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Abstract

Many efforts have been made in solving the
Aspect-based sentiment analysis (ABSA) task.
While most existing studies focus on English
texts, handling ABSA in resource-poor lan-
guages remains a challenging problem. In
this paper, we consider the unsupervised cross-
lingual transfer for the ABSA task, where only
labeled data in the source language is available
and we aim at transferring its knowledge to the
target language having no labeled data. To this
end, we propose an alignment-free label pro-
jection method to obtain high-quality pseudo-
labeled data of the target language with the
help of the translation system, which could pre-
serve more accurate task-specific knowledge
in the target language. For better utilizing the
source and translated data, as well as enhanc-
ing the cross-lingual alignment, we design an
aspect code-switching mechanism to augment
the training data with code-switched bilingual
sentences. To further investigate the impor-
tance of language-specific knowledge in solv-
ing the ABSA problem, we distill the above
model on the unlabeled target language data
which improves the performance to the same
level of the supervised method.

1 Introduction

Aspect-based Sentiment Analysis (ABSA) is the
task of extracting mentioned aspects from a given
sentence and predicting their corresponding senti-
ment polarities1 (Liu, 2012; Pontiki et al., 2014).
Consider the following example, “The food is great,
but the service is kinda disappointing”, we can de-
tect two mentioned aspect terms “food” and “ser-
vice”, and judge their corresponding sentiments
as positive and negative, respectively. Given its

∗Work done when Wenxuan Zhang was an intern at Al-
ibaba. This work was supported by Alibaba Group through
Alibaba Research Intern Program, and a grant from the Re-
search Grant Council of the Hong Kong Special Administra-
tive Region, China (Project Codes: 14204418).

1Also called End-to-End ABSA or Unified ABSA

wide application scenarios, it has attracted lots of
attention in the NLP community in recent years
(Li et al., 2019a; He et al., 2019; Hu et al., 2019;
Chen and Qian, 2020; Liang et al., 2020; Mao et al.,
2021; Zhang et al., 2021).

The majority of existing ABSA studies are con-
ducted on English texts. However, in real-world
scenarios such as the E-commerce website, users’
opinions are usually expressed in different lan-
guages (Pontiki et al., 2016; Keung et al., 2020).
Manually annotating a large quantity of ABSA data
for every language can be extremely costly. In this
work, we investigate the unsupervised cross-lingual
transfer for the ABSA task, where we only have
labeled data in the source language and aim to
transfer the knowledge to target languages whose
labeled ABSA data is unavailable.

Existing works on cross-lingual ABSA mainly
focus on its subtasks, including cross-lingual aspect
term extraction and aspect sentiment classification.
Early studies usually adopt a translate-then-align
strategy: a machine translation system is first used
to translate the source sentence to the target lan-
guage. Then, word alignment algorithms (Dyer
et al., 2013) are applied to project the labels (i.e.,
the position of the aspect term) to obtain labeled
target language data (Zhou et al., 2015; Klinger and
Cimiano, 2015). Later methods make use of the
cross-lingual word embeddings (Ruder et al., 2019)
trained on large parallel corpus to allow the model
to be used in a language-independent manner, by
simply switching the word embedding layer while
keeping the model unchanged (Barnes et al., 2016;
Akhtar et al., 2018; Jebbara and Cimiano, 2019)
when adopted for different languages.

Recently, employing multilingual pre-trained
models such as the multilingual BERT (Devlin
et al., 2019) and XLM-Roberta (Conneau et al.,
2020) has become the de-facto approach to tackle
the cross-lingual transfer for many NLP tasks (Hu
et al., 2020). Typically, the model is first fine-tuned
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on labeled source language data and then can be
directly used for inference on the target language
data (i.e., zero-shot approach), thanks to the lan-
guage knowledge learned in the pre-training stage
(Wu and Dredze, 2019; K et al., 2020).

There are some challenges for adopting such a
paradigm to solve the cross-lingual ABSA task.
The language-specific knowledge plays an essen-
tial role in tackling the ABSA problem, since the
concerned texts are often written by ordinary users
with all kinds of abbreviations or slang. The as-
pect terms and the opinion expressions may also
be language-dependent. However, the language-
specific knowledge of the zero-shot method purely
comes from the pre-training process where the low-
resource languages might be under-represented
(Conneau et al., 2020; Pfeiffer et al., 2020). Uti-
lizing the translated target language data with pro-
jected labels is a plausible idea to compensate the
language-specific knowledge (Li et al., 2020). But
the performance of such translation-based methods
largely depends on the quality of the translation
and label projection. The task-specific knowledge
in the translated data would also be limited if the
projected label quality is unsatisfactory.

To this end, we propose an alignment-free label
projection method to obtain high-quality pseudo-
labeled target language data. Different from the pre-
vious translate-then-align paradigm, our method
does not rely on any word alignment tool for pro-
jecting the labels from the source to the translated
target sentence, which avoids the mis-alignment
issue brought in by this step. The high-quality la-
beled target data thus preserves more task-specific
knowledge, helping establish a strong baseline by
purely training on such pseudo-labeled data. Previ-
ous findings suggest that training on the bilingual
corpus (i.e., labeled source data and translated tar-
get data) often leads to better performance in cross-
lingual transfer tasks (Hu et al., 2020). Inspired
by this finding and to further enhance the interac-
tions between the two languages, we propose an
aspect code-switching (ACS) mechanism, which
switches the aspect terms between the source and
translated target sentences to construct two bilin-
gual sentences. By training on the combinations of
the monolingual sentences of the source/target lan-
guages and the code-switched bilingual sentences,
the embedding space between the source and tar-
get languages can be better aligned with aspects
as the anchor. It is natural to further extend our

ACS method to the multilingual setting, assum-
ing multiple translation engines are available. In
this case, the target languages can benefit from
the task-specific knowledge contained in different
translations.

To further verify the importance of the language-
specific knowledge for the cross-lingual ABSA
task, we exploit the usage of the unlabeled target
language data via knowledge distillation (Hinton
et al., 2015). Concretely, we treat the proposed
ACS method as the teacher model for predicting
the probability distributions on the unlabeled target
data. Then, a student model is trained with such
soft-labeled data. The distilled student model can
thus utilize both the task-specific knowledge from
the teacher model and the language-specific knowl-
edge from the unlabeled target language data.

In summary, our main contributions are: (1) We
establish a strong translation-based baseline for the
cross-lingual ABSA task based on an alignment-
free label projection approach, which outperforms
previous translate-then-align paradigm by a large
margin. (2) We propose an aspect code-switching
mechanism that makes better use of the source
data and the translated target data via aspect terms
as anchors. (3) We show that language-specific
knowledge is essential for tackling the cross-lingual
ABSA task. By distilling the proposed model on
the unlabeled target data, the performance can be
further improved. (4) We conduct extensive experi-
ments on benchmark datasets of five languages and
our method achieves new state-of-the-art results
under both cross-lingual and multilingual settings.2

2 Methodology

2.1 Problem Formulation
We formulate the ABSA task as a sequence labeling
problem (Li et al., 2019b; He et al., 2019). Given
a sentence x = {xi}Li=1 with L tokens, the model
predicts a label sequence y = {yi}Li=1 where
yi ∈ Y = {B, I, E, S}-{POS, NEU, NEG} ∪ {O} de-
notes the aspect boundary and its sentiment polar-
ity for the corresponding token xi. For example,
yi = B-POS means xi is the beginning of a positive
aspect term. In the cross-lingual transfer setting,
we only have the sentence-label pair in the source
language S, i.e., (xS ,yS) ∈ DS and aim to predict
the label sequence yT for the sentence xT in the
target language T .

2Our code is publicly available at https://github.
com/IsakZhang/XABSA.

https://github.com/IsakZhang/XABSA
https://github.com/IsakZhang/XABSA
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Translation  
System

La [nourriture] est très fraîche et délicieuse, 
mais cet {endroit} est trop petit pour moi.

The [food] is very fresh and delicious, but 
this {place} is too small for me.

The [nourriture] is very fresh and delicious, 
but this {endroit} is too small for me.

La [food] est très fraîche et délicieuse, mais 
cet {place} est trop petit pour moi.

[]: food, positive 
{}: place, negative

[]: nourriture, positive 
{}: endroit, negative

AC
S

AC
S

: EN-enxS : FR-frxT

: EN-frxSt : FR-enxTs

Figure 1: Example of the alignment-free label projection method (upper part) and the aspect code-switching strat-
egy (lower part). Here we use English and French as the source and target language respectively.

2.2 Alignment-free Label Projection

To obtain the language-specific knowledge for the
target languages, previous works usually first trans-
late the source sentence with an off-the-shelf trans-
lation system, then word alignment tools such as
fastAlign (Dyer et al., 2013) are used to map the
token-level label from the source sentence to the
translated sentence (Mayhew et al., 2017; Fei et al.,
2020). Some heuristics are proposed for alleviating
the alignment error, for example, by conducting
a phrase-to-phrase mapping to refine the aspect
boundary (Klinger and Cimiano, 2015; Li et al.,
2020). However, the word or phrase alignment
itself is a challenging task (Akbik and Vollgraf,
2018). The sentences of the ABSA task are usually
user-generated (e.g., product reviews and tweets)
and informal, which further hinders the translate-
then-align method to produce satisfactory pseudo-
labeled target data (Lohar et al., 2019). The inaccu-
rate pseudo labels inevitably limit the task-specific
knowledge and lead to poor model performance.

We propose an alignment-free label projection
method for obtaining the pseudo-labeled data in
the target language3. As depicted in the upper-left
portion of Figure 1, we first mark each aspect term
in the sentence with a special symbol (e.g., differ-
ent brackets like “{}” and “[]”), before feeding it
into the translation system. If there are multiple
aspect terms in one sentence, we mark them or-
derly with the predefined special symbol list. After
getting the translation in the upper-right portion,
we extract the spans with the special symbols and
match them with the corresponding aspect terms
in the source sentence so as to recover the aspect

3Note that any translation-based method is not truly align-
ment free, since the translation engines are trained with sen-
tence pairs which contain implicit word alignments. Here the
“alignment-free” refers to the absence of using word alignment
tools during the label projection.

boundary and project the sentiment labels. Thus, a
labeled sentence in the target language is obtained.

Formally, suppose in the source sentence, the
i-th to j-th tokens xSi:j are marked with the special
symbol t. After our label projection, we will label
the span in the translated sentence xT marked by
the same special symbol t with the sentiment po-
larity of xSi:j . Since we use different symbols for
different aspect terms, the translated aspect terms
would still be matched to the corresponding labels
even if their orders are changed during the transla-
tion. In some cases, the special symbols might be
ignored by the translation system. We thus count
the number of special symbols after the transla-
tion and filter out those translated sentences with
missing symbols4. We denote the pseudo-labeled
training data of the target language as DT .

2.3 Aspect Code-Switching

Explicitly mixing the data from different languages
was proved effective for enhancing the cross-
lingual capability (Singh et al., 2019). Therefore,
after obtaining the labeled target language data,
the combination of the source and target data is a
natural choice to train models. We further design
a fine-grained aspect term code-switching (ACS)
mechanism to switch the aspect in the source and
the translated data for better utilizing the available
data to enhance the cross-lingual capability.

As shown in the lower portion of Figure 1, given
the source sentence xS and its translation xT , we
switch the aspect terms in them to construct two
bilingual sentences: The first one is derived from
xS with aspect terms now in the target language,
denoted as xSt; the other one is derived from xT

with aspect terms in the source language, denoted
as xTs. After the switching, we refine the corre-

4This kind of cases only accounts for a very small amount
in total, about 1% in our experiment.
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sponding label sequences ySt and yTs according to
the length of the switched aspect terms. We denote
the constructed code-switched datasets as DSt and
DTs respectively.

We can see that there are some interesting rela-
tions among these data. For example, xT and xTs

have the same sentence context but aspect terms in
different languages; while xT and xSt have differ-
ent sentence context but the same aspect term in the
target language. By training on the combination of
these data, the embedding space of different lan-
guages can be better aligned via aspects as anchors.

Furthermore, assuming the translation system
can translate from the source to multiple target
languages, we can extend the proposed method to
the multilingual setting. For the source sentence
xS , we can obtain translations xT1 ,xT2 , . . . ,xTn

in n target languages. Similarly, their aspect terms
can be switched with the source sentence, resulting
in code-switched sentences xT1s,xT2s, . . . ,xTns

and xSt1 ,xSt2 , . . . ,xStn , respectively. For the i-
th target language, we denote the translated data
and code-switched data as DTi , DTis, and DSti

respectively. Since the translation and projection
process is not flawless, the pseudo-labeled data
in multiple target languages may compensate for
each other. Therefore, the model trained on the
combination of these data can benefit from the task-
specific knowledge from multiple languages.

2.4 ABSA Model

We build our ABSA model with the pre-trained
multilingual models as backbones. Given a text
sequence x = {xi}Li=1 with L words, the back-
bone network encodes it into context-aware feature
representations h = {hi}Li=1 with hi ∈ Rdh where
hi is the hidden feature representation for the cor-
responding token xi and dh is the dimension of the
vector representation. We employ a simple linear
classification layer built on top of the backbone to
make the prediction. With the token representation
hi, the label distribution of xi is computed as:

pθ(yi|xi) = softmax(Whi + b) (1)

where yi ∈ Y , θ denotes all the parameters to be
learned or fine-tuned, including task-specific ones
(i.e., W and b) and those of the backbone network.

Given a labeled training dataset D = {(x,y)},
the training objectiveLCE is computed as the cross-
entropy loss between the predicted label distribu-

DU
Single-Teacher Distillation

Update

LKD stu

DU

Multi-Teacher Distillation

stu

Update

LKD

w1

Multilingual Distillation

DU1

…
DU2

DUn

Update

LKD

(Multilingual)

stu

DS DT DStDTs

ACS model

DT DS

DT DSt

DT DTs

DS DT1 DTn
…

DSt1 DSt2 DStn…

DT1s DT2s DTns…

w2

w3

MACS model

Figure 2: Distillation on the unlabeled target data.

tions and the gold label in one-hot encoding:

LCE =
1

|D|
∑

(x,y)∈D

[
− 1

L

L∑
i=1

yi log pθ(yi|xi)

]
(2)

For our proposed ACS method in Sec 2.3, we
can thus train a model using the combination of the
bilingual data, as well as the code-switched data,
i.e., D = DS ∪DT ∪DTs ∪DSt ≡ DACS . In the
multilingual setting, the code-switched data across
multiple languages is used to train a multilingual
model, i.e., D = DS ∪ {DTi}ni=1 ∪ {DTis}ni=1 ∪
{DSti}ni=1 ≡ DMACS , making it accessible to the
knowledge from different language data.

2.5 Distillation on Unlabeled Target Data

The texts in the ABSA problem often involve many
language-dependent expressions. To further investi-
gate the importance of the language-specific knowl-
edge in the cross-lingual ABSA task, we exploit to
distill our proposed model on the unlabeled target
data to utilize its rich language knowledge.

Single-teacher Distillation As shown in the up-
per portion of Figure 2, we treat the model trained
with the data DACS as the teacher model which
contains rich task-specific knowledge. Let x̄ ∈ DU

denotes an unlabeled sentence in the target lan-
guage, we can obtain the soft labels produced by
the teacher model and use it to distill a student
model whose predicted probability distribution for
the i-th token pθstu(ȳi|x̄i) should approximate the
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soft labels pθtea(ȳi|x̄i) as follows:

LKD =
1

|DU |
∑

x̄∈DU

[
1

L

L∑
i=1

MSE(pθtea , pθstu)

]
(3)

Here we use the mean squared error loss (MSE(·))
to measure the difference between the two proba-
bility distributions. Note that the soft labels (i.e.,
predicted distributions) instead of the hard labels
(i.e., one-hot predictions after taking argmax) are
used since the former contains much richer infor-
mation than the latter (Hinton et al., 2015).

To produce pθstu(ȳi|x̄i), the student model can
actually take any form since we only aim to make
its predictions mimic the soft labels. For simplicity,
we use the same neural architecture described in
Sec 2.4 as the student model. Finally, the trained
student model can be used to make the prediction
on the unseen data of the target language.

Multi-teacher Distillation As discussed previ-
ously, the relations between the code-switched data
and bilingual data show some interesting charac-
teristics. Specifically, we consider three types of
combinations, including D1 = DT ∪ DS , D2 =
DT ∪DTs, and D3 = DT ∪DSt. Each contains
the translated datasetDT to involve some language-
specific knowledge and another dataset sharing the
same sentence semantics (D1), the same context
sentence (D2), and the same aspect term (D3), re-
spectively. To fully utilize the different character-
istics in those datasets, we design a multi-teacher
distillation with different teacher models separately
trained on those three combinations, as shown in
the middle portion of Figure 2. Let pθk(ȳi|x̄i) de-
note the probability distributions of the unlabeled
sentence x̄ given by the k-th model trained on Dk,
we combine them into a single soft label:

pθtea(ȳi|x̄i) =
∑3

k=1
wk pθk(ȳi|x̄i) (4)

where wk is the weight for each teacher model.
With the combined soft label pθtea , a student model
can be trained in a similar way as Equation 3.

Multilingual Distillation In the multilingual set-
ting, we distill a multilingual model with the un-
labeled data from multiple target languages. As
shown in the lower portion of Figure 2, we treat the
model trained on the multilingual code-switched
dataDMACS as the teacher and compute soft labels
for each sentence x̄ in the unlabeled data. Then a
student model can be trained with such soft labels

EN FR ES NL RU

Train
# S 2000 1664 2070 1722 3655
# A 1743 1641 1856 1231 3077

Test
# S 676 668 881 575 1209
# A 612 650 713 373 949

Table 1: Statistics of the data in each language. # S and
# A denotes the numbers of sentences and aspects in
each set respectively.

and used to make predictions for multiple target
languages in a “one model for all” manner.

3 Experiments

3.1 Dataset
We conduct experiments on the SemEval-2016
dataset (Pontiki et al., 2016), which includes real
user reviews in English (EN), French (FR), Span-
ish (ES), Dutch (NL), and Russian (RU)5. The data
in each language is already split into training and
testing sets. We keep the original split and further
sample 20% data from the training set as the val-
idation set for model selection. We provide the
summary data statistics in Table 1.

We treat English as the source language and
other languages as targets. Following existing
works to simulate true unsupervised setting (Jeb-
bara and Cimiano, 2019; Hu et al., 2020), we use
the English validation set in all experiments for
the model selection. The original workshop also
provides training data for each target language as
well6, we thus discard the label of the training set
in each target language and use the raw sentences
as the unlabeled data, similar with previous studies
(Wang and Pan, 2018; Wu et al., 2020).

3.2 Experimental Settings
We conduct experiments based on two multilingual
pre-trained models, including the cased multilin-
gual BERT (mBERT) and the base XLM-Roberta
model (XLM-R). Google translate API7 is used for
the translation process described in Sec 2.2. For the
teacher model training, following Li et al. (2019b),
we train the model based on mBERT and XLM-R

5There is one more language data namely Turkish is pro-
vided in the SemEval workshop. However, we leave it out
in the experiments due to its extremely small testing set (less
than 150 sentences).

6Note that the data for each target language is collected
separately, which means they are not the “gold translations”
of the source English reviews.

7https://translate.google.com/

https://translate.google.com/
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Methods mBERT XLM-R

FR ES NL RU Avg FR ES NL RU Avg

SUPERVISED 61.80 67.88 56.80 58.87 61.34 67.44 71.93 64.28 64.93 67.15

ZERO-SHOT† 45.60 57.32 42.68 36.01 45.40 56.43 67.10 59.03 56.80 59.84
TRANSLATION-TA† 40.76 50.74 47.13 41.67 45.08 47.00 58.10 56.19 50.34 52.91
BILINGUAL-TA† 41.00 51.23 49.72 43.67 46.41 49.34 61.87 58.64 52.89 55.69

TRANSLATION-AF 48.03 59.74 49.73 50.17 51.92 57.07 66.61 61.26 59.55 61.12
BILINGUAL-AF 48.05 60.23 49.83 51.24 52.34 57.91 68.04 60.80 60.81 61.89
ACS 49.65 59.99 51.19 52.09 53.23 59.39 67.32 62.83 60.81 62.59
ACS-DISTILL-S 52.23 62.04 52.72 53.00 55.00 61.00 68.93 62.89 60.97 63.45
ACS-DISTILL-M 52.25 62.91 53.40 54.58 55.79 59.90 69.24 63.74 62.02 63.73

Table 2: Main results of the cross-lingual ABSA task with English as the source language. We report results with
the average F1 scores over five runs with different random seeds. The first row “SUPERVISED” gives results under
the supervised setting, provided as an upper bound. † denotes results are from Li et al. (2020).

up to 2000 and 2500 steps respectively and con-
duct model selection on the last 500 steps. For
the student model, we initialize it with the model
parameters trained on the translated target data for
a good starting point, and then continue the train-
ing on the soft labels by the teacher model. For
the multi-teacher distillation, we treat each teacher
equally, which means wi = 1/3 in Equation 4.

We select the best training hyper-parameters by
conducting a grid search on a combination of batch
size and learning rate. The range of them are: learn-
ing rate {2e-5, 3e-5, 5e-5}; batch size {8, 16, 25}.
The best choices are selected by the performance
on the source language data. For mBERT, we use
a learning rate being 5e-5 and the batch size being
16; for XLM-R, we use the learning rate of 2e-5
and the batch size being 8.

Micro-F1 is employed as the evaluation metric
where a prediction will be judged as correct only
if both its boundary and sentiment polarity are cor-
rect. For all experiments, we report the average F1
scores over 5 runs with different random seeds.

3.3 Compared Methods
We adopt the following approaches for compar-
isons and also revealing the characteristics of the
cross-lingual ABSA task: ZERO-SHOT, a method
utilizing the labeled source data to fine-tune the
model and directly conduct inference on the tar-
get data, which has shown to be a strong baseline
for the cross-lingual adaptation (Wu and Dredze,
2019; Conneau et al., 2020). To compare with the
previous translation-based method, we adopt the
baseline that utilizes the pseudo-labeled data with
the Translate-then-Align paradigm (Klinger and

Cimiano, 2015; Li et al., 2020) (TRANSLATION-
TA) and the combination of the source data with
such translated data (BILINGUAL-TA).

For our method, we report the performance of
the model trained on the pseudo-labeled target data
with the proposed Alignment-Free label projec-
tion method (TRANSLATION-AF) and the com-
bination of the translated data and source language
data (BILINGUAL-AF); the results of the aspect
code-switching method (ACS) trained on DACS

as described in Sec 2.4; the results with the single-
teacher distillation (ACS-DITILL-S, i.e. the upper
model in Figure 2) and multi-teacher distillation
(ACS-DISTILL-M, i.e. the middle model in Figure
2) introduced in Sec 2.5.

In addition to the above cross-lingual setting (i.e.
from one source to one target), we also evaluate
the multilingual setting. We mainly compare with
MTL-WS (Li et al., 2020), a previous state-of-
the-art method using a parameter warm-up mecha-
nism. For our proposed method, we report the re-
sults using the combination of the source data and
the multilingual translated data with the alignment-
free label projection paradigm (MTL-AF); the re-
sults with our multilingual aspect code-switching
method (MTL-ACS) trained on DMACS as de-
scribed in Sec 2.4, and the results with multilingual
distillation (MTL-ACS-D, i.e. the lower model
in Figure 2) introduced in Sec 2.5.

We also present the results under the supervised
setting (SUPERVISED) where the model is trained
with the training data in the corresponding lan-
guage. It provides an upper bound for us to measure
the cross-lingual transfer performance.
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3.4 Cross-lingual ABSA Results

We present the cross-lingual ABSA results in Table
2. There are some notable observations: 1) The
ZERO-SHOT method based on mBERT is relatively
weak, while with the XLM-R backbone, it becomes
a competitive baseline. The main reason might be
that XLM-R was pre-trained on a much larger mul-
tilingual corpus, leading to richer language knowl-
edge and cross-lingual ability. 2) BILINGUAL-TA
which is trained with both the source data and
labeled target data from the translate-then-align
paradigm performs even worse than the ZERO-
SHOT method, implying that the low-quality target
data actually limits the task-specific knowledge and
hurts the performance. 3) Our proposed alignment-
free label projection method (“TRANSLATION-
AF”) establishes a strong baseline for the cross-
lingual ABSA problem. It not only outperforms
the ZERO-SHOT method based on either mBERT
or XLM-R; but also achieves much better per-
formance than the previous translation-based ap-
proach. Compared with TRANSLATION-TA, it ob-
tains 6.84% and 8.21% absolute performance gains
based on mBERT and XLM-R, respectively. This
shows that our method constructs high-quality la-
beled target data by alleviating the mis-alignment
issues. 4) Our proposed ACS method further out-
performs the TRANSLATION-AF baseline, show-
ing that explicitly switching the aspect terms be-
tween two languages is an effective approach to
utilize the source and translated data for further
enhancing the alignment between them. 5) By
distilling the model on the unlabeled data of the
target language, the proposed single-teacher dis-
tillation (ACS-DISTILL-S) and multi-teacher dis-
tillation (ACS-DISTILL-M) both achieve greater
performance. This verifies our assumption that the
language-specific knowledge is essential for tack-
ling the cross-lingual ABSA task, even distilling
the model on the unlabeled target data, the per-
formance could be further improved. Specifically,
the model trained with multiple teachers achieves
slightly better performance than the single-teacher
model. This is likely due to the reason that those
multiple teachers capture different characteristics,
thus the soft labels combining their predictions can
better “teach” the student model.

3.5 Multilingual ABSA Results

In addition to the cross-lingual results (i.e., from
one source language to one target language), we

FR ES NL RU Avg

Based on mBERT:
MTL-TA† 40.72 54.14 49.06 43.89 46.95
MTL-WS† 46.93 58.18 49.87 44.88 49.96
MTL-AF 50.00 59.31 53.16 50.04 53.13
MTL-ACS 50.74 59.59 53.33 51.61 53.82
MTL-ACS-D 53.56 62.05 53.56 53.87 55.76

Based on XLM-R:
MTL-TA† 52.80 63.56 60.37 55.67 58.10
MTL-WS† 57.96 68.60 61.24 59.74 61.89
MTL-AF 59.68 68.20 63.33 61.02 63.06
MTL-ACS 59.19 68.88 63.06 61.92 63.26
MTL-ACS-D 62.17 70.38 65.98 62.79 65.33

Table 3: Multilingual results with mBERT and XLM-R
as backbone respectively. The best baseline results are
underlined and best results by our model are in bold. †
denotes results are from Li et al. (2020).

also report the results under multilingual setting in
Table 3. It can be noticed that training on the mul-
tilingual pseudo-labeled translated target data from
our label projection method (i.e., MTL-AF) sets
up a quite strong baseline which can already outper-
form MTL-WS, a previous state-of-the-art model
and surpasses its counterpart MTL-TA method by
a large margin. Similar to the observation in the
cross-lingual transfer, our proposed aspect code-
switching method and distillation on unlabeled data
further improve the adaptation performance, thanks
to the better alignment of different languages and
the utilization of the language-specific knowledge.

Compared with the bilingual transfer, the mul-
tilingual model can be used in a “one model for
all” manner, i.e., the same model can be applied
for multiple target languages. Moreover, the model
can benefit from the task-specific knowledge of the
pseudo-labeled data in multiple target languages.
With the XLM-R as backbone, our model distilled
on the multilingual data (MTL-ACS-D) achieves
65.33 average F1 scores, which is even close to the
F1 scores under the supervised setting (i.e. 67.15),
showing the superiority of the proposed approach.

3.6 Discussions and Analysis
Ablation of the ACS method Table 4 gives the
results from the three teacher models in the multi-
teacher distillation method described in Sec 2.5,
which can be regarded as the ablated variants of
our proposed ACS model. We can see that all these
three variants are not as competitive as ACS which
is trained with all the code-switched bilingual data
and the original two monolingual datasets. Among
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FR ES NL RU Avg

Based on mBERT:
ACS 49.65 59.99 51.19 52.09 53.23
DS + DT 48.05 60.23 49.83 51.24 52.34
DSt + DT 48.27 60.08 50.81 50.33 52.38
DTs + DT 47.01 59.87 49.69 51.10 51.92

Based on XLM-R:
ACS 59.39 67.32 62.83 60.81 62.59
DS + DT 57.91 68.04 60.80 60.81 61.89
DSt + DT 56.26 65.47 61.03 60.00 60.69
DTs + DT 56.13 66.80 60.36 59.69 60.75

Table 4: Ablation Study on the ACS method.

ENTIRE PARTIAL BOUNDARY TOTAL

TA 7.9% 13.4% 6.4% 27.8%
AF 0.7% 2.1% 0.0% 2.8%

Table 5: Error analysis of label projection methods,
where the ratios are relative to the total 140 aspects.

them, combining the translated data and the source
data is the most powerful method. Specifically,
we can see that it achieves the best performance
when the target language is Spanish. We conjec-
ture the reason is that among the four target lan-
guages, Spanish is the most similar language with
the source language (i.e., English), their embed-
ding spaces are already relatively well-aligned in
the pre-trained language models. Therefore, using
our proposed aspect switching strategy to explicitly
enhance the cross-lingual alignment does not help
in this case.

Impact of label projection methods Compar-
ing X-AF (models using our alignment-free
paradigm) and X-TA (models using the translate-
then-align paradigm) in Tables 2 and 3, our
alignment-free label projection achieves signifi-
cantly higher performance than its counterpart.
Here we conduct a detailed error analysis by ran-
domly sampling 50 sentences in English and exam-
ining the pseudo-labeled data from AF and TA. We
manually categorize the errors in the 200 pseudo-
labeled sentences of the four target languages and
report the ratio for each error type in Table 5.

We can see that the alignment errors of the previ-
ous TA method lead to aspect term partially missed
(PARTIAL), or incorrect aspect boundary which in-
cludes non-aspect words as a part of the aspect
(BOUNDARY). Even worse, 7.9% of the aspects
are entirely mismatched (ENTIRE) which would

greatly hurt the model performance. Compared
with it, our AF method largely alleviates those
issues. We present an example case in Table 6
where TA only labels “fruits” in the translated sen-
tence as a positive aspect, due to the incomplete
alignment. While our method correctly matches
“seafood” in English to “fruits de mer” in French,
which provides the correct labeled target data. Such
high-quality labeled data preserves the task-specific
knowledge in the target language to establish a
strong baseline for the cross-lingual ABSA task.
We notice that our AF also produces 2.1% partially
missed aspects, especially when facing long aspect
terms. For example, “shank” is missed in the trans-
lated sentence for the aspect “braised lamb shank
in red wine”. It is due to the difficulty to translate
such cases with an off-the-shelf translation system.

4 Related Work

Existing works on cross-lingual ABSA mainly fo-
cus on its sub-tasks including the cross-lingual as-
pect term extraction (Lin et al., 2014; Klinger and
Cimiano, 2015) and aspect sentiment classification
(Lambert, 2015; Barnes et al., 2016). To obtain
language knowledge of the target languages, trans-
lation systems are used to obtain pseudo-parallel
data (Zhou et al., 2015). A word or phrase align-
ment algorithm such as fastAlign (Dyer et al., 2013)
is then utilized to project the label from the source
to the target sentence. Since the performance of
such methods heavily depends on the quality of
the translation and alignment, different strategies
are proposed to further improve the data quality.
Klinger and Cimiano (2015) conduct an instance
selection process to filter out low-quality target
data. Li et al. (2020) propose a span-to-span map-
ping heuristics to refine the aspect boundary.

Another line of work uses the cross-lingual word
embeddings trained on large parallel bilingual cor-
pus (Ruder et al., 2019). By switching the word em-
beddings between different languages, the model
can be used in a language-agnostic manner (Barnes
et al., 2016; Akhtar et al., 2018; Wang and Pan,
2018; Jebbara and Cimiano, 2019). Wang and Pan
(2018) propose a transition-based aspect extraction
model which aligns the representations in different
languages through an adversarial network. Jebbara
and Cimiano (2019) consider the zero-shot transfer
for aspect term extraction task with two types of
cross-lingual embeddings.

Recently, transformer-based models pre-trained
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Example: Labeled target data given by different label projection methods
Source English Sentence [Mermaid Inn]POS is an overall good restaurant with really good

[seafood]POS.
Labeled French Sentence with
translate-then-align Method

[Mermaid Inn]POS est un bon restaurant dans l’ ensemble avec de très
bons [fruits]POS de mer .

Labeled French Sentence with
alignment-free Method

[Mermaid Inn]POS est un bon restaurant dans l’ ensemble avec de très
bons [fruits de mer]POS.

Table 6: Example of different label projection methods with French as the target language. We use the bracket to
highlight the aspect term, the corresponding sentiment polarities are shown as the subscript for each aspect.

on large multilingual corpus, such as the multilin-
gual BERT (Devlin et al., 2019) and XLM-Roberta
(Conneau et al., 2020), have shown significant im-
provements for various cross-lingual NLP tasks.
Thanks to the language knowledge learned in the
pre-training process, fine-tuning the model on the
labeled source language data and directly conduct-
ing the inference on the target data can achieve
impressive cross-lingual adaptation performance
(Wu and Dredze, 2019; Pires et al., 2019; K et al.,
2020). Some studies further utilize the translation
system together with the pre-trained models, for
example, by direct data transfer (Fei et al., 2020;
Hu et al., 2020), data augmentation (Singh et al.,
2019), and parameter warm-up (Li et al., 2020).

5 Conclusions

We tackle the cross-lingual ABSA task in this pa-
per. To obtain high-quality labeled target data, we
design an alignment-free label projection method
which establishes a strong translation-based base-
line. We further propose an aspect code-switching
strategy to enhance the cross-lingual alignment
and distill our method on the unlabeled target data
to verify the importance of the language-specific
knowledge for the ABSA problem. Experiments
with five languages show the effectiveness of our
methods.
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