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Abstract

In this paper, we propose a novel edge-editing
approach to extract relation information from
a document. We treat the relations in a doc-
ument as a relation graph among entities in
this approach. The relation graph is itera-
tively constructed by editing edges of an initial
graph, which might be a graph extracted by an-
other system or an empty graph. The way to
edit edges is to classify them in a close-first
manner using the document and temporally-
constructed graph information; each edge is
represented with a document context informa-
tion by a pretrained transformer model and a
graph context information by a graph convolu-
tional neural network model. We evaluate our
approach on the task to extract material syn-
thesis procedures from materials science texts.
The experimental results show the effective-
ness of our approach in editing the graphs ini-
tialized by our in-house rule-based system and
empty graphs.1

1 Introduction

Relation extraction (RE), the task to predict re-
lations between pairs of given entities from lit-
erature, is an important task in natural language
processing. While most existing work focused
on sentence-level RE (Zeng et al., 2014), recent
studies extended the extraction to the document
level since many relations are expressed across
sentences (Christopoulou et al., 2019; Nan et al.,
2020).

In document-level RE, models need to deal with
relations among multiple entities over a document.
Several document-level RE methods construct a
document-level graph, which is built on nodes of
words or other linguistic units, to capture document-
level interactions between entities (Christopoulou

1The source code is available at https://github.
com/tti-coin/edge-editing.
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A series of polycrystalline samples of
SrMo1-xNixO4(0.02<=x<=0.08) were
prepared through the conventional solid-
state reaction method in air. Appropriate
proportions of high-purity SrCO3,
MoO3, and Ni powders were thoroughly
mixed according to the desired
stoichiometry, and then prefired at 900
[?]C for 24 h. The obtained powders
were ground, pelletized, and calcined at
1000, 1100 and 1200 [?]C for 24 h with
intermediate grinding twice. White
compounds, SrMo1-xNixO4, were
obtained. The compounds were ground
and pressed into small pellets about 10
mm diameter and 2 mm thickness.
These pellets were reduced in a H2/Ar
(5%: 95%) flow at 920 [?]C for 12 h,
and then the deep red colored products
of SrMo1-xNixO3 were obtained.
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Figure 1: Overview of edge editing approach

et al., 2019; Nan et al., 2020). However, such meth-
ods do not directly consider interactions among
relations in a document, while such relations are of-
ten dependent on each other, and other relations can
be considered as important contexts for a relation.

We propose a novel, iterative, edge-editing ap-
proach to document-level RE. The overview of our
approach and an example of the extraction results
are illustrated in Figure 1. Our approach treats rela-
tions as a relation graph that is composed of entities
as nodes and their relations as edges. The relation
graph is first initialized using the edges predicted
by an existing RE model if provided. Edges are
then edited by a neural edge classifier that repre-
sents edges using the document information, pre-
built graph information, and the current edge in-
formation. The document information is repre-
sented with pretrained Longformer models (Belt-
agy et al., 2020), while the graph information is rep-
resented with graph convolutional networks (Kipf
and Welling, 2017). Edges are edited iteratively in
a close-first manner so that the approach can utilize
the information of edges between close entity pairs

https://github.com/tti-coin/edge-editing
https://github.com/tti-coin/edge-editing
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in editing edges of distant entity pairs, which are
often difficult to predict. We evaluate our approach
on the task to extract synthesis procedures from
text (Mysore et al., 2019) and show the effective-
ness of our approach.

The contribution of this paper is three-fold. First,
we propose a novel edge-editing approach for
document-level RE that utilizes contexts in both
relation graphs and documents. Second, we build
a strong rule-based model and show that our ap-
proach can effectively utilize and enhance the out-
put of the rule-based model. Third, we build and
evaluate a neural model for extracting synthesis
procedures from text for the first time.

2 Approach

Our approach extracts a relation graph on given en-
tities from a document. We formulate the extraction
task as an edge-editing task, where the approach
iteratively edits edges with a neural edge classifier
in a close-first manner (Miwa and Sasaki, 2014).

2.1 Iterative Edge Editing

We build a relation graph by editing the edges it-
eratively using the edge classifier in Section 2.2.
The building finishes when all edges are edited.
The edges are edited in a close-first manner (Miwa
and Sasaki, 2014; Ma et al., 2019) that edits the
close edges first and far edges later. The distance
between the entity pair is defined based on the
appearing order of entities in a document; if two
entities in a pair appear m-th and m + 3-th, the
distance becomes 3. Note that each edge is edited
only once throughout the entire editing process.

Algorithm 1 shows the method to build the graph
by the iterative edge editing. To reduce the compu-
tational cost, the pairs with the same distance are
edited simultaneously and the pairs with distances
more than or equal to the maximum distance dmax

are edited simultaneously. This reduces the number
of edits from |N |2 to dmax.

2.2 Edge Classifier

An edge classifier predicts the class of the target
edge Êij from inputs that are composed of a doc-
ument information doc, a graph of nodes N and
edges E , and the node pair (Ni,Nj) of a target
edge. The classifier composed of three modules:
EncodeNode that produces document-based node
representations N̄ using the document doc and the
entity information of the nodes N .

Algorithm 1: Iterative Edge Editing
Distance(N , d1, d2) returns pairs that have
distance d (d1 ≤ d < d2).

Input: doc: document, E : initial edges
dmax: maximum distance

Output: E : edited edges
N̄ ⇐ EncodeNode(doc,N )
while d in range(max(|N |, dmax)) do
N̄G ⇐ GCN(N̄ , E)
Ē ⇐ EncodeEdge(N̄G, E)
if d = dmax then
P ⇐ Distance(N , dmax,∞)

else
P ⇐ Distance(N , d, d + 1)

end if
while (i, j) in P do
Eij ⇐ ClassifyEdge(Ēij)

end while
end while

EncodeEdge that obtains the representation of
edges Ē that applies GCN on a prebuilt graph with
the node representations N̄ and edges E .
ClassifyEdge that predicts the class of the edge Êij
using the edge representation Ēij between the node
pair (Ni,Nj).
We explain the details of these modules in the re-
maining part of this section.

EncodeNode employs Longformer (Beltagy
et al., 2020) to obtain the document-level repre-
sentation. It aggregates subword representations
within each entity by max-pooling Pool and con-
catenates the aggregated information with the en-
tity’s class label representation vlab.

N̄ = EncodeNode(doc,N )

= [Pool(Longformer(doc));vlab], (1)

where [·; ·] denotes concatenation.
To prepare the input to EncodeEdge, the ob-

tained document-based node representation is en-
riched by GCN to introduce the context of each
node in the prebuilt graph: N̄G = GCN(N̄ , E).
We add inverse directions to the graph and assign
different weights to different classes in graph con-
volutional network (GCN) following Schlichtkrull
et al. (2018). The produced node representation
N̄G includes both document and prebuilt graph
contexts.

EncodeEdge produces the edge representation
Ē from N̄G. It individually calculates the repre-
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sentation of the edge Ēij for each pair of nodes
(Ni,Nj) by combining the representations of nodes
similarly to Zhou et al. (2021) with the embedding
of the distance of the entity pair bij and the edge
class eoldij before editing. The distance between
the entity pairs is calculated in the same way as in
Section 2.1. If the distance exceeds a predefined
maximum distance, it will be treated as the max-
imum distance. We prepare fully connected (FC)
layers, FCH and FCT , for the start point (head)
and end point (tail) nodes and calculate the edge
representation as follows:

Ēij = EncodeEdge(N̄G, E)ij

= [FCH(N̄G
i )>WFCT (N̄G

j ); bij ; e
old
ij ],(2)

where W denotes a trainable weight parameter.
ClassifyEdge classifies the target edge Eij into

a relation class or no relation. It applies a dropout
layer (Srivastava et al., 2014), a FC layer for output
FCout and softmax to the edge representation Ēij
to predict the class Êij with the highest probability.

Êij = ClassifyEdge(Ēij) = arg max p̂ij

p̂ij = Softmax(FCout(Dropout(Ēij))) (3)

We maximize the log-likelihood in training the
edge classifier.

3 Experiments

3.1 Experimental Settings
We evaluate our approach on the materials science
procedural text corpus (Mysore et al., 2019). In
the corpus, the synthesis procedures are annotated
as a graph in a document, where 19 node types
such as materials, operations, and conditions and
15 directed relation types are defined. The corpus
consists of 200 documents for training, 15 for devel-
opment, and 15 for test. The statistics of the corpus
are shown in Appendix A. We chose this corpus
since this corpus is publicly available, manually an-
notated, and it deals with a dense document-level
relation graph.

We prepared a rule-based model (RULE) as a
baseline and as an existing model to initialize the
edges, which was adapted from the rule-based sys-
tem in Kuniyoshi et al. (2020). The rules are sum-
marized in Appendix B.

We employ the micro F-score for each rela-
tion class as the evaluation metric. We tune the
hyper-parameters such as the number and dimen-
sions of layers and dropout rate on the develop-
ment set using the hyper-parameter optimization

Dev Test
EDIT 0.788 0.729
EDIT-IE 0.732 0.685
EDIT-GCN 0.744 0.703
RANDOM EDIT 0.751 0.690
RANDOM INIT 0.756 0.720

Table 1: Evaluation results in micro F-score without
RULE

framework Optuna (Akiba et al., 2019) and the
details are shown in Appendix C. We employ the
Adam (Kingma and Ba, 2015) optimizer with the
default parameters in PyTorch (Paszke et al., 2019)
except for the learning rate. The training was per-
formed without finetuning for the Longformer be-
cause the corpus is small to train a large transformer
model.

We compare the following models on graphs
initialized by the rule-based model (with RULE)
and empty graphs (without RULE).
EDIT: Proposed model
EDIT-IE: EDIT without iterative edge editing, i.e.,
dmax = 1.
EDIT-GCN: EDIT without GCN by replacing N̄G

with N̄ in Equation (2)
RANDOM EDIT: EDIT with random-order editing
Additionally, we evaluate the following model with
randomly initialized graphs.
RANDOM INIT: EDIT with randomly connected
edges, the number of which is same as that of the
extraction results of RULE, with random classes

Note that although we did not provide the direct
comparison with the existing models, our EDIT-
GCN without RULE is similar to BRAN (Verga
et al., 2018); the only differences are that we use
Longformer (Beltagy et al., 2020) instead of trans-
formers, and NER training is not included. More-
over, most of the models for the document-level
RE require dataset annotating both entities and
their mentions, so the existing models like AT-
LOP (Zhou et al., 2021) cannot be directly applied
to the current task.

3.2 Results without RULE

We show the results with empty initial graphs in
Table 1. EDIT shows the highest scores and this
indicates the effectiveness of our approach when
the initial graphs are empty. When we compare
EDIT, EDIT-IE, and RANDOM EDIT, we find that
both iterative edge editing and close-first strategy
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Dev Test
RULE 0.797 0.807
EDIT 0.878 0.851
EDIT-IE 0.863 0.863
EDIT-GCN 0.857 0.834
RANDOM EDIT 0.791 0.744

Table 2: Evaluation results in micro F-score with RULE

are effective. Since EDIT-GCN extracts from con-
text without graph structure information, the better
performance of EDIT over EDIT-GCN shows the
effectiveness of the information in the graph struc-
ture. The low performance with RANDOM INIT

shows that the edge information needs to be reli-
able.

3.3 Results with RULE

We summarize the results with RULE in Table 2.
We show the detailed results for EDIT without
RULE, RULE, and EDIT-IE with RULE in Ap-
pendix D.

When we compare the results with Table 1, the
performance with RULE is better than the counter-
part without RULE for all the settings. Furthermore,
all the scores in Table 2 are better than those in Ta-
ble 1, which shows the strength of RULE.

Surprisingly, the results with our approach are
better than that of RULE even though RULE is bet-
ter than our approach without RULE. This indicates
our EDIT approach can make the prediction accu-
rate. We can conclude that our EDIT approach can
utilize the information from the rule-based model
and the initialization of the edges by RULE is use-
ful.

As for the performance of the models, most re-
sults are consistent with Table 1 except that EDIT-
IE shows the highest score on the test set. This may
be partly because the initial graph by RULE is al-
ready reliable and editing does not help to improve
the context. Results with RANDOM EDIT support
this since the performance degradation with RAN-
DOM EDIT is large compared to Table 1 and RAN-
DOM EDIT is harmful in this case. Moreover, the
different behaviors on the development and test
sets indicate an imbalance in the corpus split.

4 Case Study

We illustrated 6 graphs for an example docu-
ment (Zhang et al., 2007) in the development data
set shown in Figure 2: the result on the right side

of Figure 1 shows our best extraction result using
EDIT-IE with RULE; Figure 3 shows the correct ex-
traction; Figure 4 shows the extraction result using
EDIT without RULE; Figure 5 shows the extrac-
tion result using RULE; and Figure 6 shows the
extraction result using EDIT with RULE. Figure 3
shows the material synthesis starts from mixed with
materials SrCO3, MoO3 and Ni to prefired and so
on, and the material SrMo1-xNixO4 is synthesized.
When we compare Figure 6 with Figure 5, the ex-
traction results are similar to RULE. Although the
overall performance is low, Figure 4, which does
not depend on the rule, extracts relations that are
not extracted by the other systems and this shows
the models with RULE and without RULE capture
different relations.

5 Related Work

RE has been widely studied to identify the relation
between two entities in a sentence. In addition to
traditional feature/kernel-based methods (Zelenko
et al., 2003; Miwa and Sasaki, 2014), many neural
RE methods have been proposed based on convolu-
tional neural networks (CNNs) (Zeng et al., 2014),
recurrent neural networks (RNNs) (Xu et al., 2015;
Miwa and Bansal, 2016), graph convolutional net-
works (GCNs) (Zhang et al., 2018; Schlichtkrull
et al., 2018), and transformers (Wang et al., 2019).
However, sentence-level RE is not enough to cover
the relations in a document, and document-level
RE has increasingly received research attention in
recent years.

Major approaches for document-level RE are
graph-based methods and transformer-based meth-
ods. For graph-based methods, Quirk and Poon
(2017) first proposed a document graph for
document-level RE. Christopoulou et al. (2019)
constructed a graph that included heterogeneous
nodes such as entity mentions, entities, and sen-
tences and represented edges between entities from
the graph. Nan et al. (2020) proposed the automatic
induction of a latent graph for relational reasoning
across sentences. The document graphs in these
methods are defined on nodes of linguistic units
such as words and sentences, which are different
from our relation graphs. Unlike our method, these
methods do not directly deal with relation graphs
among entities.

For transformer-based methods, Verga et al.
(2018) introduced a method to encode a document
with transformers to obtain entity embedding and
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A series of polycrystalline samples of SrMo1-xNixO4 (0.02<=x<=0.08) were prepared through the conventional solid-state
reaction method in air. Appropriate proportions of high-purity SrCO3, MoO3, and Ni powders were thoroughly mixed
according to the desired stoichiometry, and then prefired at 900 [?]C for 24 h. The obtained powders were ground, pelletized,
and calcined at 1000, 1100 and 1200 [?]C for 24 h with intermediate grinding twice. White compounds, SrMo1-xNixO4,
were obtained. The compounds were ground and pressed into small pellets about 10 mm diameter and 2 mm thickness.
These pellets were reduced in a H2/Ar (5%: 95%) flow at 920 [?]C for 12 h, and then the deep red colored products of
SrMo1-xNixO3 were obtained.

Figure 2: Example document
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Figure 3: Gold graph
for the document in Fig-
ure 2
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Figure 4: Example ex-
traction results from the
document in Figure 2 by
EDIT without RULE
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Figure 5: Example ex-
traction results from the
document in Figure 2 by
RULE
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Figure 6: Example ex-
traction results from the
document in Figure 2 by
our EDIT with RULE

classify the relations between entities using the
embedding. Tang et al. (2020) proposed a Hier-
archical Inference Network (HIN) for document-
level RE, which aggregates information from entity
level to document level. Zhou et al. (2021) tackled
document-level RE with an Adaptive Thresholding
and Localized cOntext Pooling (ATLOP) model
that introduces a learnable entity-dependent thresh-
old for classification and aggregated local mention-
level contexts that are relevant to both entities.

Several studies focus on procedural texts such as
cooking recipes (Bosselut et al., 2018), scientific
processes (Dalvi et al., 2018) and open domain
procedures (Tandon et al., 2020). They, however,
do not directly treat relation graphs. Several efforts
have been made to annotate procedural or action
graphs in procedural text (Mori et al., 2014; Mysore
et al., 2019; Kuniyoshi et al., 2020). Kuniyoshi
et al. (2020) and Mehr et al. (2020) individually
proposed rule-based systems to extract procedures
from a document, but no neural methods have been

proposed for the extraction.

6 Conclusions

We proposed a novel edge editing approach for
document-level relation extraction. This approach
treats the task as the edge editing of relation graphs,
given nodes. It edits edges considering contexts in
the document and the relation graph. We evaluated
the approach on the material synthesis procedure
corpus, and the results showed the usefulness of
initializing edges by the rule-based model, utilizing
prebuilt graph information for editing and editing
in a close-first manner. As a result, our model
performed an F-score of 86.3% for edge prediction.

In future work, we plan to improve the approach
to obtain more consistent and accurate relation
graphs. We also would like to apply the approach
to other data sets such as cooking recipes (Mori
et al., 2014) and temporal graphs (Pustejovsky
et al., 2003; Cassidy et al., 2014).
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A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc.

James Pustejovsky, Patrick Hanks, Roser Sauri, An-
drew See, Robert Gaizauskas, Andrea Setzer,
Dragomir Radev, Beth Sundheim, David Day, Lisa
Ferro, et al. 2003. The TimeBank corpus. In Pro-
ceedings of Corpus Linguistics, pages 647–656, Lan-
caster, UK.

Chris Quirk and Hoifung Poon. 2017. Distant super-
vision for relation extraction beyond the sentence
boundary. In Proceedings of the 15th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Volume 1, Long Papers, pages
1171–1182, Valencia, Spain. Association for Com-
putational Linguistics.

Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem,
Rianne van den Berg, Ivan Titov, and Max Welling.
2018. Modeling relational data with graph convolu-
tional networks. In The Semantic Web, pages 593–
607, Cham. Springer International Publishing.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Niket Tandon, Keisuke Sakaguchi, Bhavana Dalvi,
Dheeraj Rajagopal, Peter Clark, Michal Guerquin,
Kyle Richardson, and Eduard Hovy. 2020. A dataset
for tracking entities in open domain procedural text.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6408–6417, Online. Association for Computa-
tional Linguistics.

Hengzhu Tang, Yanan Cao, Zhenyu Zhang, Jiangxia
Cao, Fang Fang, Shi Wang, and Pengfei Yin. 2020.
HIN: Hierarchical inference network for document-
level relation extraction. In Advances in Knowledge
Discovery and Data Mining, pages 197–209, Cham.
Springer International Publishing.

Patrick Verga, Emma Strubell, and Andrew McCallum.
2018. Simultaneously self-attending to all mentions
for full-abstract biological relation extraction. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, Volume 1 (Long Papers), pages 872–884, New
Orleans, Louisiana. Association for Computational
Linguistics.

Haoyu Wang, Ming Tan, Mo Yu, Shiyu Chang, Dakuo
Wang, Kun Xu, Xiaoxiao Guo, and Saloni Potdar.
2019. Extracting multiple-relations in one-pass with
pre-trained transformers. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 1371–1377, Florence, Italy.
Association for Computational Linguistics.

Yan Xu, Lili Mou, Ge Li, Yunchuan Chen, Hao Peng,
and Zhi Jin. 2015. Classifying relations via long
short term memory networks along shortest depen-
dency paths. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Process-
ing, pages 1785–1794, Lisbon, Portugal. Associa-
tion for Computational Linguistics.

Dmitry Zelenko, Chinatsu Aone, and Anthony
Richardella. 2003. Kernel methods for relation ex-
traction. Journal of machine learning research,
3(Feb):1083–1106.

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou,
and Jun Zhao. 2014. Relation classification via con-
volutional deep neural network. In Proceedings of
COLING 2014, the 25th International Conference
on Computational Linguistics: Technical Papers,
pages 2335–2344, Dublin, Ireland. Dublin City Uni-
versity and Association for Computational Linguis-
tics.

S.B. Zhang, Y.P. Sun, B.C. Zhao, X.B. Zhu, and
W.H. Song. 2007. Influence of Ni doping on
the properties of perovskite molybdates srmo1-
xnixo3 (0.02≤x≤0.08). Solid State Communica-
tions, 142(12):671 – 675.

Yuhao Zhang, Peng Qi, and Christopher D. Manning.
2018. Graph convolution over pruned dependency
trees improves relation extraction. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2205–2215, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Wenxuan Zhou, Kevin Huang, Tengyu Ma, and Jing
Huang. 2021. Document-level relation extraction
with adaptive thresholding and localized context
pooling. In Proceedings of the AAAI Conference on
Artificial Intelligence.

A Statistics of the Materials Science
Procedural Text Corpus

We present the statistics of the materials science
procedural text corpus2 proposed by Mysore et al.
(2019). Table 3 and Table 4 summarize the num-
bers of entities and relations, respectively.

2https://github.com/olivettigroup/
annotated-materials-syntheses

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://www.aclweb.org/anthology/E17-1110
https://www.aclweb.org/anthology/E17-1110
https://www.aclweb.org/anthology/E17-1110
https://doi.org/10.18653/v1/2020.emnlp-main.520
https://doi.org/10.18653/v1/2020.emnlp-main.520
https://doi.org/10.18653/v1/N18-1080
https://doi.org/10.18653/v1/N18-1080
https://doi.org/10.18653/v1/P19-1132
https://doi.org/10.18653/v1/P19-1132
https://doi.org/10.18653/v1/D15-1206
https://doi.org/10.18653/v1/D15-1206
https://doi.org/10.18653/v1/D15-1206
https://www.aclweb.org/anthology/C14-1220
https://www.aclweb.org/anthology/C14-1220
https://doi.org/https://doi.org/10.1016/j.ssc.2007.04.044
https://doi.org/https://doi.org/10.1016/j.ssc.2007.04.044
https://doi.org/https://doi.org/10.1016/j.ssc.2007.04.044
https://doi.org/10.18653/v1/D18-1244
https://doi.org/10.18653/v1/D18-1244
https://github.com/olivettigroup/annotated-materials-syntheses
https://github.com/olivettigroup/annotated-materials-syntheses


2660

B Rule-based Relation Extraction Model

We built a rule-based model by defining the rules to
extract relations between entity pairs for the mate-
rials science procedural text corpus (Mysore et al.,
2019). The rules were adapted from the rule-based
model in (Kuniyoshi et al., 2020) for the target
corpus. The rules depend on labels of the enti-
ties of an entity pair, distance, and the order of
occurrence of the entities. According to the combi-
nation of labels of the entities, our rules are divided
into three types: OPERATION–OPERATION, OP-
ERATION–MATERIAL and other relations. In the
following, the starting point of a relation is called
head and the ending point is called tail, and an edge
is denoted as HEAD–TAIL.

B.1 OPERATION–OPERATION

The relation OPERATION–OPERATION takes only
a NEXT OPERATION label, which means the
progress of operation.

NEXT OPERATION: Close OPERATION entities
are linked with the relation from the beginning to
the end in the document order, in which the entities
of OPERATION appear.

B.2 OPERATION–MATERIAL

For the edges of OPERATION–MATERIAL, there
are five relation labels: RECIPE PRECURSOR in-
dicates the input of a material; RECIPE TARGET

indicates the generation of a product; PARTICI-
PANT MATERIAL indicates the generation of an
intermediate product; SOLVENT MATERIAL indi-
cates the solvent material of an operation; and AT-
MOSPHERIC MATERIAL indicates the atmosphere
of an operation.

For SOLVENT MATERIAL, ATMO-
SPHERIC MATERIAL and PARTICI-
PANT MATERIAL labels, a dictionary is prepared
manually for each label. The relations are linked
from the nearest OPERATION to a MATERIAL

in the sentence if the MATERIAL match in the
dictionary since these relations take specific
MATERIAL entities. The dictionary is included in
the source code.

RECIPE PRECURSOR is linked from all MATE-
RIAL that do not match the dictionary of SOL-
VENT MATERIAL, ATMOSPHERIC MATERIAL,
and PARTICIPANT MATERIAL to the nearest OP-
ERATION. This rule-based model does not produce
the relation RECIPE TARGET. The reason for these

Entity class Train Dev Test
MATERIAL 4,271 277 316
OPERATION 3,249 212 242
NUMBER 2,872 224 219
CONDITION-UNIT 1,363 101 87
MATERIAL-DESCRIPTOR 1,214 67 89
AMOUNT-UNIT 1,193 96 98
PROPERTY-MISC 481 25 16
CONDITION-MISC 468 32 20
SYNTHESIS-APPARATUS 433 20 34
NONRECIPE-MATERIAL 329 33 25
BRAND 291 30 27
APPARATUS-DESCRIPTOR 165 10 9
AMOUNT-MISC 149 14 7
META 128 12 13
PROPERTY-TYPE 124 10 4
CONDITION-TYPE 119 2 1
REFERENCE 106 10 11
PROPERTY-UNIT 92 7 8
APPARATUS-UNIT 89 6 16
CHARACTER.-APPARATUS 54 2 11
APPARATUS-PROPERTY-TYPE 26 0 6

Table 3: Entities in the materials science procedural
text corpus

Relation class train dev test
NEXT OPERATION 2,898 184 202
RECIPE PRECURSOR 876 67 89
RECIPE TARGET 363 31 22
PARTICIPANT MATERIAL 1,723 113 124
SOLVENT MATERIAL 463 28 33
ATMOSPHERIC MATERIAL 183 11 14
PROPERTY OF 586 35 21
CONDITION OF 1,810 132 107
NUMBER OF 2,805 219 209
AMOUNT OF 1,512 130 121
DESCRIPTOR OF 1,495 91 102
BRAND OF 423 42 41
TYPE OF 164 7 13
APPARATUS OF 455 20 36
APPARATUS ATTR OF 90 6 11
COREF OF 267 12 14

Table 4: Relations in the materials science procedural
text corpus

decisions is that it is difficult to classify these rela-
tions with simple rules.

B.3 Remaining Relations

The remaining 9 relation labels are defined be-
tween the other pairs of entity labels: PROP-
ERTY OF, which indicates a condition of a ma-
terial; CONDITION OF, which indicates a condi-
tion of an operation; NUMBER OF, which indi-
cates the relationship between a number and a unit;
AMOUNT OF, which indicates a condition of a
quantity; TYPE OF, which indicates a condition
of a numerical condition; BRAND OF, which indi-
cates the brand of a material or equipment; APPA-
RATUS OF, which indicates equipment used in an
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operation; APPARATUS ATTR OF, which indicates
a numerical condition of on equipment; and DE-
SCRIPTOR OF, which indicates other conditions.
For these labels, the rules are defined based only on
the labels of head and tail entities and the distance
between them. We explain the detailed rules in the
remainder of this section.

PROPERTY OF: The relation can take
PROPERTY-UNIT or PROPERTY-MISC as the head
and MATERIAL or NONRECIPE-MATERIAL as the
tail. When PROPERTY-UNIT is a head, it is linked
with the nearest MATERIAL in the sentence. When
PROPERTY-MISC is a head, it is linked to the
nearest MATERIAL or NONRECIPE-MATERIAL in
the sentence.

CONDITION OF: CONDITION-UNIT and
CONDITION-MISC are linked to the nearest
OPERATION with the relation in the sentence.

NUMBER OF: NUMBER is linked to the
nearest PROPERTY-UNIT, CONDITION-UNIT, or
APPARATUS-UNIT that appear after the NUMBER

in the sentence.
AMOUNT OF: The relation is linked from

AMOUNT-UNIT and AMOUNT-UNIT to the near-
est MATERIAL or NONRECIPE-MATERIAL in the
sentence.

DESCRIPTOR OF: When MATERIAL-
DESCRIPTOR is a head, it is linked to the
nearest MATERIAL or NONRECIPE-MATERIAL in
the sentence. When APPARATUS-DESCRIPTOR

is a head, it is linked to the nearest SYNTHESIS-
APPARATUS in the sentence.

APPARATUS OF: The relation is
linked from SYNTHESIS-APPARATUS and
CHARACTERIZATION-APPARATUS to the nearest
OPERATION with the priority given to the OPER-
ATION that appear before the APPARATUS in the
sentence.

TYPE OF: PROPERTY-TYPE and APPARATUS-
PROPERTY-TYPE are linked to the nearest
PROPERTY-UNIT and APPARATUS-UNIT in the
sentence with the relation, respectively. When
CONDITION-TYPE is a head, it is linked to the
nearest CONDITION-UNIT that appears before the
CONDITION-TYPE in the sentence.

BRAND OF: The relation is linked from
BRAND to the nearest entities that may
have brands (i.e., MATERIAL, NONRECIPE-
MATERIAL, SYNTHESIS-APPARATUS, and
CHARACTERIZATION-APPARATUS) in the
sentence.

Parameter Range Value
Learning rate [1e-5, 1e-2) 0.001
No. of GCN layers [0, 4] 3
dmax [1, 10] 4
Dimension of hidden layers [32, 128] 85
No. of FCout layers [1, 5] 4
No. of FCh and FCt layers [1, 5] 1
Dropout rate [0.0, 1.0) 0.46
Dimension of eold

ij [1, 32] 3
Maximum distance for bij [1, 32] 3
Dimension of bij [1, 100] 1
Use bidirectional GCN True or False True

Table 5: Search space for optimization of hyper-
parameters and the selected values after optimization

Relation Prec. Recall F-score
NEXT OPERATION 0.622 0.693 0.656
RECIPE PRECURSOR 0.632 0.539 0.582
RECIPE TARGET 0.640 0.727 0.681
PARTICIPANT MATERIAL 0.641 0.476 0.546
SOLVENT MATERIAL 0.491 0.818 0.614
ATMOSPHERIC MATERIAL 0.733 0.786 0.759
PROPERTY OF 0.773 0.810 0.791
CONDITION OF 0.798 0.850 0.824
NUMBER OF 0.874 0.962 0.916
AMOUNT OF 0.722 0.645 0.681
DESCRIPTOR OF 0.761 0.814 0.787
BRAND OF 0.567 0.415 0.479
TYPE OF 0.900 0.692 0.783
APPARATUS OF 0.657 0.639 0.648
APPARATUS ATTR OF 0.769 0.909 0.833
COREF OF 0.875 0.500 0.636
Overall 0.717 0.722 0.720

Table 6: Detailed results using EDIT without RULE on
the test set

APPARATUS ATTR OF: APPARATUS-UNIT is
linked to the nearest SYNTHESIS-APPARATUS or
CHARACTERIZATION-APPARATUS.

COREF OF: The relation is not detected by the
rules because it is difficult to describe rules.

C Tuning Details

We tuned our model using a hyper-parameter opti-
mization framework Optuna (Akiba et al., 2019).
We searched for the hyper-parameters that maxi-
mize micro-F scores within 600 trials on the de-
velopment set. We employed the tree-structured
Parzen estimator algorithm (Bergstra et al., 2011)
for the sampler and the successive halving algo-
rithm (Li et al., 2020) for the pruner with default
options in Optuna. In each trial of the search, we
trained our model for 100 epochs, which was con-
firmed by preliminary experiments to be sufficient
for convergence. We searched hyper-parameters
on 20 NVIDIA GPUs, which include Tesla V100,
TITAN V, RTX 3090, and GTX TITAN Xp GPUs.
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Relation Prec. Recall F-score
NEXT OPERATION 0.990 0.881 0.932
RECIPE PRECURSOR 0.730 0.414 0.528
RECIPE TARGET 0.000 0.000 0.000
PARTICIPANT MATERIAL 0.419 0.800 0.550
SOLVENT MATERIAL 0.697 0.418 0.522
ATMOSPHERIC MATERIAL 1.000 0.378 0.549
PROPERTY OF 0.905 1.000 0.950
CONDITION OF 0.963 0.981 0.972
NUMBER OF 0.943 0.961 0.952
AMOUNT OF 0.744 0.865 0.800
DESCRIPTOR OF 0.931 0.979 0.955
BRAND OF 0.561 0.920 0.697
TYPE OF 0.769 1.000 0.870
APPARATUS OF 0.972 0.854 0.909
APPARATUS ATTR OF 0.909 0.769 0.833
COREF OF 0.000 0.000 0.000
Overall 0.807 0.808 0.807

Table 7: Detailed results with RULE on the test set

Relation Prec. Recall F-score
NEXT OPERATION 0.905 0.990 0.946
RECIPE PRECURSOR 0.810 0.573 0.671
RECIPE TARGET 0.560 0.636 0.596
SOLVENT MATERIAL 0.733 0.667 0.698
PARTICIPANT MATERIAL 0.624 0.790 0.698
ATMOSPHERIC MATERIAL 0.778 1.000 0.875
PROPERTY OF 0.905 0.905 0.905
CONDITION OF 0.953 0.944 0.948
NUMBER OF 0.958 0.990 0.974
AMOUNT OF 0.854 0.868 0.861
DESCRIPTOR OF 0.941 0.931 0.936
BRAND OF 0.880 0.537 0.667
TYPE OF 1.000 0.692 0.818
APPARATUS OF 0.833 0.972 0.897
APPARATUS ATTR OF 0.769 0.909 0.833
COREF OF 0.750 0.429 0.545
Overall 0.856 0.870 0.863

Table 8: Detailed results using EDIT-IE with RULE on
the test set

We defined the search space as shown in Table 5;
the hyper-parameters for the search are composed
of the learning rate for Adam, the number of GCN
layers, the maximum edit distance dmax, the dimen-
sions of all hidden layers, the number of FCout

layers, the number of FCh and FCt layers, the
dropout rate, the dimension of eoldij , the maximum
distance and the dimension for bij and whether to
use bidirectional GCNs or uni-directional GCNs.
In the table, the range column shows the range of
values to search and the final value column shows
the rounded selected values after the optimization.

D Detailed Evaluation Results

Our editing models for evaluation are trained with
a TITAN V GPU for EDIT with RULE and a Tesla
V100 GPU for the others. The training takes about
6 hours 30 minutes with EDIT-IE using RULE and

21 hours with EDIT not using RULE.
We show the detailed evaluation results with pre-

cision (Prec.), recall, and F-score on the test set in
Table 6 for EDIT without RULE, Table 7 for RULE,
and Table 8 for EDIT-IE without RULE. The results
show the relations that are not covered by RULE,
i.e., RECIPE TARGET and COREF OF, are ex-
tracted by our approach, and for these classes, EDIT

without RULE show the better performance than the
models with RULE. Some relations with high per-
formance by RULE, including NEXT OPERATION,
CONDITION OF, and DESCRIPTOR OF, are ex-
tracted by EDIT-IE with RULE in high performance.
This shows our approach can effectively utilize the
outputs of RULE.


