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Abstract

While large language models à la BERT are
used ubiquitously in NLP, pretraining them
is considered a luxury that only a few well-
funded industry labs can afford. How can one
train such models with a more modest budget?
We present a recipe for pretraining a masked
language model in 24 hours using a single low-
end deep learning server. We demonstrate that
through a combination of software optimiza-
tions, design choices, and hyperparameter tun-
ing, it is possible to produce models that are
competitive with BERTBASE on GLUE tasks at
a fraction of the original pretraining cost.1

1 Introduction

Large language models, such as BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019), and GPT3
(Brown et al., 2020), have become the de facto
models used in many NLP tasks. However, their
pretraining phase can be prohibitively expensive
for startups and academic research groups, limiting
the research and development of model pretraining
to only a few well-funded industry labs. How can
one train a large language model with commonly-
available hardware in reasonable time?

We present a recipe for training a BERT-like
masked language model (MLM) in 24 hours in a
limited computation environment. Our approach
combines multiple elements from recent work:
faster implementation (Rasley et al., 2020), faster
convergence through over-parameterization (Li
et al., 2020b), best practices for scaling language
models (Kaplan et al., 2020), single-sequence train-
ing (Joshi et al., 2020; Liu et al., 2019), and more.
Moreover, we conduct an extensive hyperparam-
eter search tailored to our resource budget, and
find that synchronizing learning rate warmup and
decay schedules with our 24 hour budget greatly
improves model performance.

1Our code is publicly available at: https://github.
com/IntelLabs/academic-budget-bert

When evaluating on GLUE (Wang et al., 2018),
our recipe produces models that are competitive
with BERTBASE – a model that was trained on
16 TPUs for 4 days. This recipe can also be
applied to other corpora, as we demonstrate by
training a French-language model on par with
CamemBERTBASE (Martin et al., 2020) on the
XNLI French benchmark (Conneau et al., 2018).
Overall, our findings demonstrate that, with the
right recipe and an understanding of the available
computational resources, large language models
can indeed be trained in an academic setting.

2 Problem Setup

We investigate the task of pretraining a large lan-
guage model under computational constraints. To
simulate an academic computation budget, we limit
the training time to 24 hours and the hardware to a
single low-end deep learning server.2 Using current
cloud-compute prices, we estimate the dollar-cost
of each training run at around $50 to $100.

Under these constraints, our goal is to pretrain
a model that can benefit classification tasks, such
as in GLUE (Wang et al., 2018). Therefore, we fol-
low the standard practice and focus on BERT-style
transformer encoders trained on the MLM objec-
tive (Devlin et al., 2019). We retain the standard
pretraining corpus of English Wikipedia and the
Toronto BookCorpus (Zhu et al., 2015), contain-
ing 16GB of text, tokenized into subwords using
BERT’s uncased tokenizer.

3 Combining Efficient Training Methods

To speed up our training process, we combine a va-
riety of recent techniques for optimizing a masked
language model. To the best of our knowledge, this
is the first time that such techniques are combined

2Specifically, we experiment with 8 Nvidia Titan-V GPUs
with 12GB memory each. In terms of GB-hour, our setting
is roughly equivalent to 1 day with 4 RTX 3090 GPUs or 2.4
days on a single 40GB A100 GPU.

https://github.com/IntelLabs/academic-budget-bert
https://github.com/IntelLabs/academic-budget-bert
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and evaluated as a unified framework for training
large models with limited computational resources.

3.1 Methods

Data Since our focus is mainly on sentence clas-
sification tasks, we limit sequences to 128 tokens
for the entire pretraining process. Devlin et al.
(2019) also apply this practice to 90% of the train-
ing steps, and extend the sequence to 512 tokens
for the last 10%. This increases sample efficiency
by reducing padding, and also allows us to fit a
larger model into memory (see Model). In addition,
we use single-sequence training without the next
sentence prediction (NSP) objective, which was
shown to benefit optimization (Joshi et al., 2020;
Liu et al., 2019). To maximize time spent on train-
ing, we hold out only 0.5% of the data and compute
the validation-set loss every 30 minutes.

Model Recent work has found that larger models
tend to achieve better performance than smaller
models when trained for the same wall-clock time
(Li et al., 2020b; Kaplan et al., 2020). We adopt
these recommendations and train a BERTLARGE

model: 24 layers, 1,024 dimensions, 16 heads,
4,096 hidden dimensions in the feed-forward layer,
with pre-layer normalization (Shoeybi et al., 2019).
The purpose of applying the “train large” approach
is not to compete with fully-trained extra-large
models, but to train the best model we can, regard-
less of size, given the computational constraints
(Section 2).

Optimizer We follow the optimization of
RoBERTa (Liu et al., 2019) and use AdamW
(Loshchilov and Hutter, 2019) with β1 = 0.9,
β2 = 0.98, ε = 1e-6, weight decay of 0.01, dropout
0.1, and attention dropout 0.1. We experiment
with various learning rates and warmups in Sec-
tion 4. Preliminary experiments with other optimiz-
ers, such as LAMB (You et al., 2020), did not yield
significantly different trends.

Software We base our implementation on the
DeepSpeed software package (Rasley et al., 2020),
which includes optimizations for training language
models, such as data parallelization, and mixed-
precision training. We further improve the imple-
mentation by replacing the MLM prediction head
with sparse token prediction (Liu et al., 2019), and
use fused implementations for all linear-activation-
bias operations and layer norms, in particular the
APEX LayerNorm operation.

bsz steps samples days

Google BERTBASE 256 1000k 256M 5.85
Google BERTLARGE 128† 2000k 256M 26.33

Our BERTLARGE

128 2000k 256M 14.11
256 1000k 256M 8.34

4096 63k 256M 2.74
8192 31k 256M 2.53

16384 16k 256M 2.41

Table 1: Speed comparison between our optimized
framework and the official implementation of BERT,
while testing on the same hardware and controlling
for the number of training examples covered (256M).
†Largest batch size we could fit (128), requiring dou-
ble the steps to cover the same amount of examples.

I/O To reduce the I/O bottleneck and minimize
time wasted on non-training operations, we follow
Devlin et al. (2019) and pre-mask 10 copies of the
corpus. While Liu et al. (2019) recommends dy-
namic masking, the benefits of applying it in our
low-resource setting are marginal, and outweighed
by the computational cost. To ensure heteroge-
neous mini-batches, we shuffle the entire dataset
after masking to remove intra-shard duplicates. Fi-
nally, we avoid disk I/O by sharding offline and
loading the entire preprocessed dataset into RAM.

3.2 Combined Speedup

We compare our optimized framework to the offi-
cial implementation of Devlin et al. (2019).3 Ta-
ble 1 shows that using the official code to train
BERTBASE could take almost 6 days under our hard-
ware assumptions (Section 2), and a large model
might require close to a month of non-stop compu-
tation. In contrast, our recipe significantly speeds
up training, allowing one to train BERTLARGE with
the original number of steps (1M) in a third of the
time (8 days), or converge in 2-3 days by enlarging
the batch size. While larger batch sizes do not guar-
antee convergence to models of equal quality, they
are generally recommended (Ott et al., 2018; Liu
et al., 2019), and present a more realistic starting
point for our next phase (hyperparameter tuning)
given our 24-hour constraint.

We also conduct an ablation study of engineering
improvements in our model. Table 2 shows that
efficient implementation gains an additional 1.75
hours (out of 24) for training operations, which
would have otherwise been wasted.

3https://github.com/tensorflow/models/
tree/master/official/nlp/bert

https://github.com/tensorflow/models/tree/master/official/nlp/bert
https://github.com/tensorflow/models/tree/master/official/nlp/bert
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Time Saved

− Sparse Output Prediction -3.91%
− Fused Linear Layer -4.39%
− APEX LayerNorm -7.28%

Table 2: Speed up (in cumulative training time re-
duction) for each implementation improvement in our
framework. Each line represents the original model
without the measured feature, aggregated with preced-
ing feature.
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Figure 1: Distribution of the validation-set loss after 24
hours of training across different hyperparameters.

4 Hyperparameter Search

Calibrating hyperparameters is key to increasing
model performance in deep learning and NLP
(Levy et al., 2015; Liu et al., 2019). We re-tune
core optimization hyperparameters to fit our low-
resource setting, rather than the massive computa-
tion frameworks for which they are currently tuned.
Our hyperparameter search yields substantial im-
provements in MLM loss after 24 hours of training.

4.1 Hyperparameters

Batch Size (bsz) The number of examples (se-
quences up to 128 tokens) in each mini-batch. We
try batch sizes of 4k, 8k, and 16k examples, which
are of a similar order of magnitude to the ones used
by Liu et al. (2019). Since our hardware has limited
memory, we achieve these batch sizes via gradient
accumulation. In terms of parameter updates, these
batch sizes amount to approximately 23k, 12k, and
6k update steps in 24 hours, respectively.

Configuration loss bsz lr wu days

Search #1 1.717 4096 2e-3 6% 1
Search #2 1.717 4096 1e-3 2% 1
Search #3 1.720 4096 1e-3 6% 1
Search #4 1.722 8192 1e-3 6% 1
Search #5 1.723 4096 2e-3 4% 1

BERTBASE 2.050 256 1e-4 11.1% 3
BERTLARGE 2.318 256 1e-4 11.1% 8.3

Table 3: Best hyperparameter configurations by MLM
loss recorded after 24 hours of training.

Peak Learning Rate (lr) Our linear learning rate
scheduler, which starts at 0, warms up to the peak
learning rate, and then decays back to 0. We try
5e-4, 1e-3, and 2e-3.

Warmup Proportion (wu) We determine the
number of warmup steps as a proportion of the
total number of steps. Specifically, we try 0%, 2%,
4%, and 6%, which all reflect significantly fewer
warmup steps than in BERT.

Total Days (days) The number of days it would
take the learning rate scheduler to decay back to 0,
as measured on our hardware. This is equivalent to
setting the maximal number of steps. Together with
the warmup proportion, it determines where along
the learning rate schedule the training process stops.
For a value of 1 day, the learning process will end
when the learning rate decays back to 0. We try
setting the schedule according to 1, 3, and 9 days.

4.2 Methodology

We optimize our model using MLM loss with each
hyperparameter setting. Although there are 108
combinations in total, poor configurations are easy
to identify early on. After 3 hours, we prune config-
urations that did not reach a validation-set loss of
6.0 or less; this rule removes diverging runs, such
as configurations with 0% warmup. After 12 hours,
we keep the top 50% of models with respect to the
validation-set loss, and resume their runs until they
reach 24 hours.

4.3 Results

We first analyze the effect of each hyperparameter
by plotting the distribution of the validation-set loss
per value (Figure 1). We observe a clear preference
towards synchronizing the learning rate schedule
with the actual amount of training time in the bud-
get (1 day), corroborating the results of Li et al.
(2020a). We also find the smaller batch size to
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MNLI-m/mm QNLI QQP RTE SST-2 MRPC CoLA STS-B Avg.
#Examples 393k 105k 364k 2.5k 67k 3.7k 8.5k 7k

24hBERT 84.4/83.8 90.6 70.7 75.3 93.0 88.5 57.1 86.8 81.1
BERTBASE 84.6/84.0 90.6 72.0 76.5 92.8 89.9 55.1 87.7 81.5
BERTLARGE 86.0/85.2 92.6 72.0 78.3 94.5 89.9 60.9 87.5 83.0
RoBERTaBASE 87.0/86.5 92.4 72.5 79.6 95.8 89.7 58.8 88.3 83.4

Table 4: Performance on GLUE test sets. Results for RTE, STS and MRPC are reported by first finetuning on the
MNLI model instead of the baseline pretrained model.
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BERT LARGE 

hours

Figure 2: The validation-set loss of 24hBERT com-
pared to the original BERT model configurations.

have an advantage over larger ones, along with
moderate-high learning rates. We suspect that the
smaller batch size works better for our resource
budget due to the trade-off between number of sam-
ples and number of updates, for which a batch size
of 4096 seems to be a better fit. Finally, there ap-
pears to be a preference towards longer warmup
proportions; however, a closer look at those cases
reveals that when the number of total days is larger
(3 or 9), it is better to use a smaller warmup propor-
tion (2%), otherwise the warmup phase might take
up a larger portion of the actual training time.

Table 3 shows the best configurations by MLM
loss. It is apparent that our calibrated models per-
form substantially better than models with BERT’s
default hyperparameters (which were tuned for 4
days on 16 TPUs). There is also relatively little
variance in performance among the top models.
We select the best model (Search #1), and name
it 24hBERT. Figure 2 compares 24hBERT with
models using the default calibration, and shows
that 24hBERT converges significantly faster.

5 Downstream Evaluation

We test the performance of our optimized, cal-
ibrated 24hBERT model on the GLUE bench-
mark (Wang et al., 2018).4 For finetuning, we fol-
low the practice of Liu et al. (2019), and run a grid

4See Appendix D for a full description of tasks.

search over multiple hyperparameters and seeds
(see Appendix B), and also use mid-training (Phang
et al., 2018) on MNLI for RTE, MRPC and STS-B.

Table 4 shows the results on GLUE’s test
sets. Our 24hBERT model performs on par with
BERTBASE on 3 major tasks (MNLI, QNLI, SST-
2) and even outperforms it on CoLA. However,
24hBERT reaches slightly lower results on 4 tasks
(QQP, RTE, MRPC, STS-B). Overall, this amounts
to a small difference on the average score (0.4%),
showing that our recipe can indeed produce a model
that is largely competitive with BERTBASE , but at
a small fraction of its training cost.

6 Generalizing to New Corpora

Our recipe was calibrated using a particular corpus
(English Wikipedia and books), but does it gener-
alize to other corpora as well? We follow Camem-
BERT (Martin et al., 2020) and train a masked lan-
guage model on French Wikipedia, using exactly
the same dataset. We then finetune our French
24hBERT on the XNLI French dataset (Conneau
et al., 2018), reaching 78.5% accuracy, compared
to 79.1% of CamemBERTBASE . This result demon-
strates that our recipe can indeed be ported to other
corpora as-is, without retuning hyperparameters.

7 Discussion

Comparison with ELECTRA While Clark
et al. (2020) show impressive pretraining speedups
with ELECTRA, we argue that having a generative
model (MLM or LM) is important nowadays, given
the recent rise of few-shot learning and prompting
approaches (Schick and Schütze, 2021). To em-
phasize this point, we run 24hBERT on the SST-
2 (Socher et al., 2013) task both with and without
prompts in the few-shot setting. Figure 3 shows
that there is a significant advantage in the ability to
prompt the model, which is perhaps not trivial for
non-generative ELECTRA-style models.
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Figure 3: The performance of 24hBERT on the SST-2
task in few-shot settings (5 seeds for each #examples,
with 25% of the examples used for validation), with
and without prompts.

FLOPs as a Measure of Efficiency While mea-
suring floating point operations is commonly used
to compare efficiency in a hardware-agnostic man-
ner, it is not an accurate tool for comparing the
actual time (and therefore budget) associated with
training a model. Specifically, measuring FLOPs
ignores the fact that many operations run in parallel
(e.g. via batching), and are thus much less costly
in practice (Li et al., 2020b).

Limitations Our investigation is limited to clas-
sification tasks. While it is true that it is not fully
comparable with BERTBASE in that using short se-
quences does not allow for reading comprehen-
sion tasks (without resorting to sliding windows),
it might be possible to continue training the model
for a few more hours with sequences longer than
128 tokens, as done by Devlin et al. (2019). We
leave such experiments for future work.

8 Conclusions

We present a recipe for pretraining a masked lan-
guage model in 24 hours using a low-end deep
learning server. We show that by combining multi-
ple efficient training methods presented in recent
work and carefully calibrating the hyperparameters
it is possible to pretrain a model that is competi-
tive to BERTBASE on GLUE tasks. In contrast to
other works in this area, which often focus a single
method for improving efficiency, our recipe con-
sists of many different components that together
amount to very large speedups:

• Short sequences (Devlin et al., 2019)

• Single-sequence training (Joshi et al., 2020)

• Training larger models (Li et al., 2020b)

• DeepSpeed (Rasley et al., 2020)

• Sparse token prediction (Liu et al., 2019)

• Fused implementations

• Avoiding disk I/O

• Large batch sizes (Liu et al., 2019)

• Large learning rates (Liu et al., 2019)

• Short warmup

• Synchronizing schedule with time budget (Li
et al., 2020a)

As with every recipe, our recommendations may
need to be adapted to the hardware and time con-
straints at hand. We hope that our findings allow
additional players to participate in language model
research and development, and help democratize
the art of pretraining.
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A Pretraining Hyperparameters

Table 5 presents the full set of hyperparameter con-
figurations we examine in Section 4.

B Finetuning Hyperparameters

Finetuning hyperparameters used for the GLUE
benchmark tasks are presented in Table 7. We run
each configuration using 5 random seeds and select
the median of the best configuration.

C Performance Comparison

Table 6 includes time comparison of our 24 hour
training setup when using more recent hardware
backends.

D Downstream Tasks

MNLI: Multi-Genre Natural Language Inference
is a large-scale, crowd-sourced entailment classifi-
cation task (Williams et al., 2018). Given a pair of
sentences, we wish to predict whether the second
sentence is an entailment, contradiction, or neutral
with respect to the first one.

QQP: Quora Question Pairs is a binary classifi-
cation task, where the goal is to determine whether
two questions asked on Quora are semantically
equivalent or not (Iyer et al., 2016).

QNLI: Question Natural Language Inference
is a version of the Stanford Question Answering
Dataset (Rajpurkar et al., 2016). It has been con-
verted into a binary classification task (Wang et al.,
2018). The positive examples are (question, sen-
tence) pairs, which contain the answer, and the
negative examples are from the same paragraph,
yet do not contain the answer.

SST-2: The Stanford Sentiment Treebank is a bi-
nary single-sentence classification task, consisting
of sentences extracted from movie reviews. Their
sentiment is based on human annotations (Socher
et al., 2013).

CoLA: The Corpus of Linguistic Acceptabil-
ity is a binary single-sentence classification task,
where the goal is to predict whether an English sen-
tence is linguistically “acceptable” or not (Warstadt
et al., 2019).

STS-B: The Semantic Textual Similarity Bench-
mark is a collection of sentence pairs, drawn
primarily from news headlines, with additional
sources as well (Cer et al., 2017). They were an-
notated with a score from 1 to 5, which denotes

Hyperparameter Our Model

Number of Layers 24
Hidden size 1024
FFN inner hidden size 4096
Attention heads 16
Attention head size 64
Dropout 0.1
Attention Dropout 0.1
Learning Rate Decay Linear
Weight Decay 0.01
Optimizer AdamW
Adam ε 1e-6
Adam β1 0.9
Adam β2 0.98
Gradient Clipping 0.0

Batch Size {4096, 8192, 16384}
Peak Learning Rate {5e-4, 1e-3, 2e-3}
Warmup Proportion {0%, 2%, 4%, 6%}
Max Steps {24hr, 72hr, 216hr}

Table 5: Hyperparameters used for pretraining our
models.

GPUs Days BSZ/GPU ACC

Titan-V 12GB 8 1.00 32 16

RTX 3090 24GB 1 5.84 112 37
4 1.55 112 9

A100 40GB 1 2.75 200 20
4 0.74 200 5

Table 6: Number of days, batch size per GPU
(BSZ/GPU), and number of gradient accumulations
(ACC) to train a model using our recipe (24hBERT)
with more recent GPUs.

how similar the two sentences are, when semantic
meaning is considered.

MRPC: Microsoft Research Paraphrase Corpus
consists of sentence pairs automatically extracted
from online news sources. The human annotations
are for whether the sentences in the pair are seman-
tically equivalent (Dolan and Brockett, 2005).

RTE: Recognizing Textual Entailment is a bi-
nary entailment task similar to MNLI, but with
significantly less training data (Dagan et al., 2005;
Bar-Haim et al., 2006; Giampiccolo et al., 2007).

XNLI French: Cross-lingual Natural Language
Inference French, an entailment classification task
(Conneau et al., 2018) similar to MNLI, with that
the premise and hypothesis in each example are in
the French language.
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Hyperparameter RTE, SST-2, MRPC, CoLA, STS-B, WNLI MNLI, QQP, QNLI, XNLI French

Learning Rate {1e-5, 3e-5, 5e-5, 8e-5} {5e-5, 8e-5}
Batch Size {16, 32} 32
Weight Decay 0.1 0.1
Max Epochs {3, 5, 10} {3, 5}
Warmup Proportion 0.06 0.06

Table 7: The hyperparameter space used for finetuning our model on GLUE benchmark tasks, and the XNLI
French task.


