al., 2017) 53.56 40.47 32.11 25.01 17.98 57.82 32.58 56.26
DNPG (Li et al., 2019) - - - 25.03 18.01 63.73 37.75 -

LBOW-Topk (Fu et al., 2019) 55.79 42.03 32.71 26.17 19.03 58.79 34.57 56.43
LBOW-Gumbel (Fu et al., 2019) 55.75 41.96 32.66 26.14 18.97 58.60 34.47 56.23

IANet+X 56.06 42.69 33.38 26.52 19.62 59.33 35.01 57.13
IANet+S 56.72 43.21 33.96 27.09 20.11 59.98 36.02 58.01

IANet+ref (upperbound) 58.32 44.81 35.46 28.71 21.76 61.89 38.86 59.43

MSCOCO
Models B-1 B-2 B-3 B-4 i-B R-1 R-2 R-L

Residual-LSTM (Prakash et al., 2016) 70.24 48.65 34.04 23.66 18.72 41.07 15.26 37.35
β-VAE, β = 10−4 (Higgins et al., 2017) 70.04 47.59 32.29 22.54 18.34 40.72 14.75 36.75

Transformer (Vaswani et al., 2017) 71.31 49.86 35.55 24.68 19.81 41.49 15.84 37.09
LBOW-Topk (Fu et al., 2019) 72.60 51.14 35.66 25.27 21.07 42.08 16.13 38.16

LBOW-Gumbel (Fu et al., 2019) 72.37 50.81 35.32 24.98 20.92 42.12 16.05 38.13
IANet+X 72.10 52.22 37.39 26.06 21.28 43.81 16.35 39.65
IANet+S 73.01 53.09 38.12 26.90 22.03 44.66 17.13 40.58

IANet+ref (upperbound) 75.29 55.09 41.01 29.65 24.72 46.36 19.13 42.23

Table 2: Evaluation results on the Quora and MSCOCO dataset. B for BLEU and R for ROUGE. Where possible
we copy results from DNPG (Li et al., 2019) as they did not release their code.

identified. This suggests that the deomposition of
our approach is beneficial, and further work can
be focused more on the identification step. On the
other hand, without using the target sentence, both
IANet+X and IANet+S must use an approximated
approach at the inference time, which inevitably in-
troduces noise in the identified content. As a result,
the performance is lower than IANet+ref. We will
provide more analysis in the analysis section.

6.5 Human Evaluation

We also conduct a human evaluation to assess our
model, using graders proficient in English from an
internal grading platform. We randomly select 150
examples from the Quora test set and compare our
model with three representative baselines4. Three
annotators are asked to rate the generated results
from different models on a 3-point Likert scale (0,
1, or 2) with respect to the following features5:

• Fluency: Whether the generated paraphrase is
grammatically correct and easily understood.

4Because the authors of DNPG (Li et al., 2019) did not release
their code, thus we are not able to reproduce their results and
are not able to include this model in the human evaluation.

5More details of the human evaluation guideline can be found
in the supplementary material.

Fluency Accuracy Diversity
Agreement 0.582 0.543 0.498

Residual-LSTM 1.57 1.41 1.29
Transformer 1.63 1.50 1.40
LBOW-Topk 1.61 1.49 1.43

IANet+S 1.71 1.57 1.61
Reference 1.85 1.78 1.68

Table 3: Human Evaluation Results

• Accuracy: Whether the content in the gener-
ated paraphrase is consistent with the content
in the original sentence.

• Diversity: Whether the generated sentence
structure differs from the reference sentence.

To measure the agreement between the annota-
tors, we use the Fleiss′ kappa coefficient (Fleiss
et al., 1971). The agreement results are shown in
the first row of Table 3, indicating moderate agree-
ment between annotators on all metrics.

From Table 3, we see that our model achieves
the best result on all metrics, which demonstrates
the effectiveness of the proposed approach. Espe-
cially, on the diversity metric, our model signifi-
cantly outperforms other baselines (Sign Test, with
p-value < 0.05) and performs comparably with the
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Rec.(%) Prec.(%) F1(%) B-4 R-L
PSI(X,X) 71.2 88.5 78.9 26.52 57.13
Tagger S 78.1 90.1 83.7 27.09 58.01

PSI(X,Y) 87.4 91.3 89.3 28.71 59.43

Table 4: Comparisons between the identification per-
formances of different algorithms on Quora dataset

Figure 4: Comparison of similarity distribution

reference sentence (p-value = 0.23). The improve-
ment in the diversity metric mainly comes from
the two-step nature of our generation framework.
By first determining which parts of the sentence
to keep (primary) or to change (secondary), our
model could then focus on maintaining the primary
content while rewriting the secondary content, re-
sulting in a more accurate and diverse paraphrase.

6.6 Further Analysis

In this section, we present further discussions and
empirical analysis of the proposed approach.

6.6.1 Inference Algorithms Comparison
As shown in Table 2, IANet-ref outperforms IANet-
X and IANet-S on both datasets. Our analysis is
that IANet-ref could more accurately identify the
primary content from the source comparing with
the other variants. To provide more analysis, we
separately use PSI(X,X), the sequence tagger S,
and PSI(X,Y) to identify the words that both ap-
pear in the source and target sentences in the Quora
dataset. The results are shown in Table 4. We see
that all three methods perform comparably on the
precision (prec.) metric. However, PSI(X,Y) sig-
nificantly outperforms other methods on the recall
(rec.) metric, showing that it can accurately extract
more primary content from the source. From Table
4, we also observe that better identification results
lead to better generation performances. Therefore,
to improve the model performance, future work
could be focused more on the identification step.

Metric B-2 B-4 R-2 R-L
Cosine 50.34 24.91 14.78 37.62

Spearman ρ̂ 53.09 26.90 17.13 40.58

Table 5: Result comparison between the cosine similar-
ity and the Spearman’s ρ̂ on the MSCOCO dataset.

Figure 5: Effect of αp on the model performance

6.6.2 Similarity Measurement Comparison
In this part, we analyze the differences between
different similarity measurements. As described
in Eq. (1) and Algorithm 1, the pairwise similar-
ity measurement F(X,Y) is the basis of the PSI
algorithm. To see how different similarity measure-
ments affect the system performance, we compare
the adopted Spearman’s ρ̂with the cosine similarity
which is commonly used for measuring text simi-
larity. We use both metrics to measure the training
pair similarity of the MSCOCO dataset and the re-
sults are shown in Figure 4. As it can be seen that
the distribution of cosine similarity is condensed
in a much smaller interval comparing with the one
from Spearman’s ρ̂, showing that the Spearman’s ρ̂
is more discriminative and can detect more subtle
differences between the sentence pairs. Therefore,
it can better identify the primary content, leading to
better model performance. For further analysis, we
run experiments on the MSCOCO dataset using co-
sine similarity as the measurement approach. The
results of IANet+S using both metrics are shown
in Table 5 which also demonstrate the fact that a
more discriminative measurement approach leads
to a better model performance.

6.6.3 Effect of αp in PSI
As described in Algorithm 1, the proposed PSI
algorithm relies on a predefined threshold αp to
perform the extraction of primary and secondary
content. In this part, we examine the effect of
different αp on the model performance. We vary
the value of αp and measure the results of IANet+S
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Input Sentence Reference Sentence
what are some of the best young adult fiction novels ? which are the best young adult novels / films ?

Input Sentence with Identified Components Generated Paraphrase
IANet+ref what are some of the best young adult fiction novels ? which are the best young adult novels ?
IANet+S what are some of the best young adult fiction novels ? which is a good young adult fiction novel you have read ?
IANet+X what are some of the best young adult fiction novels ? which are the best fiction novels ever written ?

Controlled Paraphrase Generation
what are some of the best young adult fiction novels ? which are some good adult fiction novels ?
what are some of the best young adult fiction novels ? which is the best fiction novel ?
what are some of the best young adult fiction novels ? which are some good novels of all time ?

Table 6: Paraphrase Generation Samples from Quora dataset: To compare different inference algorithms, we
present the results of different model variants for the sampled instance. To examine the generation controllability of
the proposed model, we generate sentences by manually decomposing the input sentence. Specifically, we choose
different parts of the input sentence as the primary content (highlighted in blue ) and the rest as the secondary
content. The results on the right side are the corresponding generated paraphrases.

model on the Quora dataset. The results of three
metrics (B-1, R-1, and R-L) are depicted in Figure
5. We see that the optimal value of αp is 0.1 and
by further decreasing or increasing αp, the model
performance drops. Our analysis is that, when
αp is too small, the words that only cause small
variation in the pairwise similarity (Eq. (1)) will
be misclassified as primary. Therefore, extra noise
might be introduced to the model input which in
turns decreases the model performance. On the
other hand, when αp is too large, some important
words that should be classified as primary content
might be excluded by the PSI algorithm, which
also leads to the decrease of model performance.

6.6.4 Case Study
As described in section §6.6.1, the reason why
IANet+ref outperforms IANet+X and IANet+S is
that it can more accurately identify the primary con-
tent in order to generate a paraphrase that is similar
to the reference sentence. On the other hand, both
IANet+X and IANet+S adopt an approximated al-
gorithm which would inevitably introduce extra
noise in the identified content.

For a better illustration, we sample one test case
from Quora dataset and present the results gener-
ated by our different model variants in Table 6. We
can see that, given the input sentence, all model
variants can generate a sentence that is similar to
the reference paraphrase. By further comparing
the primary content (words in blue ), we can see
that only the IANet+ref successfully identifies all
the primary content that are also contained in the
reference sentence. On the other hand, IANet+S
misses the word best and IANet+X ignores the
words young and adult. As a result, IANet+ref

can generate paraphrase that is closer to the refer-
ence sentence, leading to higher performances in
different evaluation metrics as shown in Table 2.

6.6.5 Controllable Paraphrase Generation
Since the identification of the primary and sec-
ondary content of the input are separated from the
neural generator, we therefore have the flexibility
to manually choose these content. In this way, we
can more precisely control the generation process.

To examine the controllability of the proposed
approach, we manually select the primary and sec-
ondary content of the sampled instance and use the
IANet+S model to generate paraphrases accord-
ingly. The results based on different selections are
presented in Table 6. As demonstrated by the ex-
amples, our model is flexible to generate different
paraphrases given different combinations of the pri-
mary and secondary content. We can observe in
the generated paraphrases that the selected primary
content is largely maintained while the secondary
content is properly rephrased.

This controllable attribute could make our model
useful for other tasks such as task-oriented dialogue
generation. Suppose we want to generate more ut-
terances with the same meaning of the user utter-
ance “book a great restaurant in London tonight”.
The slot values can be fixed as the primary content
and our model could produce more utterances with
the same intent, e.g. “make a reservation at the best
London restaurant for this evening”. This remains
to be rigorously tested in future work.

7 Conclusion

In this work, we propose a novel IA framework to
tackle the paraphrase generation task. Addition-
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ally, we design a new neural paraphrase generator
which works coherently under the proposed frame-
work. We conduct extensive experiments on two
benchmark datasets. The results of quantitative ex-
periments and human evaluation demonstrate that
our approach improves upon previous studies. The
qualitative experiments show that the generation
of the proposed model is interpretable and control-
lable. In the future, we would like to investigate a
better inference algorithm to further bridge the gap
between the IANet+S and IANet+ref models.
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