Sequence Length is a Domain:
Length-based Overfitting in Transformer Models

Dusan VariS and Ondrej Bojar
Faculty of Mathematics and Physics, Charles University,
Malostranské nameésti 25,
118 00 Prague, Czechia
{varis,bojar}@ufal.mff.cuni.cz

Abstract

Transformer-based sequence-to-sequence ar-
chitectures, while achieving state-of-the-art re-
sults on a large number of NLP tasks, can still
suffer from overfitting during training. In prac-
tice, this is usually countered either by apply-
ing regularization methods (e.g. dropout, L.2-
regularization) or by providing huge amounts
of training data. Additionally, Transformer
and other architectures are known to struggle
when generating very long sequences. For
example, in machine translation, the neural-
based systems perform worse on very long
sequences when compared to the preceding
phrase-based translation approaches (Koehn
and Knowles, 2017).

We present results which suggest that the is-
sue might also be in the mismatch between the
length distributions of the training and valida-
tion data combined with the aforementioned
tendency of the neural networks to overfit to
the training data. We demonstrate on a simple
string editing task and a machine translation
task that the Transformer model performance
drops significantly when facing sequences of
length diverging from the length distribution
in the training data. Additionally, we show that
the observed drop in performance is due to the
hypothesis length corresponding to the lengths
seen by the model during training rather than
the length of the input sequence.

1 Introduction

Current state-of-the-art Transformer-based se-
quence generation models, either fine-tuned for
chosen downstream tasks (Devlin et al., 2019), or
trained from scratch for specific tasks such as ma-
chine translation (Vaswani et al., 2017) or speech
recognition (Pham et al., 2019), more and more
often achieve performance comparable to that of
humans (Hassan et al., 2018; Popel et al., 2020;
Nguyen et al., 2020). However, such models fre-
quently require billions of trainable parameters
together with huge amounts of data (billions of

tokens) to reach such performance (Brown et al.,
2020).

The good performance on held-out test sets
seems to confirm the good generalization power of
these models, although the inherent strong biases,
sometimes leading to the use of a foul and toxic
language, preserving stereotypes, etc., are well ac-
knowledged (Gehman et al., 2020). Brown et al.
(2020) claim that their Transformer model is also
capable of simple arithmetics, however, it is yet
to be validated whether the model truly learns the
arithmetic algorithms or simply encodes a lookup
table for a subset of specific examples.

In this paper, we argue that the assumed gen-
eralization power of the current state-of-the-art
Transformer-based language generators does not
come from the architecture itself but rather from
the sheer volume of training data and the model’s
ability to exploit the similarities between the train-
ing and validation data. We demonstrate how the
Transformer-based sequence-to-sequence models
fail when the target sequence lengths of the training
and validation data do not match. We show that
this holds not only for very long test sequences but
can be observed even with short sequences if they
are omitted from the training data. Furthermore,
we show that we can artificially improve the test
performance on longer sequences by only using
shorter training sequences and concatenating them
into longer training examples.

We do not argue about Transformer’s (in)ability
to handle long-distance dependencies, but our re-
sults suggest that a considerably simpler reason of
mismatching sequence length can also contribute
to the performance drop. We think that our find-
ings can lead to better understanding of the Trans-
former architecture and help to design better train-
ing schemes (e.g. curriculum learning).

8246

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 8246-8257
November 7-11, 2021. (©)2021 Association for Computational Linguistics

2 Related Work

The problem of modeling very long sequences has
been studied mainly in the context of recurrent neu-
ral networks (RNNs). Early studies showed that
using LSTMs (Sutskever et al., 2014) and intro-
ducing attention (Bahdanau et al., 2014; Luong
et al., 2015) can improve the model performance
on long sequences. However, these models still
got outperformed on long sequences by phrase-
based models (Koehn and Knowles, 2017). This
problem was not resolved with the introduction of
Transformers (Vaswani et al., 2017). Surprisingly,
even though there were previous studies explain-
ing the weaknesses of RNNs with respect to long
sequence modeling (Hochreiter and Schmidhuber,
1997; Hochreiter, 1998), similar analyses are yet to
be done for Transformers which are fundamentally
different from RNNs.

There is an ongoing debate about the proper way
of splitting the available data to training and eval-
uation subsets. Gorman and Bedrick (2019) show
that using only standard dataset splits can lead to
a biased evaluation resulting in overestimating the
generalization ability of the model. Furthermore,
Sggaard et al. (2020) argue that even using ran-
domly sampled dataset splits does not solve the
overestimation problem. They instead suggest us-
ing multiple test sets possibly of an adversarial na-
ture to properly evaluate the generalization ability
of the model.

In the following experiments, we evaluate vanilla
Transformer on such adversarial splits created with
respect to the lengths of the modeled sequences.
Although similar analyses were performed in the
past (Neishi and Yoshinaga, 2019; Kondo et al.,
2021), it was at a smaller scale and mainly in the
context source-side length bucketing.

3 Experiments

We demonstrate the lack of ability to generalize
to sequences of lengths not seen during training
on two separate tasks: string editing and machine
translation (MT).

We use Fairseq framework for sequence-to-
sequence learning (Ott et al., 2019) in our exper-
iments.! Details about the model parameters and
training are available in Appendix A.

Input | Output
push111010 10101
reverse — 110011 | 11001

Table 1: Input and output example for push and
reverse tasks. Hyphen (—) indicates an empty ar-
gument for the latter task.

\ 0-10 11-15 16-20

copy 62.6 100.0 0.0
push 59.1 100.0 0.0
pop 0.1 100.0 0.0
shift 52.5 100.0 0.0
unshift 41.2 100.0 0.0
reverse 0.0 84.4 0.0
all \ 15.822 97.5 0.978

Table 2: Accuracy (in %) of models trained on various
string editing tasks using only training data from the
11-15 length bucket evaluated on datasets with differ-
ent sequence lengths. Each model was evaluated on its
respective task domain.

3.1 String Editing Operations

In the first set of experiments, we focus on learning
simple string editing algorithms. We chose this task
because we think it is an interesting alternative to
standard NLP tasks that often struggle with evalua-
tion ambiguity (multiple possible outputs in MT or
text generation with nuanced degree of quality) and
proper training/validation separation (partial over-
lap between train and test sentences leading to lack
of clarity how much model actually generalizes to
new inputs).
We chose to study the following tasks:

* copy: copy the input sequence to the output,

* unshift X, push X: add a single character (X)
to the beginning or the end of the sequence
respectively

* shift, pop: remove a single character from the
beginning or the end respectively,

e reverse: reverse the character order in the in-
put sequence

As for the experiment setup, we generate a
dataset of sequences consisting of two characters
(e.g. 0 and 1), separated by whitespace, with no
duplicate sequences. Then, we split the dataset
into three separate buckets according to sequence

"https://github.com/pytorch/fairseq

8247

https://github.com/pytorch/fairseq

Bucket \ 0-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80
of sent. pairs (M) 30.9 18.0 7.5 3.9 2.3 1.2 0.7 0.4
#of tokens (M) | 3753 5026 361.6 2689 198.9 132.6 87.3 59.5

Table 3: Sizes of the respective training buckets (created based on the target sequence length) in millions of
sentence pairs and millions of tokens (after tokenization and applying BPE, combined source and target size).

lengths, 0 — 10, 11 — 15 and 16 — 20 respectively.
We sample 1,000 sequences from the 0 — 10 and
16 — 20 buckets for test-time evaluation. We split
the 11 — 15 bucket into a validation (1,000 exam-
ples), test (1,000 examples) and training (28,000
examples) from a sample of 30k examples without
repetition.

Given these data splits, we create datasets for
each task by adding the task label, character (0, 1
for unshift and push, — for others) and a separator
() to the beginning of each sequence.> We create
target sequences for each task according to the re-
spective task definition. Table 1 shows examples
of the networks inputs.

For each task, we train a separate net-
work on the 11-15 training data. Model de-
tails are available in Appendix A.l. We
evaluate the models by measuring accuracy
ACC = num_correct/num_examples, where
num_correct is the number of exact matches be-
tween the hypothesis and reference strings. Table 2
shows the accuracy of the models trained on each
task and evaluated on the varying test set buckets.
We can see that the models generalize very well
on the unseen sequences with length similar to the
training sequences, all reaching the perfect accu-
racy except the reverse task. On the other hand,
when facing shorter or longer sequences, the per-
formance drops significantly.

Table 2 also shows results of the training a net-
work on all tasks simultaneously (all; by concate-
nating and shuffling respective training data and
performing evaluation on the concatenation of the
respective testsets). The resulting performance is
similar to that of a single-task model.

These results suggest that the length distribution
similarity between the training and validation data
is important and that the vanilla Transformer de-
coder is prone to overfitting to the sequence lengths
seen during training.

2The arguments for unshift and push are sampled from a
Bernoulli distribution with O character having p = 0.5.

3.2 Machine Translation

To see whether our findings within the string edit-
ing tasks also hold for natural language which has
more complex structure, we perform similar exper-
iments on English-Czech translation.

We use CzEng 2.0° (Kocmi et al., 2020) as our
training corpus, a concatenation of WMT2020 (Bar-
rault et al., 2020) newstest13-16 as held-out
test set and a concatenation of newstest17-20
for final evaluation.* We tokenize our data using
Moses tokenizer.” We use byte-pair encoding (Sen-
nrich et al., 2016) on our training data, to create
subword segmentation of size 30k.® We split all
tokenized and BPE-segmented datasets into buck-
ets of sizes 1-10, 11-20, ..., 91-100 (labeled as 10,
20, ..., 100 respectively) based on the number of
tokens on the target side. Table 3 shows the sizes
of the respective training corpora. We train a sep-
arate model for each training bucket. Details on
the model hyper-parameters are available in Ap-
pendix A.2.

We evaluate how the length of the training
data affects the performance with respect to the
length of the test data using BLEU (Papineni et al.,
2002), namely the SacreBLEU implementation
(Post, 2018).” Figure 1 (Top) shows that regard-
less of the training bucket, the model performs best
when presented with data of target-side length sim-
ilar to the length of the training data. This confirms
that the model overfits to the length of the train-
ing data, affecting its performance even on shorter
sentences. The performance further decreases with
increasing train-test length difference, although it
needs to be noted that the BLEU scores between
different testset buckets are not directly compara-
ble due to the nature of the scoring metric and the
fact that each testset bucket contains different test

Shttps://ufal.mff.cuni.cz/czeng

*We download the newstest corpora using SacreBLEU
(Post, 2018).

Shttps://github.com/moses—smt/
mosesdecoder.git

®https://github.com/rsennrich/
subword-nmt .git

"https://github.com/mjpost/sacrebleu

8248

https://ufal.mff.cuni.cz/czeng
https://github.com/moses-smt/mosesdecoder.git
https://github.com/moses-smt/mosesdecoder.git
https://github.com/rsennrich/subword-nmt.git
https://github.com/rsennrich/subword-nmt.git
https://github.com/mjpost/sacrebleu

—©— TrainBucket = 10
—O— TrainBucket = 20
TrainBucket = 30
TrainBucket = 40
—&— TrainBucket = 50
—— TrainBucket = 60
—A— TrainBucket = 70
TrainBucket = 80
Full CzEng

9 | |
80 90 100 110 120
—@&— TrainBucket = 10

—©— TrainBucket = 20
TrainBucket = 30

BLEU
—
(e}
T

— O [T
—
(en]
o
(en]
w
=)
o
o
o
(es]
[N
=)
\]
(e

TrainBucket = 40
——©&— TrainBucket = 50
—&— TrainBucket = 60
—A— TrainBucket = 70

TrainBucket = 80

Full CzEng

Hyp/Ref Ratio

v o —<—0o—5
50 60 70 80 90 100 110 120
Test Bucket

Figure 1: Top: Varying performance of Transformers on test data trained only on the data from a specific target-
side length bucket (various lines) when evaluated on a specific test bucket (x-axis). When the train-test sentence
length difference increases, the performance drops. Note that BLEU scores are not directly comparable across
different test sets (i.e. horizontally). Within each test set, we see that the Full CzEng and the training bucket of
the matching length are the two best results. Bottom: Average ratio between a hypothesis and reference. Dashed
line indicates a ratio of 1.0. Systems trained on short sentences produce short outputs, systems trained on long

sentences produce up to 10x longer outputs (Train Bucket 80 evaluated on Test Bucket 10).

examples. Figure 1 (Bottom) explains the main
reason behind the BLEU decrease: the increased
hypothesis/reference length ratio, further support-
ing the length overfitting argument. Note that the
lower performance of the models trained on the
70 and 80 buckets migth be due to significantly
smaller size of training data (< 1M sentence pairs).
In Appendix B, we also provide a case study of the
models trained on various length buckets.

The length-controlled experiment results pre-
sented by Neishi and Yoshinaga (2019), while not
directly focused on exploring the target-side length
overfitting phenomenon, point to a similar behavior
of vanilla Transformers with regards to both longer
and shorter test sentences. Based on their results,
the replacement of the absolute positional embed-
dings with a variation of relative-position embed-
dings (Shaw et al., 2018; Neishi and Yoshinaga,
2019) seems like a promising approach towards
alleviating the length overfitting problem.

To see whether we can exploit the target-side
length overfitting behaviour, we also set up a sep-
arate experiment, similar to Kondo et al. (2021).
We take the 10, 20 and 30 training buckets and
concatenate the sentences in each of them to create
synthetic datasets with target-side lengths 51-60
(containing on average 6, 3 and 2 sentences per
training example, respectively). We apply the same

training strategy using the synthetic data to see how
strongly can the length of the training examples (al-
though artificial) affect the model performance on
the test examples of similar length.

Figure 2 shows that the simple concatenation
of shorter training sentence pairs can lead to a
performance similar to the model trained on the
genuinely longer sentences. Only the performance
of the model trained on the concatenation of very
short sentences (the line “TrainBucket.Concat=10"
in Figure 2) drops significantly, possibly because
the model does not learn to handle any dependen-
cies beyond the length of 10 and such dependencies
seem to emerge in test sentences with length over
40, where the model starts to underperform.

Kondo et al. (2021) show that augmenting the
existing training data with additional training exam-
ples that were created by concatenation of shorter
sentences can help to improve model performance
on very long sentences. Our results show that the
synthetic concatenated data on their own can be
sufficient to train a model that is competitive when
applied to sentences from the similar target-length
domain as the training examples. We also argue
that due to a different bucket preparation strategy
(based on the source-length in the previous work),
the target-side length overfitting phenomenon is not
as clear in Kondo et al. (2021) as in our work. In

8249

I T
2
<
15 = \\G\Q\ |
R -
=) 2 U0
m 10 .
'J =t
m / = —O— TrainBucket.Concat = 10
5 o —O— TrainBucket.Concat = 20
/ 2 TrainBucket.Concat = 30
0 & TrainBucket = 60
| I I

| |
20 40 60 80 100
Test Bucket

Figure 2: Comparison of the performance of a model
trained on genuine data from the 60-length bucket with
models trained on synthetic 60-length datasets created
by concatenation of 10, 20 and 30-bucket sentences re-
spectively.

Appendix C, we provide additional results from the
experiments where the dataset bucketing is based
on the source-side length instead of the target-side
length for comparison.

4 Conclusion

We showed in our targeted experiment that vanilla
Transformer sequence-to-sequence models have a
strong tendency to overfit with regard to the target-
side length of the training sequences. On a sim-
ple algorithmic task, we documented that Trans-
former can generalize very well to unseen exam-
ples within the same length bucket but falls short
if the same task is required for input of a different
length, shorter or longer. The algorithm of the task,
even if very simple, is not learned.

We further confirmed the overfitting problem on
the machine translation task. This suggests that
long-distance dependencies are not the only reason
behind the decreased performance when translating
very long sentences. We think that our findings can
shed a new light on specific areas of deep learning
research, namely domain adaptation and curricu-
lum learning.

We also showed that data augmentation can
tackle the data sparsity in the domain of very long
sentences.

Acknowledgements

This work was supported by the GA CR
NEUREM3 grant (Neural Representations in Multi-
modal and Multi-lingual Modelling, 19-26934X
(RIV: GX19-26934X)) and by SVV 260 453 grant.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. = CoRR,
abs/1409.0473.

Loic Barrault, Ondfej Bojar, Fethi Bougares, Rajen
Chatterjee, Marta R. Costa-jussa, Christian Feder-
mann, Mark Fishel, Alexander Fraser, Yvette Gra-
ham, Paco Guzman, Barry Haddow, Matthias Huck,
Antonio Jimeno Yepes, Philipp Koehn, André Mar-
tins, Makoto Morishita, Christof Monz, Masaaki Na-
gata, Toshiaki Nakazawa, and Matteo Negri, edi-
tors. 2020. Proceedings of the Fifth Conference
on Machine Translation. Association for Computa-
tional Linguistics, Online.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-
Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu,
Clemens Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Advances in Neural Information Processing Systems,
volume 33, pages 1877-1901. Curran Associates,
Inc.

Jonathan H. Clark, Chris Dyer, Alon Lavie, and
Noah A. Smith. 2011. Better hypothesis testing for
statistical machine translation: Controlling for op-
timizer instability. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
176-181, Portland, Oregon, USA. Association for
Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Samuel Gehman, Suchin Gururangan, Maarten Sap,
Yejin Choi, and Noah A. Smith. 2020. Realtoxi-
cityprompts: Evaluating neural toxic degeneration
in language models. In EMNLP (Findings), pages
3356-3369. Association for Computational Linguis-
tics.

Kyle Gorman and Steven Bedrick. 2019. We need to
talk about standard splits. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 2786-2791, Florence,
Italy. Association for Computational Linguistics.

8250

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://www.aclweb.org/anthology/2020.wmt-1.0
https://www.aclweb.org/anthology/2020.wmt-1.0
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://aclanthology.org/P11-2031
https://aclanthology.org/P11-2031
https://aclanthology.org/P11-2031
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P19-1267
https://doi.org/10.18653/v1/P19-1267

Hany Hassan, Anthony Aue, Chang Chen, Vishal
Chowdhary, Jonathan Clark, Christian Feder-
mann, Xuedong Huang, Marcin Junczys-Dowmunt,
William Lewis, Mu Li, Shujie Liu, Tie-Yan Liu,
Rengian Luo, Arul Menezes, Tao Qin, Frank Seide,
Xu Tan, Fei Tian, Lijun Wu, Shuangzhi Wu, Yingce
Xia, Dongdong Zhang, Zhirui Zhang, and Ming
Zhou. 2018. Achieving human parity on auto-
matic chinese to english news translation. CoRR,
abs/1803.05567.

Sepp Hochreiter. 1998. The vanishing gradient prob-
lem during learning recurrent neural nets and prob-
lem solutions. Int. J. Uncertain. Fuzziness Knowl.-
Based Syst., 6(2):107-116.

Sepp Hochreiter and Jirgen Schmidhuber. 1997.
Long short-term memory. Neural Comput.,
9(8):1735-1780.

James Kirkpatrick, Razvan Pascanu, Neil C. Rabi-
nowitz, Joel Veness, Guillaume Desjardins, An-
drei A. Rusu, Kieran Milan, John Quan, Tiago Ra-
malho, Agnieszka Grabska-Barwinska, Demis Hass-
abis, Claudia Clopath, Dharshan Kumaran, and Raia
Hadsell. 2017. Overcoming catastrophic forgetting
in neural networks. Proceedings of the National
Academy of Sciences of the United States of Amer-
ica, 114 13:3521-3526.

Tom Kocmi, Martin Popel, and Ondrej Bojar. 2020.
Announcing czeng 2.0 parallel corpus with over 2
gigawords. arXiv preprint arXiv:2007.03006.

Philipp Koehn and Rebecca Knowles. 2017. Six chal-
lenges for neural machine translation. In Proceed-
ings of the First Workshop on Neural Machine Trans-
lation, pages 28-39, Vancouver. Association for
Computational Linguistics.

Seiichiro Kondo, Kengo Hotate, Tosho Hirasawa,
Masahiro Kaneko, and Mamoru Komachi. 2021.
Sentence concatenation approach to data augmenta-
tion for neural machine translation. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Student Research Workshop, pages 143—149, Online.
Association for Computational Linguistics.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1412-1421, Lis-
bon, Portugal. Association for Computational Lin-
guistics.

Masato Neishi and Naoki Yoshinaga. 2019. On the
relation between position information and sentence
length in neural machine translation. In Proceed-
ings of the 23rd Conference on Computational Nat-
ural Language Learning (CoNLL), pages 328-338,
Hong Kong, China. Association for Computational
Linguistics.

Thai-Son Nguyen, Sebastian Stiiker, and Alex Waibel.
2020. Super-human performance in online low-
latency recognition of conversational speech. CoRR,
abs/2010.03449.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311-318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Ngoc-Quan Pham, Thai-Son Nguyen, Jan Niehues,
Markus Miiller, and Alex Waibel. 2019. Very deep
self-attention networks for end-to-end speech recog-
nition. In INTERSPEECH, pages 66—70. ISCA.

Martin Popel, Marketa Tomkova, Jakub Tomek,
Lukasz Kaiser, Jakob Uszkoreit, Ondfej Bojar, and
Zden&k Zabokrtsky. 2020. Transforming machine
translation: a deep learning system reaches news
translation quality comparable to human profession-
als. Nature Communications, 11(4381):1-15.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186—
191, Belgium, Brussels. Association for Computa-
tional Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715—
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani.
2018. Self-attention with relative position represen-
tations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 464-468,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Anders Sggaard, Sebastian Ebert, J. Bastings, and
Katja Filippova. 2020. We need to talk about ran-
dom splits. CoRR, abs/2005.00636.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Sys-
tems, volume 27. Curran Associates, Inc.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz

8251

https://doi.org/10.1142/S0218488598000094
https://doi.org/10.1142/S0218488598000094
https://doi.org/10.1142/S0218488598000094
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.18653/v1/W17-3204
https://doi.org/10.18653/v1/W17-3204
https://doi.org/10.18653/v1/2021.naacl-srw.18
https://doi.org/10.18653/v1/2021.naacl-srw.18
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.18653/v1/K19-1031
https://doi.org/10.18653/v1/K19-1031
https://doi.org/10.18653/v1/K19-1031
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://www.aclweb.org/anthology/W18-6319
https://www.aclweb.org/anthology/W18-6319
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/N18-2074
https://doi.org/10.18653/v1/N18-2074
http://arxiv.org/abs/2005.00636
http://arxiv.org/abs/2005.00636
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf

Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 6000-6010. Curran Asso-
ciates, Inc.

8252

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

A Model Details

In the following section, we provide the details
of the used models and their training. All the de-
scribed models are implemented in Fairseq (Ott
etal., 2019). During training, we use word-level
cross-entropy loss with teacher forcing (Bahdanau
etal., 2014; Vaswani et al., 2017) which is a current,
widely used approach to the sequence-to-sequence
Transformer training. During decoding, we use
beam search with beam size 4 and length penalty
0.6.

A.1 String Editing

In the experiments with string editing, we use the
transformer parameter setting with the follow-
ing modifications:

* embeddings size: 128,

o feedforward size: 512,

¢ number of attention heads: 8,
 encoder/decoder depth: 1,

* batch size: 4,096 tokens,

* learning rate Se-4,

» warmup steps: 4,000,

e dropout: 0.3,

* train epochs: 100

A2

In the machine translation experiments, we use the
transformer parameter setting with the follow-
ing modifications:

Machine Translation

* embeddings size: 512,

o feedforward size: 2048,

¢ number of attention heads: 8,
* encoder/decoder depth: 6,

* batch size: 4,096,

* learning rate: Se-4,

* warmup steps: 4,000,

e dropout: 0.3

$https://github.com/pytorch/fairseq

During training, we apply early stopping: if the
model performance in BLEU (Papineni et al., 2002)
does not improve for 10 epochs (evaluated on the
complete held-out test set without length splits),
the training is terminated.

B Translation Output Examples

Figure 3 shows example outputs from models
trained on various target-length training buckets
(10-, 30- and 60-bucket) produced by translating
a chosen 30-bucket testset inputs. The examples
demonstrate that he models have tendencies to pro-
duce outputs with length similar to the training data
while trying to satisfy the translation of the source
sentence resulting in the longer, 60-bucket model
repeating certain phrases or sentences while intro-
ducing grammatical errors (e.g. wrong agreement,
preposition choice) or mistranslations. On the other
hand, the shorter, 10-bucket model manages to drop
parts of the input sentence while maintaining a rea-
sonable fluency and grammatical correctness of the
output.

Figure 4 shows example of outputs from mod-
els trained on the synthetic 60-bucket data cre-
ated by concatenation of the shorter training buck-
ets. At first glance, all three hypotheses are very
similar and are reasonably good translations of
the source sentence, however, all systems made
a wrong surface form and preposition choice for
“na Vinohradech” (the same grammatical mistake
as with “na Zizkové&” in Figure 3), producing an
incorrect but literal translation of the English “in
Vinohrady”. Additionally, all three systems chose
a literal translation of the word “approach”, which
is incorrect in the given context. The incorrect
surface form of the translation “zaloZeno na do-
poruceni” in Hypl suggests that training a model
on a concatenation of very short sentences may
lead to incorrect modeling of long-range dependen-
cies. Surprisingly, the Hyp3 system mistranslated
the phrase “work on the reconstruction” (“k rekon-
strukci” in the output) while Hyp2 system produced
a correct translation, though this error is most likely
a result of different set of training sentences in the
Hyp2 and Hyp3 training data rather than the lenght
of the training sentences (before concatenation).

C Source-Side Bucketing Experiments

For comparison, we repeated the translation exper-
iments using source-side length-based bucketing
of the training and validation data. Figure 6 shows

8253

https://github.com/pytorch/fairseq

Source (30-bucket)

The company does not collect its mail and it has closed its official headquarters in Zizkov more
than six years ago.

Hyp1 (10-bucket)
Hypl (gloss)

Spole¢nost nesbird postu a zaviel oficidln{ sidlo.
The company does not gather mail and closed official headquarters.

Hyp2 (30-bucket)
Hyp?2 (gloss)

Spolegnost neshromazd’uje postu a jiz pred vice nez Sesti lety zaviela své oficidlni sidlo v Zizkové.
The company does not collect mail and more than six years ago closed its official headquarters
in ZiZkov.

Hyp3 (60-bucket)

Hyp3 (gloss)

Spolecnost nevybird postu a uzaviela své oficidln{ sidlo v Zizkové vice nez Sest let ago. v Zizkove.

Spole¢nost neshromazd’uje postu a uzavird oficidlni Ustfedi v Zizkové vice neZ Sest let agr. o.

The company does not pick up mail and closed up its official its official headquarters in Zizkov
more than six years ago. in Zizkov. The company does not collect mail and closes up official

headquarters in Zizkov more than six years agr. o.

Reference (30-bucket)
Ref (gloss)

Nepiebira postu a oficidlni sidlo na Zizkové zrusila pred vice neZ esti lety.
(The company) does not collect mail and official headquarters in Zizkov closed up more than six
years ago.

Source (30-bucket)

The perpetrators ended up in custody, said Marie Strbakov4, the spokeswoman of Olomouc police.

Mluvila s ni Marie Strkovdkovd
Talked to her, Marie Strkovdkovd

Hyp1 (10-bucket)
Hypl (gloss)

Hyp2 (30-bucket)
Hyp?2 (gloss)
police.

Pachatelé skoncili ve vazbé, fekla Marie Strbdkovdova, mluvci Olomouckého policie.
The perpetrators ended up in custody, said Marie Strbdkovdovd, the spokeswoman of Olomouc

skoncovali

v uschové,

"uvedla Marie Strbikovdovd, mluv& Olomoucké

Hyp3 (60-bucket) Uchazedi

policie, kterd se stala mluvci Olomouckého vojska, a to v tischové.

Hyp3 (gloss)

The candidates ended up in storage, "introduced Marie Strbdkovdovd, the spokeswoman of Olo-

mouc police, which became the spokeswoman of Olomouc army, and in storage.

Ref (30-bucket)
Ref (gloss)

Pachatelé skon¢ili ve vazbg, informovala olomouckd policejni mluvéi Marie Strbdkova.
The perpetrators ended up in custody, informed Olomouc police spokeswoman Marie Strbdkovad.

Figure 3: Example translations from systems trained on specific target-length-restricted datasets. Both examples
demonstrate over and under-generation of systems trained on datasets containing longer (60-bucket) and shorter
(10-bucket) sentences when applied to inputs with length of reference translation different from the training data
(30-bucket). We provide rough, “word-for-word” translations of the produced outputs (in ifalics) with color high-
lighting of some of the phrases and their corresponding English translation for better comprehension. The underline
highlights grammatical errors or mistranslations in the output.

the performance of the bucketed models with re-
spect to testset of various bucket sizes. While the
results are similar to the target-side bucketing ex-
periments, the overfitting phenomenon is less clear
in several cases (e.g. 20-bucket system reaching
higher BLEU than 10-bucket system on 10-bucket
testset or the relative system ranking on the 60-
bucket testset).

We think that the possible reason is the differ-
ence between the source-side length and the length
of training/validation reference leading to possible
overlap of target-side lengths between the differ-
ent train/validation buckets. Figure 5 shows the
length distributions of target-side lengths within
each training and validation bucket. Although the
length-wise overlap between the target-side of the
training/validation examples is manifested mostly

in the 1°¢ and 4" quartile, we think that it helps
to support the argument that the length-based over-
fitting should be studied with respect to the target-
side length instead of the source-side. Furthermore,
the length of the target-side (Czech) in the test
dataset is generally smaller than the source-side
(English), resulting in additional domain mismatch
between the training-test buckets. Note that very
long target-side outliers in the training data are
most likely a result of an imperfect sentence-pair fil-
tering after the inclusion of the additional synthetic
parallel data (forward and backward translation) to
the CzEng 2.0 corpus.

Based on the reviewer’s suggestion, we also mea-
sured the effect of finetuning a system trained on
the whole training dataset using a source-side buck-
eted training data. Each system was fine-tuned for

8254

Source (60-bucket)

We have already worked with Lenka Langerova on our flat in the mountains based on a recom-
mendation from another client and because everything worked well we decided to approach her
to work on the reconstruction of our new flat in Vinohrady.

Hyp1 (10-bucket-concat)

UZ jsme pracovali s Lenkou Langerovou na nasem byté v hordch zaloZeno na doporuceni od
jiného klienta a protoZe vSechno fungovalo dobfe, rozhodli jsme se k nf pfibliZit k praci na
rekonstrukci naseho nového bytu ve Vinohrady.

Hyp2 (30-bucket-concat)

JiZ jsme spolupracovali s Lenkou Langerovou na nasem byté v hordch na zdkladé doporuceni
jiného klienta a protoze vse fungovalo dobfe, rozhodli jsme se, Ze se k ni pfiblizime, aby
pracovala na rekonstrukci naseho nového bytu ve Vinohrady.

Hyp3 (60-bucket)

Jiz jsme s Lenkou Langerovou spolupracovali na naSem bytu v hordch na zdkladé do-

porucent jiného klienta a protoze vse fungovalo dobre, rozhodli jsme se, Ze se k nf priblizime
k rekonstrukci naseho nového bytu ve Vinohrady.

Ref (60-bucket)

S architektkou Lenkou Langerovou jsme spolupracovali uz na nasem horském apartmanu, tehdy
na bazi osobniho doporucent jiného klienta, a vzhledem k tomu, Ze vSe dobfe fungovalo, byla
pro nés jasnd volba i pii rekonstrukci naseho nového bytu na Vinohradech.

Figure 4: Example of translation hypotheses generated by a system trained on a genuine 60-bucket data and sys-
tems trained only on a concatenation of shorter training examples (10-bucket-concat, 30-bucket-concat) for com-
parison. Color highlighting indicates the correspondence of Czech and English phrases. The underline highlights

grammatical errors in the output.

30 epochs, although, it is important to note that the
validation BLEU of each fine-tuned system was
dropping during training (compared to the BLEU
of the initial model) when evaluated against the
whole non-bucketed validation dataset. In Figure 7,
we can see a growing effect of catastrophic forget-
ting (Kirkpatrick et al., 2017): all models initially
saw all lengths during pretraining but specialized
for a specific length bucket during finetuning. In-
terestingly, the forgetting effect is stronger for test
buckets that are longer than the finetuning lengths
while the models show much better retention of the
ability to model shorter sentences.

Lastly, we also performed a comparison be-
tween the baseline MT system and the combina-
tion of systems trained on a specific source-side
length buckets training datasets. We extracted
sentences from our test dataset with source-side
length 0-80, translated them with the respective
systems and computed the BLEU scores using
MultEval (Clark et al., 2011).” We compared
a system combination trained using only a spe-
cific length-bucket dataset (bucketed) applied
on the respective “in-domain” parts of the test
dataset. We also provide comparison with the
system combination initialized by the baseline
model and then fine-tuned on the respective length-
bucket datasets (bucketed.tuning). Addition-
ally, we also trained a system using CzEng 2.0 with
additional source-side labels indicating a length-

‘https://github.com/jhclark/multeval

\ BLEU

baseline | 19.1 +£0.2
bucketed | 18.9 + 0.2
bucketed.tuning | 17.1 £0.2
bucket.labels | 16.7 + 0.2

Table 4: Comparison of the translation performance of
the baseline model trained on the whole CzEng 2.0,
and source-length specialized models. bucketed is
a combination of systems trained on the source-length
bucketed training data, bucketed.tuning is a sim-
ilar combination, where systems were first initialized
by the baseline model and then fine-tuned for 30
epochs on their respective buckets. bucket . labels
is a system trained on the whole CzEng 2.0 with inclu-
sion of the source-side bucket length labels on the in-
put. The systems were evaluated using MultEval (Clark
et al., 2011) using a bootstrapping over a test dataset
containing sentences of source-side lengths 0—80. Only
a single optimizer run was performed for each evalu-
ated system.

bucket in which a given training example ended
up after the source-side length-based dataset split-
ting (bucket .labels),e.g “<20> Example sen-
tence...” for a sentence from a bucket 11-20. This
model was evaluated on the same test dataset with
inclusion of these source-side length-bucket labels.

The results in Table 4 suggest that the length-
based specialization of the models does not outper-
form the baseline. One of the possible explanations
is a fact that baseline system was trained on the

8255

https://github.com/jhclark/multeval

71-80 fi------- 4
61-70 |-~~~ 1
51-60 f------1
41-50 ||

31-40 |

21-30 |

11-20 H]

0-10 ff———— .
L

L L L
0 50 100 150 200 250 300

Source Length

Target Length
T T T T
7180 F -1k .
6170 F =1+ .
S L i
g S1-60| i
8 4150 HH .
& 31-40 -HH .
=
g 2130 [HH .
11-20 | :
0-10 |H :

L L L
100 150 200 250 300
Target Length

o
(A
o

Figure 5: Distribution of lengths of target-side refer-
ences within the training (top) and validation (bottom)
datasets after splitting them into source-side length
buckets. Both figures have identical x-axis scaling for
better comparison. The long whiskers of the training
bucket length distributions are a result of a noisy nature
of CzEng 2.0 training corpus.

whole CzEng 2.0 containing even sentences longer
than 80. Although the bucket .labels was also
trained using the whole CzEng 2.0, the results sug-
gest that a simple inclusion of the source-length
bucket information does not contribute towards a
better translation performance.

8256

—&— TrainBucket = 10
A———A— i
—h A A —O— TrainBucket = 20

———— TrainBucket = 30
——— TrainBucket = 40
—O— TrainBucket = 50
—— TrainBucket = 60
—A— TrainBucket = 70
——#—— TrainBucket = 80
—#A—— Full CzEng

20 -

10 -

BLEU

L ! ! ! ! \ \ y T B © ! N
0 10 20 30 40 50 60 70 80 90 100 110 120
T T

—@&— TrainBucket = 10
—O— TrainBucket = 20
——— TrainBucket = 30
——— TrainBucket = 40
—&— TrainBucket = 50
—&— TrainBucket = 60
—A— TrainBucket = 70
———— TrainBucket = 80
—A— Full CzEng

Hyp/Ref Ratio
[\
T

o
—_
o
()
o
w
(e}
=
(an)

50 60 70 80 90 100 110 120
Test Bucket

Figure 6: Top: Varying performance of Transformers on test data trained only on the data from a specific source-
side length bucket (various lines) when evaluated on a specific test bucket (x-axis). BLEU scores are not directly
comparable across different test sets (i.e. horizontally). Bottom: Average ratio between a hypothesis and reference.
Dashed line indicates a ratio of 1.0.

—&— TrainBucket = 10
—&— TrainBucket = 20
—— TrainBucket = 30
——— TrainBucket = 40
—— TrainBucket = 50
—&A— TrainBucket = 60
—A— TrainBucket = 70
——A—— TrainBucket = 80
—#A—— Full CzEng

T
20| -
15|

BLEU

10

|
0 10 20 30 40 50 60 70 80 90 100 110 120

—@&— TrainBucket = 10

—&— TrainBucket = 20
4 | ——— TrainBucket = 30
——— TrainBucket = 40
—&— TrainBucket = 50
—&— TrainBucket = 60
—A— TrainBucket = 70

~——#—— TrainBucket = 80
—A—— Full CzEng

Hyp/Ref Ratio
[\
T

|
0 10 20 30 40 50 60 70 80 90 100 110 120
Test Bucket

Figure 7: Top: Varying performance of Transformers on test data trained on all of CzEng and fine-tuned only on
the data from a specific source-side length bucket (various lines) when evaluated on a specific test bucket (x-axis).
BLEU scores are not directly comparable across different test sets (i.e. horizontally). Bottom: Average ratio
between a hypothesis and reference. Dashed line indicates a ratio of 1.0. We preserve the scaling of all the plots
for better comparability across the figures.

8257

