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Abstract

Natural language generation (NLG) spans a
broad range of tasks, each of which serves for
specific objectives and desires different proper-
ties of generated text. The complexity makes
automatic evaluation of NLG particularly chal-
lenging. Previous work has typically focused
on a single task and developed individual eval-
uation metrics based on specific intuitions. In
this paper, we propose a unifying perspective
based on the nature of information change in
NLG tasks, including compression (e.g., sum-
marization), transduction (e.g., text rewriting),
and creation (e.g., dialog). Information align-
ment between input, context, and output text
plays a common central role in characterizing
the generation. With automatic alignment pre-
diction models, we develop a family of inter-
pretable metrics that are suitable for evaluating
key aspects of different NLG tasks, often with-
out need of gold reference data. Experiments
show the uniformly designed metrics achieve
stronger or comparable correlations with hu-
man judgement compared to state-of-the-art
metrics in each of diverse tasks, including text
summarization, style transfer, and knowledge-
grounded dialog.1

1 Introduction

Natural language generation (NLG) refers to the
broad set of tasks that produce fluent text from
input data and other contextual information. The
diverse tasks serve for vastly different uses in prac-
tice. For example, summarization compresses a
source article into a short paragraph containing the
most important information; translation transduces
content expressed in one language into another;
and a chatbot creates novel responses to drive the
conversation. Recent years have seen remarkably
fast progress in improving and making new models

1Code available at https://github.com/
tanyuqian/ctc-gen-eval
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Figure 1: Illustration of three categories of NLG tasks
in terms of information change. Task input is in blue
box and output in orange box. Text in red in the dialog
output box represents newly created information.

for NLG tasks. However, evaluation of NLG has
long been considered difficult (Kryscinski et al.,
2019; Mathur et al., 2020): human evaluation is
often prohibitively expensive and slow, while ac-
curate automatic evaluation is challenging given
the complexity of text modeling and the diverse
aspects to be measured for different NLG tasks.

Previous work has developed a large variety of
automatic metrics. A popular general strategy is to
measure the similarity of generated text against
human-written references, such as the classical
BLEU (Papineni et al., 2002), ROUGE (Lin, 2004),
and more recent variants based on neural mod-
els (e.g., Zhang et al., 2020a; Sellam et al., 2020).
However, an NLG task typically involves multiple
desirable properties (e.g., consistency, conciseness,
richness) that may have different priorities and need
trade-off depending on the application scenarios
(Hashimoto et al., 2019; Mir et al., 2019; Mehri and
Eskenazi, 2020b; Gehrmann et al., 2021). Thus a
single score without multi-aspect interpretability is
often inadequate to characterize generation quality.

https://github.com/tanyuqian/ctc-gen-eval
https://github.com/tanyuqian/ctc-gen-eval
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A growing number of recent works have proposed
aspect-based metrics for popular tasks such as sum-
marization (Kryściński et al., 2019; Wang et al.,
2020) and dialog (Mehri and Eskenazi, 2020b; Nie
et al., 2020). Those metrics are typically each de-
signed for individual tasks and aspects, based on
specific intuitions. The lack of a common theoreti-
cal ground makes it difficult to share the evaluation
strengths across the diverse NLG problems, and
fails to offer guidance to metric design for emerg-
ing tasks and aspects.

In this paper, we propose a more unifying per-
spective of NLG evaluation through the lens of
information change, which offers a general frame-
work to measure many key aspects of NLG tasks.
In particular, based on the practical use of NLG,
each task can be seen as one of (1) compression
to express salient information in concise text, such
as summarization and image captioning; (2) trans-
duction to transform text while preserving content
precisely, such as translation and style transfer; and
(3) creation to produce new content from input
context, such as dialog and story generation. A
common concept underlying the three broad cate-
gories is information alignment, which we define
as the extent to which the information in one gen-
eration component is grounded in another. Here
the generation components include input, output,
additional context, and references when available.

Inspired by recent work on model-based evalua-
tion, we adopt contextualized language models to
measure information alignment. We then demon-
strate the framework by devising a family of highly
intuitive metrics for three representative tasks (as-
pects) in each category, respectively, including sum-
marization (relevance and consistency), style trans-
fer (content preservation) and knowledge-based
dialog (engagingness and groundedness). Exper-
iments show that the uniformly designed metrics
robustly outperform or compete with state-of-the-
art metrics specifically designed for each task, in
terms of correlations with human judgement. We
also study different implementations of the central
information alignment estimation model, showing
that improved alignment measure leads to better
evaluation quality across all the tasks/aspects.

2 Related Work

Task- and Aspect-Specific NLG Evaluation.
Canonical automatic evaluation (Papineni et al.,
2002; Lin, 2004) often compute a single score mea-

suring some forms of similarity between outputs
and human-written references. The later-emerged
learning-based approaches aggregate multiple fea-
tures to regress on human-rated quality scores for
different tasks (Lowe et al., 2017; Peyrard et al.,
2017; Sellam et al., 2020). Researchers also identi-
fied that a single evaluation score cannot account
for the variety of quality factors that exist in multi-
faceted NLG applications. A number of metrics
were then proposed for specific tasks, either to eval-
uate multiple aspects (Mehri and Eskenazi, 2020b;
Egan et al., 2021) or to focus on one particular as-
pect (Kryściński et al., 2019; Mehri and Eskenazi,
2020a; Nie et al., 2020; Durmus et al., 2020; Wang
et al., 2020). Our framework continues this line of
research to produce interpretable metrics for mul-
tiple aspects. While recent evaluation frameworks
each discussed the key evaluation aspects of one
NLG task (Venkatesh et al., 2018; Mir et al., 2019;
Yamshchikov et al., 2020; Fabbri et al., 2021), our
framework provides a unified methodology that
facilitates metric design for all the three main cate-
gories of tasks. We also highlight that all of metrics
(except for the relevance metric for summarization)
are reference-free once trained.

Several emerging NLG benchmarks (Gehrmann
et al., 2021; Liu et al., 2021) collected existing met-
rics for various tasks, whereas we aim at develop-
ing new unified metrics with stronger performance.
Belz et al. (2020) proposed a categorization for dif-
ferent NLG quality aspects. Our general framework
covers all the described types of quality.

Text-to-Text Information Alignment. Measur-
ing information overlap between texts is a recur-
ring theme in designing NLG evaluation metrics.
It has typically been approximated by n-gram over-
lap (Papineni et al., 2002; Popović, 2015), synonym
matching (Banerjee and Lavie, 2005) and embed-
ding similarities (Kusner et al., 2015). Recently,
pre-trained models (Devlin et al., 2019) were in-
troduced to improve token-level embedding match-
ing (Zhang et al., 2020a) and leverage extrinsic
capabilities such as question answering (Eyal et al.,
2019; Wang et al., 2020) and entailment classifi-
cation (Falke et al., 2019; Kryściński et al., 2019;
Zhou et al., 2020) to align variable spans and en-
tire sentences. Egan et al. (2021) proposed au-
tomatic Shannon Game (Hovy and Lin, 1998) to
measure the decrease of the information one can
gain from a document after observing its summary;
Peyrard (2019) conducted a theoretical analysis to
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characterize the information change among source
document, background knowledge and summaries.
These methods are often restricted to a single task,
while we offer a general framework adaptable to a
wide range of tasks and aspects.

3 A Unified Evaluation Framework

We present the new framework that offers a com-
mon foundation for characterizing diverse NLG
tasks and leads to a set of interpretable metrics for
evaluating their key aspects.

As discussed in §1, NLG tasks can be catego-
rized as performing compression, transduction, or
creation based on changes in conveyed information
from input to output. For a compression task (e.g.,
summarization), the goal is to concisely describe
the most important information in the input (e.g., a
document). That is, the output should only contain
content from the input, namely “consistency” (Cao
et al., 2018; Kryscinski et al., 2019; Zopf et al.,
2016; Peyrard, 2019), and the included content
must be salient, namely “relevance” (Nenkova and
Passonneau, 2004; Zopf et al., 2016). Intuitively,
with an “information alignment” measure that as-
sesses how the information in a generated output
overlaps with that in the input (and in references
that offer clues for salience), we can readily evalu-
ate the two key aspects. The same intuition applies
to transduction tasks (e.g., style transfer), where
the output must preserve the input content precisely.
The evaluation of “preservation” (Mir et al., 2019)
thus also boils down to measuring the information
alignment between input and output. A creation
task (e.g., dialog) generates output that adds on top
of input (e.g., dialog history) new information (e.g.,
from external knowledge). Information alignment
between the output, input, and external sources is
thus essential for evaluating how well the created
content engages with the context (Venkatesh et al.,
2018; See et al., 2019) and how meaningful the con-
tent is by grounding to the external sources (Dinan
et al., 2019a; Smith et al., 2020).

From the above perspective, information align-
ment arises as a common central component that
connects evaluations across the tasks. A single ac-
curate alignment prediction model would enable
us to reliably evaluate many relevant aspects in
various applications.

Next, we first present our definition of infor-
mation alignment (§3.1); then describe the details
of how the aspect metrics for compression, trans-

duction, and creation are built on the alignment
(§3.2-3.4); we finally discuss different effective
implementations of the underlying alignment esti-
mation model based on neural networks (§3.5).

3.1 Preliminaries

For an NLG task, let x be the input, c be any other
additional context, and y be the output text gen-
erated conditioning on x and c. For example, in
knowledge-based dialog, x is the dialog history, c
is external knowledge such as a Wikipedia article,
and y is the response. In the current work, we
assume both x and c to be text, but the general
framework is also applicable when x and c are in
other modalities (e.g., images, tables), as long as
we can measure their information alignment with
y as defined below (e.g. using cross-modal mod-
els). In some tasks, gold standard output written by
human is available, which we denote as r.

As above, information alignment is the central
module for NLG evaluation. We consider the align-
ment from arbitrary text a to b as token-level soft
alignment. More formally:

Definition 3.1 (Information Alignment). Let a be
a piece of text of lengthN ; b be arbitrary data. The
information alignment from text a to b is a vector
of alignment scores:

align(a→ b) = 〈α1, α2, . . . , αN 〉, (1)

where αn ∈ [0, 1] is the confidence that the infor-
mation of the n-th token in a is grounded by b, i.e.,
the n-th token aligns with b.

Note that the alignment is “one-directional” from
a to b: it does not measure how b aligns to a. We
next show how the alignment scores can be used
to define intuitive metrics for various tasks. Be-
sides, the fine-grained alignment scores also offer
a certain level of interpretability for the resulting
metrics, as illustrated by the example in Table C.1.

3.2 Evaluation of “Compression” Tasks

We discuss compression evaluation in the context
of text summarization, an extensively studied task
for evaluation in previous work. The task aims to
extract the most important information from doc-
ument x and express it in summary y. As above,
consistency and relevance have been widely iden-
tified as key aspects to characterize the content
quality of generated summaries (Cao et al., 2018;
Kryscinski et al., 2019; Zopf et al., 2016; Peyrard,
2019). We propose our metrics below.



7583

Consistency We adopt the prevailing definition
of consistency (Cao et al., 2018; Kryscinski et al.,
2019), which dictates that the summary y should
only contain information from x (instead of other
sources or hallucinations). The aspect is also re-
ferred to as “factual correctness” or “faithfulness”
in previous work2. For y to be fully consistent, all
tokens in y should align with x. Therefore, we
can straightforwardly devise the consistency metric
based on the information alignment defined above:

CONSISTENCY(y,x) = mean (align(y→ x)) , (2)

which is the average alignment scores of tokens
in y w.r.t. x. Our metric offers a simpler solu-
tion than the recent QA-based metrics (Scialom
et al., 2019; Durmus et al., 2020; Wang et al., 2020)
that compare the answers extracted from y and
x by a Question-Answering system, and is more
interpretable than the black-box consistency clas-
sification models (Falke et al., 2019; Kryściński
et al., 2019; Maynez et al., 2020). We also achieve
stronger empirical performance (§4.1).

Relevance As one of the most heavily studied
aspects of summarization, relevance concerns how
well the summary y retains important information
in x (Nenkova and Passonneau, 2004; Zopf et al.,
2016). As in previous work, the “importance” of
information can be determined by human-written
reference summaries r. That is, a piece of informa-
tion is considered important if it is mentioned in
a reference. The intuition can readily be captured
by the information alignment align(r → y) that
measures the extent to which information in refer-
ence r is covered by the summary y. Additionally,
we account for the criterion that any information in
y should be precise, i.e., consistent with x. Com-
bining the two considerations, the full definition
of our relevance metric conveys the intuition that a
fully relevant summary y should achieve both and
balance reference-alignment and consistency:

RELEVANCE(y,x, r) =

mean (align(r→ y))×mean (align(y→ x)) ,
(3)

which is the product of both components. Tradi-
tional reference-based metrics consider only the
reference text (rather than the input). For example,
ROUGE (Lin, 2004) can be seen as measuring the
alignment between y and r where the alignment
is defined by text matching. Our metric, with the

2For the aspects studied in this paper, we summarize in
Table B.1 the alternative names that used in previous work.

combination of both reference and input, plus bet-
ter alignment modeling (§3.5), greatly outperforms
those previous metrics (§4.1).

3.3 Evaluation of “Transduction” Tasks

We take style transfer as the example task to dis-
cuss semantic preservation of transduction tasks.
The aim of style transfer is to generate text y that
changes one or more stylistic attributes (e.g., for-
mality) of source text x and completely preserve
its style-independent information (Hu et al., 2017;
Shen et al., 2017). Measuring content preserva-
tion is the core yet challenging problem for the
evaluation.

Preservation A transduction result y is required
to contain all and only information from x. In
other words, all tokens in y should align with x,
and vice versa. Considering the former to be the
“precision” of the y information w.r.t x, and the lat-
ter the “recall”, we naturally arrive at the following
“F1”-style definition of the preservation metric:

PRESERVATION(y,x) =

mean (align(y→ x))×mean (align(x→ y))

mean (align(y→ x)) + mean (align(x→ y))
,

(4)

which is the harmonic mean of the two directions
of information alignment. Note that the two-way
alignments differ from the “consistency” and “rele-
vance” metrics in compression where we have only
required output y to align with input x. Our exper-
iments show that it is crucial to account for align-
ments in both directions for transduction (§4.2).

3.4 Evaluation of “Creation” Tasks

We formulate aspects of creation tasks using the
example of knowledge-grounded dialog generation.
In this task, an agent generates text y as a response
to conversation history x while exhibiting informa-
tion from knowledge context c, e.g., an external
document (Qin et al., 2019; Guo et al., 2018) or
a set of facts (Dinan et al., 2019b; Zhang et al.,
2018). For the agent, sustaining an engaging con-
versation is considered an essential skill (Venkatesh
et al., 2018; Guo et al., 2018; Mehri and Eskenazi,
2020b). Besides, the generated response must be
grounded in the knowledge context by referring to
its information as often as possible (Dinan et al.,
2019a; Smith et al., 2020). We devise metrics for
the two central aspects, respectively.

A crucial property of creation tasks is that the
agent is allowed to create new information beyond
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Figure 2: We study three effective ways of information alignment prediction, i.e., embedding matching (left), discriminative
model (upper right) and regression (lower right). The figure illustrates the estimation of alignment from output to input.

the input and context. Thus, to aggregate the in-
formation alignment vector, it is more suitable to
consider the total volume rather than the density.
That is, we would use sum(·) instead of the pre-
vious mean(·) to aggregate token-level alignment
scores.

Engagingness We adopt the common definition
of engagingness (e.g., Mehri and Eskenazi, 2020b),
namely, the response should not be generic or dull
(e.g., “I don’t know”), but engages the partner in
conversation, such as presenting an interesting fact.
Therefore, an engaging response y should provide
high volume of information that acknowledges both
the history x to engage the partner and the context
c which we assume contains relevant facts. This
naturally leads to the following metric definition:

ENGAGINGNESS(y,x, c) = sum (align(y→ [x, c])) ,
(5)

where we concatenate the history x and knowl-
edge context c, and measure the extent of re-
sponse y’s acknowledgement of the information.
Previous works have devised various metrics for
the aspect, ranging from measuring response-
topic consistency (Guo et al., 2018), conversation
length (Venkatesh et al., 2018), retrieval of refer-
ence responses (Mehri and Eskenazi, 2020b), etc.
Our metric is cleanly defined in line with all other
metrics we developed, and shows stronger human
correlation than previous designs.

Groundedness As a widely studied aspect of
knowledge-based dialog, groundedness measures
how well the response refers to the knowledge con-
text (Dinan et al., 2019b; Qin et al., 2019; Mehri
and Eskenazi, 2020b). Straightforwardly, the as-
pect can be evaluated with the following metric:

GROUNDEDNESS(y, c) = sum (align(y→ c)) , (6)

which measures the alignment between the re-
sponse y and knowledge context c.

3.5 Implementation of Alignment Estimation

We have presented the metrics for a range of key
aspects in different tasks, building on the core
information alignment measure (Definition 3.1).
We next discuss different effective implementa-
tions for measuring the alignment scores between
text, including embedding matching, discrimina-
tive model, and regression, all based on powerful
pretrained language models (Figure 2).

Embedding Matching (E) One simple way to
estimate the alignment vector align(a → b) is
by matching the embeddings of tokens in the two
sequences. Specifically, we use either pretrained
BERT (Devlin et al., 2019) or RoBERTa (Liu et al.,
2019) to extract contextual embedding for each to-
ken in a and b, normalize each embedding vector
to unit norm, and then use greedy matching fol-
lowing (Corley and Mihalcea, 2005; Zhang et al.,
2020a). That is, the alignment score of each token
in a is defined as its maximum cosine similarity
with the tokens in b. We found in our empirical
studies (§4) that the E method seems to work better
when a and b have similar volume of information
(so that one-to-one token matching is suitable).

Discriminative Model (D) To estimate the infor-
mation alignment from arbitrary text a to b, we
formulate the problem as sequence tagging, for
which we train a model that labels each token in a
with 1 if it aligns with b, and 0 otherwise. The pre-
dicted probability of label 1 for each a token serves
as the alignment score. We base our model on
RoBERTa and train with automatically constructed
weak supervision data. Appendix §A describes all
details. For example, to learn to estimate the align-
ment of the output y to the input in an NLG task,
we use the training corpus of the task: for each
output y, we perturb it by masking out portions of
tokens and using a pretrained BART (Lewis et al.,
2020) model to fill in the blanks (Zhou et al., 2020).
The BART model is not conditioning on any in-
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all 11 references for each example provided in the data. The
plot format follows Figure 3.

Relevance r→ y y→ x + × (Ours)
Align (E) 0.4705 0.4381 0.5195 0.5198
Align (D) 0.4184 0.2834 0.4308 0.4423
Align (R) 0.4050 0.2688 0.3861 0.4115

Table 1: Ablation Studies: Pearson correlations for different
variants of our relevance metric (Eq.3) using different com-
ponents and combination strategies. r → y corresponds to
mean (align(r→ y)) and similarly for y → x; + sums the
two components and × is our design that takes the product.

put context (e.g., x), so the infilled tokens can be
considered to not align with the input. We do the
masking by first applying constituency parsing to
the text and then randomly masking out a subtree
of the parsing. Besides the infilling data, we also
augment the training with paraphrasing data. That
is, we apply a paraphrasing model to y, and treat
all tokens in the paraphrases as alignment to the
input. Note that y need not be the gold output, but
can also be any automatically constructed output as
long as it is guaranteed to align fully with the input.
For example, an output y by an extractive summa-
rization model aligns fully with the input article.
We will see more examples in our experiments.

Aggregated Regression (R) Instead of esti-
mating the per-token alignment vector as de-
fined in Eq.(1), we may also directly estimate
the single aggregated alignment score such as
mean (align(a→ b)) (or sum). This is because

all the metrics proposed above have only used the
aggregated score. To this end, we train a regression
model using the same weak supervision data for D,
with the aggregated alignment score as the regres-
sion target. Similar to Sellam et al. (2020), in our
experiments, we implement the regression model
with BERT (Devlin et al., 2019). In particular, we
initialize the regression model with the intermedi-
ate BERT-base-midtrained model weights
provided by Sellam et al. (2020). We note that the
aggregated estimation method may not be applica-
ble to future metrics in our evaluation framework
when fine-grained per-token alignment is required.

4 Experiments

We evaluate the proposed metrics on commonly
used human annotation datasets for summarization
(§4.1), style transfer (§4.2) and dialog (§4.3), and
study the effect of information alignment accuracy
on the performance of metrics (§4.4).

Evaluation Criteria To measure a metric’s per-
formance on an aspect, we compute the sample-
level correlation between the metric scores and
human judgments on generation samples. We also
evaluate system-level correlation (based on the
ranking of comparison systems) as the secondary
criterion (Mathur et al., 2020) and report results
in the appendix, which typically exhibits the same
patterns as sample-level correlation. We measure
Pearson and Spearman correlations whenever ap-
plicable. We also report Kendall-Tau correlation in
the appendix when available.

4.1 Experiments for “Compression” Metrics

Datasets For the consistency aspect, we follow
previous studies and evaluate metrics using human
annotations from two commonly-used sources: (1)
SummEval (Fabbri et al., 2021) on the CNN/DM
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summarization dataset (Hermann et al., 2015; Nal-
lapati et al., 2016). The annotation dataset con-
tains 1,600 examples from 16 summarization sys-
tems; (2) QAGS (Wang et al., 2020) (which names
the aspect “correctness”) on the XSUM dataset
(Narayan et al., 2018), another summarization task
with strong abstractive property. The dataset con-
tains 235 outputs from a fine-tuned BART model
(Lewis et al., 2020). The QAGS dataset also con-
tains another 239 outputs for CNN/DM, for which
we report results in Table D.4 in the appendix.

For relevance, we test our metric on the respec-
tive annotations from SummEval on CNN/DM.

Baselines and Setup For baselines, we include
commonly-used metrics reported in previous pa-
pers, ranging from reference-based metric, such
as ROUGE, BLEU and BERTScore (Zhang et al.,
2020a), to reference-free ones, such as SummaQA
(Scialom et al., 2019) based on QA and FactCC
(Kryściński et al., 2019) based on sentence classifi-
cation. For our metrics, we use RoBERTa-large
for the embedding-matching (E) alignment since
it was pre-trained on the CommonCrawl News
dataset (Nagel, 2016) that is close to the summa-
rization domains. For the discriminative-model
(D) alignment, we train two RoBERTa-large
token classifiers to compute align(y → x) and
align(r → y), respectively, with training data au-
tomatically constructed for CNN/DM and XSUM
according to Appendix §A.1. For the regressive
(R) alignment, we train the BERT models (§3.5) to
estimate the respective mean alignment scores.

Results We present the consistency results in Fig-
ure 3. On CNN/DM, our metrics based on the
trained alignment models (D and R) both clearly
outperform previous metrics. On XSUM, our D-
based metric also achieves the best performance.
The E-based metric sees a catastrophic drop in cor-
relations, which is likely due to the higher abstrac-
tiveness of XSUM summaries that renders embed-
ding matching inadequate. The sentence-classifier
based FactCC metric (Kryściński et al., 2019),
which is trained to distinguish paraphrases from
artificially perturbed sentences, also achieves a
decent correlation on XSUM. However, it seems
unable to effectively model the summaries on
CNN/DM that tend to be longer and richer in infor-
mation, and thus produces a lower correlation.

Figure 4 shows the results for relevance on
CNN/DM. Our metrics strongly outperform all

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

ROUGE-1

ROUGE-L
BLEU

METEOR
ChrF

WMD

BERTScore

MoverScore
BLEURT

Ours (
E)

Ours (
D)

Ours (
R)

E

D

Baselines Ours

Preservation (Yelp)

R

Figure 5: Human correlations on style transfer preservation
aspect. Lexical-matching metrics are in blue. Embedding- or
model-based similarity metrics are in purple, and ours are in
red/orange.

Preservation y→ x x→ y y⇔ x (Ours)
Align (E) 0.4989 0.5078 0.5216
Align (D) 0.4481 0.4608 0.4974
Align (R) 0.4744 0.4823 0.5060

Table 2: Ablation Studies: Pearson correlations for vari-
ants of preservation metric (Eq.4) accounting for different
directions of information alignment. y → x corresponds to
mean (align(y→ x)) and similarly for x→ y; Our y⇔ x
is harmonic mean of alignments in both directions.

other baselines, showing that accounting for align-
ments with both references and the input article
(Eq.3) is superior to only considering the references
(metrics in blue in the figure) or the input article
(metrics in purple). This is further validated by the
ablation studies in Table 1, which demonstrate that
multiplying the two alignments, which emphasizes
joint and balanced achievement of both, improves
the correlations compared to individual alignments
or simply summing them together. Figure 4 also
shows our E-based implementation performs better
than the D- and R-based variants, likely because the
metric involves alignment between generation and
references which tend to have similar information
volume and thus favor one-to-one token mapping.
We observe similar patterns in transduction below.

4.2 Experiments for “Transduction” Metrics

Datasets We apply our preservation metric to
evaluating text style transfer, where we use the hu-
man annotations from (Mir et al., 2019) on the Yelp
sentiment transfer data (Shen et al., 2017)3. The
dataset contains 8,784 outputs from 12 systems.

Baselines and Setup We compare with the com-
mon metrics used previously (Mir et al., 2019), and
further include BERTScore (Zhang et al., 2020a),
MoverScore (Zhao et al., 2019) and BLEURT (Sel-
lam et al., 2020), the latest neural text similarity
metrics. We use BLEURT out-of-the-box as we
do not assume access to human scores for fine-

3It is arguable whether “sentiment” is part of style (Krishna
et al., 2020). Here we just use the most common dataset.
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Figure 6: Correlations with human judgement on engagingness and groundedness aspects for knowledge-grounded
dialog. The plot format is the same as Figure 3.

tuning the evaluation models. For our metrics,
we use RoBERTa-large-MNLI for embedding-
matching (E) due to its fine-tuning on entailment
detection which is close to the domain under
study. For discriminative model (D), we train
RoBERTa-large on Yelp alignment data created
by paraphrasing and perturbing the inputs x. For
regression (R), we train to estimate the mean align-
ment score computed from the same dataset as D.

Results We present preservation results in Fig-
ure 5. Our metric (E) achieves competitive or better
performance than all previous metrics. MoverScore
(Zhao et al., 2019) as a strong baseline computes
word mover’s distance (Kusner et al., 2015) be-
tween input x and output y token embeddings. In
contrast, our metric explicitly accounts for the two-
way input-output alignments with an “F1”-style
harmonic mean aggregation (Eq.4). Table 2 shows
the two-way approach is effective and exhibits
higher correlation compared to single-directional
alignment, in line with the nature of transduction
tasks. Similar to their relevance results in summa-
rization, our D- and R-based implementations fall
behind E, likely because token matching is more
suitable for measuring alignments between two text
pieces with similar information volume.

4.3 Experiments for “Creation” Metrics

Datasets For the engagingness aspect, we use the
latest human annotation data collected by (Mehri
and Eskenazi, 2020b) (which names the aspect “in-
teresting”) on PersonaChat (Zhang et al., 2018)

Engagingness Mean Sum (Ours)
P T P T

Align (E) 0.1502 0.3184 0.5003 0.4937
Align (D) 0.1821 0.3223 0.5265 0.5163
Align (R) -0.0490 -0.0191 0.5320 0.4653

Table 3: Ablation Studies: Pearson correlations for our en-
gagingness metric (Eq.5) with different alignment aggregation
strategies. “Mean” takes the average of the alignment vector,
and “Sum” is our designed metric that takes the sum. “P” and
“T” refer to PersonaChat and TopicalChat, respectively.

and TopicalChat (Gopalakrishnan et al., 2019), two
knowledge-grounded dialog tasks with different
forms of knowledge. The dataset contains 300 ex-
amples from 5 systems for PersonaChat, and 360
examples from 6 systems for TopicalChat. All turns
preceding the current response y are treated as the
history x (4.2 turns on average for PersonaChat and
5.1 turns for TopicalChat). The knowledge context
c refers to the persona statements in PersonaChat
and the knowledge snippets in TopicalChat.

For the groundedness aspect, we again use
the human annotations from Mehri and Eskenazi
(2020b) (which names the aspect “uses knowl-
edge”) on both PersonaChat and TopicalChat.

Baselines and Setup We compare with all the
diverse metrics studied in (Mehri and Eskenazi,
2020b) and FED (Mehri and Eskenazi, 2020a), a
set of latest unsupervised dialogue metrics based
on the DialoGPT model (Zhang et al., 2020b). We
use FED-Interesting from the original paper de-
signed for engagingness and FED-Informative de-
signed for groundedness, respectively. We also add
a particularly simple baseline—response length,
which as we show performs surprisingly well. For
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Figure 7: Effect of alignment estimation accuracy on
metric performance.

our metrics, we use BERT-base for embedding
matching (E), RoBERTa-large token classifiers
trained on align(y → [x, c]) and align(y → c)
for discriminative model (D), and BERT-base re-
gressors on the sums of the respective alignment
scores for regression (R). We create separate align-
ment datasets for PersonaChat and TopicalChat, as
described in Appendix A.3.

Results We present the results for engagingness
in the top two plots of Figure 6. Our metrics with
different implementations all improve over previ-
ous methods by large margins on the two datasets.
Many of the baseline metrics show decent correla-
tions on TopicalChat, but fail on the PersonaChat
corpus. This is likely because PersonaChat requires
strong dependency of responses on the dialog his-
tory and knowledge context, thus metrics that do
not directly model the dependency (e.g., USR-DR
(Mehri and Eskenazi, 2020b) based on response
retrieval) as ours struggle for accurate evaluation.

Noticeably, the simple response length
performs consistently well on both datasets, far
better than previous metrics on PersonaChat. The
baseline can be considered as a special case of ours
by setting alignment scores of all tokens to 1. The
stronger correlations of our model-based metrics
demonstrate the effect of accurate alignment.

Ablation studies in Table 3 shows that measuring
the volume (sum) instead of the density (mean) of
aligned information is crucial for the superior per-
formance of our metrics, highlighting the unique
characteristics of the “creation” task (§3.4).

The results for groundedness are shown in the
bottom two plots of Figure 6. Our metrics again
generally achieve strong correlations, with the R-
based metric consistently outperforming other im-
plementations, likely because the estimation of
grounded information volume (sum) benefits from
the expressivity of end-to-end models. This is in-
dicated by the underperformance of the D-based
metric, which is trained on the same data but aggre-

gates token-level predictions with more structure.
We provide more empirical studies in Appendix

§F. In particular, we found that besides the two core
aspects, our alignment based method also achieves
stronger human correlations than existing metrics
on other dialog aspects, such as the understandabil-
ity and naturalness of responses (Table F.6).

4.4 Ablation: higher alignment estimation
accuracy, better correlation

We study how the accuracy of information align-
ment estimation influences the performance of met-
rics. We demonstrate a highly desirable pattern
that higher alignment estimation accuracy can usu-
ally lead to better correlation. This indicates that
improvement on the single alignment estimation
model could immediately benefit a broad range of
aspect metrics defined in our unified framework.

Specifically, we use the discriminative model
(§3.5) for our study. First, we vary the number
of training iterations to get different model check-
points, and evaluate both the alignment estima-
tion accuracy and the metric human correlation
based on the checkpoints. We evaluate accuracy
with the human-annotated token alignment labels
on the XSUM summarization data Maynez et al.
(2020). Figure 7 (left) shows the consistency metric
achieves better correlation as the alignment accu-
racy increases. We do the same on TopicalChat
dialog data and evaluate accuracy with our weak
supervision data (since no human labels are avail-
able). Figure 7 (right) shows similar trends for the
groundedness metric. Second, we further use part
of XSUM human alignment annotations to finetune
the alignment model, and obtain even higher ac-
curacy, which in turns gives better correlation for
consistency evaluation (star marks in the figure).

5 Conclusions

We have proposed a general evaluation framework
for NLG tasks categorized as compression, trans-
duction, and creation. Based on the concept of
information alignment between input, context, and
output, we devised a family of interpretable met-
rics for the key aspects of diverse tasks (summa-
rization, style transfer, and dialog). The uniformly
designed metrics achieve superior or comparable
human correlations compared to existing metrics.
The unified framework offers a structured guidance
for the metric design of new aspects/tasks, which
we are excited to explore more in the future.
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A Implementation of Alignment
Estimation Models

We train our alignment models by constructing
weakly supervised data using texts in the domain
of evaluation. The data construction process can
be divided into three steps:

1. Retrieve or generate a target sentence y1 given
the desired input x (e.g., the document in sum-
marization tasks). All tokens in y1 should be
considered aligned with x;

2. Sometimes, y1 consists of several original sen-
tences from x. In order to make our model
non-trivial and more robust, we generate a
pharaphrase y2 of y1 with a pretrained para-
phrase generator4;

3. After that, we mask some portion of y2, and
use a BART-large model (Lewis et al.,
2020) to infill those masks. Because the in-
filled content is generated without condition-
ing on x, we label the infilled words as "not
aligned" with x (BAD), and other words of y2

are labeled as "aligned" (OK);

Finally, x, y2, and alignment labels on y2’s words
are our desired training data.

Specially on our paraphrasing operation, in order
to make the generated paraphrase different enough
from the original text, we always generate 10 para-
phrases and take the one with biggest edit distance
with the sentence; and specially about our mask-
ing mechanism, we randomly mask some sub-trees
in the constituency parsing tree of y2 with a pre-
trained parser 5. The differences across tasks are
the definitions of x and y1 in the step (1), as de-
tailed below.

A.1 Compression: Summarization
Our training for align(y → x) in the summariza-
tion domain is reference-free. We use the docu-
ment as x, and generate its pseudo-summaries as
y1 using a traditional unsupervised extractive sum-
marizer based on TextRank (Mihalcea and Tarau,
2004). We don’t use reference summaries because
they can contain hallucinations that don’t align with
the article (Maynez et al., 2020). In an ablation
study with XSUM Consistency data (Wang et al.,

4https://huggingface.co/Vamsi/T5_
Paraphrase_Paws

5https://github.com/nikitakit/
self-attentive-parser

2020), training a D model using reference sum-
maries leads to 0.2822 Pearson correlation com-
pared to 0.3222 using auto-generated summaries,
which is clearly lower. To train for align(r→ y),
we use the reference as both x and y1.

A.2 Transduction: Text Style Transfer
In this domain, we simply set y1 to be the original
sentence x.

A.3 Creation: Dialog
When training for align(y → [x, c]), we use the
reference response as y1 and the concatenation
of x and c as the input. For models that predict
align(y → c), we set the knowledge context c as
the input, and randomly extract sentences from it as
y1. For PersonaChat, we sample 1-3 sentences at
random, whereas for TopicalChat, we only sample
1 sentence because its c tends to be long. When
aggregating the alignment vectors, we remove stop-
words according to NLTK (Bird et al., 2009) to
focus on important words.

https://huggingface.co/Vamsi/T5_Paraphrase_Paws
https://huggingface.co/Vamsi/T5_Paraphrase_Paws
https://github.com/nikitakit/self-attentive-parser
https://github.com/nikitakit/self-attentive-parser
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B Key Aspects

Task Category Aspect Alternative Names Considered By

Compression
Consistency

Factual Correctness,
Faithfulness,
(No) Hallucination

(Wang et al., 2020),
(Maynez et al., 2020),
(Durmus et al., 2020),
(Kryściński et al., 2019),
(Fabbri et al., 2021), etc.

Relevance
Content Selection,
Importance

(Nenkova and Passonneau, 2004)
(Peyrard, 2019)
(Fabbri et al., 2021), etc.

Transduction Preservation Semantic Similarity
(Mir et al., 2019)
(Yamshchikov et al., 2020)

Creation
Engagingness

Depth,
(Not) Dull,
Interestingness

(Venkatesh et al., 2018),
(See et al., 2019)
(Mehri and Eskenazi, 2020b)
(Gopalakrishnan et al., 2019), etc.

Groundedness
Persona Distinctiveness
Knowledge Usage,
Knowledge Injection

(Mehri and Eskenazi, 2020b)
(Dinan et al., 2019a)
(Smith et al., 2020), etc.

Table B.1: The key aspects discussed for each task category. Examples of prior work that considered each aspect
as desirable properties are listed.
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C Alignment Prediction Example

DOCUMENT: Darth vader and imperial stormtroopers have invaded a denbighshire seaside town to
welcome the actor who plays the infamous villain.
Spencer wilding, who hails from rhyl, was the guest of honour at a special screening of rogue one.
He had to muster all powers of the force to keep his vader role secret until the film’s release. "it’s a hell
of a secret to keep," said wilding, who was cast as the body actor for the role.
"but when you’re a professional actor - when you sign that black and white sheet of paper saying
you cannot say a word... I’m true to my word and i didn’t say anything."
Speaking to bbc radio wales’ good morning wales programme, the 44-year-old said it proved a
tricky task after rumours of the role leaked a year ago. "i’ve been having hundreds of people every day
for a year asking me if i’m vader," he said. "if i had a pound for everyone who asked i’d be buying myself
a new death star - and it’d be gold plated."
The 6ft 7in (2m) tall actor already has a string of hollywood appearances to his name, including
guardians of the galaxy, green lantern, three harry potter films and the tv blockbuster game of thrones.
He said the vader role came from a regular casting call, first with a self-filmed tape, then a recall to
pinewood studios. "it’s very, very secretive. We didn’t even know exactly what the character was and what
film it was until we got there," he said.
"i opened up the curtain when i went in the dressing room and there he was - vader.
"anybody out there who got into that costume and got an audition to be darth vader alone is very
exciting, so to pull the character off as well, it’s like ’what!’
"i’m always pinching myself - i am definitely awake - it is not a dream, it is just another dream come true."
While the actor has the body role, just like his predecessor in the original star wars films david prowse,
the voice of lord vader is actor james earl jones.
That did not stop wilding trying out the voice during filming.
"i’m not james earl jones - nowhere near him - but you know i got close to him i think, which helped the
other actors - you know, you’ve got vader in front of you."
SUMMARY 1:
(BART)

A welsh actor who plays darth vader in the
0.94 0.79 0.98 1.00 0.99 0.98 0.99 0.99 0.84
latest star wars film has been honoured at the
0.69 0.80 0.84 0.92 0.97 0.91 0.89 0.83 0.56
london film festival.
0.47 0.56 0.63

SUMMARY 2:
(REPETITION)

the the the the the the the the the
0.83 0.61 0.56 0.53 0.49 0.48 0.50 0.53 0.57
the the the the the the
0.58 0.57 0.56 0.57 0.55 0.55

Table C.1: An example of word-level alignment prediction using discriminative model (D) for an XSUM (Narayan
et al., 2018) article. SUMMARY 1 is generated by BART (Lewis et al., 2020) and received a human consistency
score of 0 according to Wang et al. (2020), meaning it contains hallucination; SUMMARY 2 is a repetition of “the”.
As the predictions show, our model assigns low scores to words in red, which either don’t follow directly from the
article (“latest”, “the london film festival”, “welsh”), or are meaningless repetitions (“the”s).
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D All Summarization Results

Metric Name Sample-Level Correlations System-Level Correlations
Pearson Spearman Kendall Pearson Spearman Kendall

Reference-Based Metrics
ROUGE-1 0.1811 0.1416 0.1114 0.6648 0.7441 0.5500
ROUGE-2 0.1583 0.1360 0.1069 0.6610 0.7794 0.6000
ROUGE-L 0.1578 0.1147 0.0899 0.5180 0.0882 0.1000
BLEU 0.1794 0.1607 0.1265 0.5872 0.0765 0.0500
METEOR 0.1832 0.1508 0.1182 0.7157 0.8441 0.6500
ChrF 0.1750 0.1535 0.1205 0.6446 0.8235 0.6167
CIDEr 0.0336 0.0075 0.0058 0.0676 -0.3618 -0.1833
S3-pyr 0.1624 0.1442 0.1135 0.4616 0.6676 0.5167
S3-rsp 0.1609 0.1490 0.1173 0.4758 0.6647 0.5000
SMS 0.2110 0.2384 0.1876 0.7136 0.8000 0.6000
BERTScore-f 0.2030 0.1547 0.1215 0.6318 0.0794 0.0333
MoverScore 0.1899 0.1707 0.1339 0.5616 0.0000 -0.0500

Reference-Free Metrics
SummaQA-prob 0.1202 0.1328 0.1045 0.7545 0.8294 0.6667
SummaQA-f 0.1572 0.1635 0.1285 0.7198 0.8324 0.6333
BLANC 0.2183 0.2303 0.1807 0.6294 0.7706 0.6167
FactCC-prob 0.3256 0.3410 0.2703 0.7401 0.7990 0.6176
SUPERT 0.3665 0.3264 0.2587 0.7274 0.7912 0.6000

Our Metrics
Ours (E) (BERT-base) 0.4359 0.3744 0.2974 0.7886 0.7794 0.5667
Ours (E) (RoBERTa-large) 0.3315 0.3202 0.2518 0.6166 0.7912 0.5833
Ours (D) (CNN/DM) 0.5240 0.4293 0.3422 0.9146 0.8324 0.6333
Ours (D) (XSUM) 0.5314 0.4273 0.3414 0.9089 0.6059 0.3833
Ours (R) (CNN/DM) 0.4626 0.3871 0.3071 0.8401 0.6000 0.4167
Ours (R) (XSUM) 0.4868 0.3896 0.3094 0.8473 0.5265 0.3500

Table D.1: Correlations of all metrics with Consistency aspect of CNN/DM, using annotations from (Fabbri et al.,
2021). Reference-based metrics were calculated using 11 references. Our metrics based on the trained alignment
models (D and R) both clearly outperform previous metrics.
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Metric Name Sample-Level Correlations System-Level Correlations
Pearson Spearman Kendall Pearson Spearman Kendall

Reference-Based Metrics (1 Reference)
ROUGE-1 0.3392 0.3337 0.2402 0.6089 0.6000 0.4667
ROUGE-2 0.2479 0.2581 0.1853 0.6378 0.6176 0.4333
ROUGE-L 0.3165 0.3153 0.2262 0.5544 0.4059 0.2500
BLEU 0.2135 0.2565 0.1842 0.5760 0.3912 0.2333
METEOR 0.3336 0.3268 0.2351 0.6267 0.7176 0.5000
ChrF 0.3310 0.3305 0.2378 0.6735 0.7559 0.5333
CIDEr 0.0457 -0.0205 -0.0149 0.3348 0.2765 0.1500
S3-pyr 0.3206 0.3087 0.2209 0.6126 0.6824 0.4833
S3-rsp 0.2913 0.2940 0.2107 0.6452 0.7853 0.5667
SMS 0.2461 0.2535 0.1798 0.7681 0.7618 0.5833
BERTScore-f 0.3041 0.2937 0.2102 0.5509 0.4206 0.2667
MoverScore 0.2850 0.2898 0.2077 0.5701 0.4735 0.3167

Reference-Free Metrics
SummaQA-prob 0.1370 0.1474 0.1039 0.6894 0.8235 0.6333
SummaQA-f 0.1665 0.1528 0.1071 0.5217 0.4412 0.3333
BLANC 0.2552 0.2355 0.1679 0.4690 0.3529 0.3167
FactCC-prob 0.2009 0.1576 0.1109 0.3487 0.3162 0.2353
SUPERT 0.3282 0.2848 0.2036 0.4569 0.3618 0.3667

Our Metrics (1 Reference)
Ours (E) (BERT-base) 0.3635 0.3359 0.2401 0.6052 0.7500 0.5833
Ours (E) (RoBERTa-large) 0.4985 0.4882 0.3563 0.8494 0.8412 0.7167
Ours (D) (CNN/DM) 0.3824 0.3499 0.2528 0.6226 0.6000 0.4833
Ours (D) (XSUM) 0.3802 0.3502 0.2526 0.6126 0.5882 0.4667
Ours (R) (CNN/DM) 0.3733 0.3439 0.2495 0.5556 0.4735 0.4000
Ours (R) (XSUM) 0.3714 0.3445 0.2493 0.5447 0.4324 0.3667

Table D.2: Correlations of all considered metrics with Relevance aspect of CNN/DM, using annotations from
(Fabbri et al., 2021). Reference-based metrics are calculated using 1 reference. Our (XSUM) metrics use y → x
models based on XSUM alignment data, but still use r→ y models based on CNN/DM alignment data. Account-
ing for both reference and input article on top of better alignment modeling, our metrics clearly outperform all
other baselines.
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Metric Name Sample-Level Correlations System-Level Correlations
Pearson Spearman Kendall Pearson Spearman Kendall

Reference-Based Metrics (11 References)
ROUGE-1 0.3565 0.3160 0.2276 0.5486 0.7441 0.5833
ROUGE-2 0.2685 0.2564 0.1837 0.5659 0.6206 0.4333
ROUGE-L 0.3347 0.2990 0.2157 0.4364 0.3647 0.3667
BLEU 0.2750 0.2581 0.1851 0.6189 0.5471 0.3833
METEOR 0.3237 0.2936 0.2101 0.6217 0.7471 0.5500
ChrF 0.3561 0.3366 0.2418 0.7017 0.7441 0.5500
CIDEr -0.0055 -0.0261 -0.0191 0.1654 0.1500 0.0833
S3-pyr 0.3469 0.3180 0.2272 0.3811 0.2765 0.2167
S3-rsp 0.3227 0.3101 0.2216 0.3975 0.2971 0.2333
SMS 0.2593 0.2467 0.1765 0.5156 0.4618 0.4000
BERTScore-f 0.3192 0.2961 0.2126 0.5991 0.5441 0.4000
MoverScore 0.3114 0.3108 0.2237 0.6419 0.5382 0.3500

Reference-Free Metrics
SummaQA-prob 0.1370 0.1474 0.1039 0.6894 0.8235 0.6333
SummaQA-f 0.1665 0.1528 0.1071 0.5217 0.4412 0.3333
BLANC 0.2552 0.2355 0.1679 0.4690 0.3529 0.3167
FactCC-prob 0.2009 0.1576 0.1109 0.3487 0.3162 0.2353
SUPERT 0.3282 0.2848 0.2036 0.4569 0.3618 0.3667

Our Metrics (11 References)
Ours (E) (BERT-base) 0.3906 0.3547 0.2544 0.5032 0.3765 0.3167
Ours (E) (RoBERTa-large) 0.5198 0.4990 0.3671 0.7539 0.7324 0.6167
Ours (D) (CNN/DM) 0.4423 0.3962 0.2862 0.5821 0.4794 0.3833
Ours (D) (XSUM) 0.4426 0.3991 0.2878 0.5691 0.4794 0.3833
Ours (R) (CNN/DM) 0.4115 0.3617 0.2644 0.4999 0.3824 0.3333
Ours (R) (XSUM) 0.4121 0.3680 0.2687 0.4906 0.3353 0.2833

Table D.3: Correlations of all considered metrics with Relevance aspect of CNN/DM, using annotations from
(Fabbri et al., 2021). Reference-based metrics are calculated using 11 references. Our (XSUM) metrics use
y → x models based on XSUM alignment data, but still use r → y models based on CNN/DM alignment data.
Accounting for both reference and input article on top of better alignment modeling, our metrics clearly outperform
all other baselines.
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Metric Name CNN/DM Correlations XSUM Correlations
Pearson Spearman Kendall Pearson Spearman Kendall

Reference-Based Metrics
ROUGE-1 0.2874 - - 0.1322 - -
ROUGE-2 0.1772 - - 0.0895 - -
ROUGE-L 0.2409 - - 0.0886 - -
METEOR 0.2665 - - 0.1003 - -
BLEU-1 0.2968 - - 0.1176 - -
BLEU-2 0.2565 - - 0.1168 - -
BLEU-3 0.2396 - - 0.0841 - -
BLEU-4 0.2145 - - 0.0564 - -
BERTScore-f 0.2763 - - 0.0251 - -

Reference-Free Metrics
FactCC-prob 0.4158 0.4837 0.3758 0.2968 0.2588 0.2118
QAGS 0.5453 - - 0.1749 - -

Our Metrics
Ours (E) (BERT-base) 0.6083 0.5180 0.4074 0.1436 0.1437 0.1176
Ours (E) (RoBERTa-large) 0.6091 0.5229 0.4141 0.0548 0.0489 0.0400
Ours (D) (CNN/DM) 0.6188 0.5640 0.4500 0.3085 0.2952 0.2416
Ours (D) (XSUM) 0.6205 0.5362 0.4260 0.3222 0.3149 0.2576
Ours (R) (CNN/DM) 0.6468 0.5252 0.4180 0.2157 0.1949 0.1594
Ours (R) (XSUM) 0.6612 0.5445 0.4348 0.2718 0.2509 0.2053

Table D.4: Sample-Level correlations of all considered metrics with Consistency aspect of CNN/DM and XSUM,
based on annotations from (Wang et al., 2020). Spearman and Kendall-Tau correlations for baseline metrics were
not reported, except for FactCC which we computed on our own. System-level correlations are not reported due
to dataset limits. On CNN/DM, all of our metrics outperform previous metrics. On XSUM, our D-based metric
trained on the same domain also achieves the best performance. The E-based metrics see a catastrophic drop likely
due to the higher abstractiveness of XSUM that renders embedding matching inadequate.
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E All Style Transfer Results

Metric Name Sample-Level Correlations System-Level Correlations
Pearson Spearman Kendall Pearson Spearman Kendall

Lexical-Matching Based Metrics
BLEU 0.4361 0.4303 0.3125 0.8476 0.8042 0.6364
ROUGE-1 0.4808 0.4981 0.3614 0.7749 0.6503 0.4545
ROUGE-2 0.4664 0.4589 0.3421 0.8444 0.7622 0.5455
ROUGE-L 0.4833 0.4975 0.3606 0.7814 0.7133 0.5152
METEOR 0.4764 0.4993 0.3592 0.8291 0.7622 0.5455
ChrF 0.5048 0.5028 0.3632 0.8026 0.7343 0.5758

Embedding Based Metrics
EmbedAvg 0.3248 0.4127 0.2959 0.7272 0.5944 0.3939
GreedyMatch 0.4542 0.4760 0.3434 0.7431 0.6084 0.4242
VectorExtrema 0.4571 0.4589 0.3306 0.7702 0.6364 0.4242
WMD 0.4902 0.5047 0.3646 0.7776 0.6713 0.5455

Pre-Trained Model Based Metrics
BERTScore 0.5185 0.5187 0.3751 0.8078 0.7133 0.5152
MoverScore 0.5209 0.5148 0.3734 0.8308 0.7622 0.5455
BLEURT 0.5043 0.4934 0.3566 0.8673 0.7902 0.6061

Our Metrics
Ours (E) (BERT-base) 0.5147 0.5169 0.3740 0.8096 0.7133 0.5152
Ours (E) (RoBERTa-large) 0.5142 0.5150 0.3752 0.8618 0.7832 0.5758
Ours (E)
(RoBERTa-large-MNLI-9)

0.5216 0.5236 0.3805 0.8081 0.7133 0.5152

Ours (D) 0.4974 0.4952 0.3579 0.8385 0.7483 0.5152
Ours (R) 0.5060 0.5059 0.3645 0.8226 0.6993 0.4848

Table E.1: Correlations of all considered metrics with Preservation aspect of Yelp, using annotations from (Mir
et al., 2019). Explicitly accounting for two-way input-out alignments in an “F1”-style harmonic mean aggregation
(Eq.4), our metrics (E) achieve competitive or better performance than previous metrics. Our D- and R-based
metrics fall behind slightly, likely because one-to-one token matching is more suitable for two text pieces with
similar information volume.
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F All Dialog Results

Metric Name Sample-Level Correlations System-Level Correlations
Pearson Spearman Kendall Pearson Spearman Kendall

Reference Based Metrics
F-1 0.0473 0.0132 - 0.9956 1.0000 -
BLEU-1 -0.1081 -0.0922 - 0.2599 0.6000 -
BLEU-2 -0.1048 -0.1010 - 0.6816 0.4000 -
BLEU-3 -0.1247 -0.1151 - 0.6668 0.4000 -
BLEU-4 -0.1359 -0.1242 - 0.8413 0.8000 -
METEOR -0.0458 0.0116 - 0.9065 0.8000 -
ROUGE-L -0.1456 -0.1354 - 0.1710 0.0000 -
BERTScore (base) 0.0325 0.0491 - 0.5173 0.8000 -
BERTScore (large) -0.0418 -0.0245 - 0.2410 0.0000 -

Reference-Free Metrics
FED-Interesting 0.1818 0.0255 0.0182 0.9277 1.0000 1.0000
USR-MLM -0.1045 -0.1007 - -0.2842 -0.4000 -
USR-DR (x=c) 0.0606 0.2634 - 0.8202 1.0000 -
USR-DR (x=f) -0.0022 -0.0039 - -0.0178 -0.2108 -
USR 0.0315 0.0171 - 0.8084 1.0000 -
Word Length 0.3910 0.4220 0.3267 0.8965 0.8000 0.6000

Our Metrics
Ours (E) (BERT-base) 0.5003 0.5490 0.4193 0.9061 1.0000 1.0000
Ours (E) (RoBERTa-large) 0.4081 0.4502 0.3375 0.9003 0.9000 0.8000
Ours (D) (PersonaChat) 0.5265 0.5793 0.4412 0.9425 1.0000 1.0000
Ours (D) (TopicalChat) 0.5317 0.5818 0.4409 0.9447 1.0000 1.0000
Ours (R) (PersonaChat) 0.5320 0.5692 0.4346 0.9433 1.0000 1.0000
Ours (R) (TopicalChat) 0.4933 0.5333 0.4043 0.9244 1.0000 1.0000

Table F.1: Correlations of all considered metrics with Engagingness aspect of PersonaChat, using annotations from
(Mehri and Eskenazi, 2020b). Kendall-Tau correlations for baseline metrics were not reported. By measuring
aligned information volume (sum) and with accurate estimation models, our metrics with different implementa-
tions all improve over previous methods by large margins.
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Metric Name Sample-Level Correlations System-Level Correlations
Pearson Spearman Kendall Pearson Spearman Kendall

Reference Based Metrics
F-1 0.0869 0.1056 - 0.9956 1.0000 -
BLEU-1 0.0737 0.0729 - 0.2599 0.6000 -
BLEU-2 0.1083 0.0722 - 0.6816 0.4000 -
BLEU-3 0.0999 0.0594 - 0.6668 0.4000 -
BLEU-4 0.0698 0.0528 - 0.8413 0.8000 -
METEOR 0.1678 0.1719 - 0.9065 0.8000 -
ROUGE-L 0.0710 0.0632 - 0.1710 0.0000 -
BERTScore (base) 0.0719 0.0465 - 0.5173 0.8000 -
BERTScore (large) 0.0271 0.0094 - 0.2410 0.0000 -

Reference-Free Metrics
FED-Informative 0.0165 -0.0405 -0.0315 0.9015 0.9000 0.8000
USR-MLM -0.0782 -0.0756 - -0.2842 -0.4000 -
USR-DR (x=c) 0.4508 0.6309 - 0.8202 1.0000 -
USR-DR (x=f) -0.0927 -0.0903 - -0.0178 -0.2108 -
USR 0.4027 0.3177 - 0.8084 1.0000 -
Word Length 0.3171 0.3051 0.2467 0.7698 0.5000 0.4000

Our Metrics
Ours (E) (BERT-base) 0.5761 0.5683 0.4492 0.8720 0.9000 0.8000
Ours (E) (RoBERTa-large) 0.3758 0.3652 0.2862 0.8140 0.7000 0.6000
Ours (D) (PersonaChat) 0.5683 0.5674 0.4505 0.8684 0.9000 0.8000
Ours (D) (TopicalChat) 0.4056 0.4172 0.3270 0.7536 0.5000 0.4000
Ours (R) (PersonaChat) 0.6597 0.6689 0.5338 0.9151 1.0000 1.0000
Ours (R) (TopicalChat) 0.6819 0.7113 0.5636 0.9420 1.0000 1.0000

Table F.2: Correlations of all considered metrics with Groundedness aspect of PersonaChat, using annotations
from (Mehri and Eskenazi, 2020b). Kendall-Tau correlations for baseline metrics were not reported. Trained with
aggregated alignment scores and benefiting from the expressivity of end-to-end models, our regression-based (R)
metrics strongly outperform all other metrics.
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Metric Name Sample-Level Correlations System-Level Correlations
Pearson Spearman Kendall Pearson Spearman Kendall

Reference Based Metrics
F-1 0.2523 0.2565 - 0.5944 0.6000 -
BLEU-1 0.3144 0.3343 - 0.8197 0.7000 -
BLEU-2 0.3184 0.3323 - 0.8099 0.9000 -
BLEU-3 0.2782 0.3247 - 0.9047 0.9000 -
BLEU-4 0.2322 0.3156 - 0.8883 0.9000 -
METEOR 0.3668 0.4391 - 0.9398 0.9000 -
ROUGE-L 0.2946 0.2995 - 0.8084 0.9000 -
BERTScore (base) 0.3512 0.3725 - 0.9108 0.9000 -
BERTScore (large) 0.3167 0.3349 - 0.8480 0.9000 -

Reference-Free Metrics
FED-Interesting -0.0004 -0.0328 -0.0230 0.8881 0.8286 0.7333
USR-MLM 0.3189 0.3337 - 0.4663 0.9000 -
USR-DR (x=c) 0.3533 0.4877 - 0.9233 0.7000 -
USR-DR (x=f) 0.2006 0.4110 - 0.8685 0.9000 -
USR 0.4555 0.4645 - 0.9297 1.0000 -
Word Length 0.4079 0.4089 0.3053 0.9662 0.8286 0.7333

Our Metrics
Ours (E) (BERT-base) 0.4937 0.5047 0.3710 0.9606 0.9429 0.8667
Ours (E) (RoBERTa-large) 0.4471 0.4479 0.3288 0.9617 0.8286 0.7333
Ours (D) (PersonaChat) 0.5124 0.5245 0.3878 0.9572 0.6571 0.6000
Ours (D) (TopicalChat) 0.5163 0.5253 0.3873 0.9657 0.8286 0.7333
Ours (R) (PersonaChat) 0.4542 0.4588 0.3357 0.9529 0.8286 0.7333
Ours (R) (TopicalChat) 0.4653 0.4643 0.3395 0.9492 0.8286 0.7333

Table F.3: Correlations of all considered metrics with Engagingness aspect of TopicalChat, using annotations from
(Mehri and Eskenazi, 2020b). Kendall-Tau correlations for baseline metrics were not reported. By measuring
aligned information volume (sum) and with accurate estimation models, our metrics with different implementa-
tions all compete with or improve over previous methods.
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Metric Name Sample-Level Correlations System-Level Correlations
Pearson Spearman Kendall Pearson Spearman Kendall

Reference Based Metrics
F-1 0.1495 0.1485 - 0.5970 0.6000 -
BLEU-1 0.2888 0.3033 - 0.8357 0.7000 -
BLEU-2 0.2819 0.3066 - 0.8309 0.9000 -
BLEU-3 0.2442 0.3106 - 0.9259 0.9000 -
BLEU-4 0.2126 0.3096 - 0.9084 0.9000 -
METEOR 0.3328 0.3909 - 0.9534 0.9000 -
ROUGE-L 0.3099 0.3273 - 0.8333 0.9000 -
BERTScore (base) 0.2847 0.2947 - 0.9308 0.9000 -
BERTScore (large) 0.2909 0.3167 - 0.8703 0.9000 -

Reference-Free Metrics
FED-Informative 0.0311 0.0243 0.0209 0.9340 0.7143 0.6000
USR-MLM 0.2195 0.2261 - 0.5070 0.9000 -
USR-DR (x=c) 0.2285 0.4179 - 0.9155 0.7000 -
USR-DR (x=f) 0.2220 0.4468 - 0.8884 0.9000 -
USR 0.3175 0.3353 - 0.9469 1.0000 -
Word Length 0.2624 0.2681 0.2084 0.9859 0.8286 0.7333

Our Metrics
Ours (E) (BERT-base) 0.4293 0.3949 0.3075 0.9784 0.9429 0.8667
Ours (E) (RoBERTa-large) 0.3122 0.3141 0.2421 0.9868 0.8286 0.7333
Ours (D) (PersonaChat) 0.3697 0.3691 0.2856 0.9784 0.9429 0.8667
Ours (D) (TopicalChat) 0.3099 0.3159 0.2421 0.9842 0.8286 0.7333
Ours (R) (PersonaChat) 0.4026 0.3788 0.3137 0.9742 0.7143 0.6
Ours (R) (TopicalChat) 0.5235 0.4768 0.3838 0.9674 0.8857 0.7333

Table F.4: Correlations of all considered metrics with Groundedness aspect of TopicalChat, using annotations
from (Mehri and Eskenazi, 2020b). Kendall-Tau correlations for baseline metrics were not reported. Trained with
aggregated alignment scores and benefiting from the expressivity of end-to-end models, our regression-based (R)
metric trained on TopicalChat strongly outperforms all other metrics.
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Metric PersonaChat TopicalChat
Swapped Ours Swapped Ours

Engagingness (E) 0.5082 0.5003 0.5180 0.4973
Engagingness (D) 0.4725 0.5265 0.4708 0.5163
Engagingness (R) 0.4679 0.5320 0.4902 0.4653
Groundedness (E) 0.5323 0.5761 0.3870 0.4293
Groundedness (D) 0.4945 0.5683 0.3752 0.3099
Groundedness (R) 0.4798 0.6597 0.3237 0.5235

Table F.5: Ablation Studies: Pearson correlations with engagingness and groundedness for dialog tasks with
swapped formulas vs our definition. By swapping, we use our engagingness metric to measure groundedness,
and vice versa. PersonalChat swaps see across-the-board decreases in correlations, indicating the importance of
using our designed formulas on this dataset. TopicalChat swaps see correlation increases more frequently, but the
best methods still retain their edge.

Metric Name PersonaChat TopicalChat
U N MC O U N MC O

Reference-Based Metrics
F-1 -0.0340 0.0815 0.1073 0.1422 0.0425 0.0301 0.1290 0.1645
BLEU-4 0.0537 0.1081 0.1467 0.1353 0.2010 0.1799 0.1307 0.2160
METEOR 0.0820 0.0989 0.2500 0.2527 0.2452 0.2121 0.2495 0.3365
ROUGE-L 0.0346 0.0096 0.1135 0.0659 0.2069 0.1760 0.1928 0.2745
BERTScore (base) 0.0676 0.0606 0.1770 0.1690 0.2611 0.2164 0.2432 0.3229

Reference-Free Metrics
FED 0.0314 0.0870 -0.0634 -0.0786 0.0469 0.0482 -0.1915 -0.1393
USR-MLM 0.1313 0.0999 0.1805 0.0795 0.3264 0.3370 0.3099 0.3086
USR-DR (x=c) 0.0728 0.1733 0.6021 0.4814 0.1500 0.1325 0.3391 0.3245
USR-DR (x=f) -0.0390 -0.0033 -0.0198 -0.0495 0.0881 0.0313 0.0594 0.1419
USR 0.0997 0.1862 0.6065 0.4693 0.2932 0.2260 0.4160 0.4192
Response Length -0.0525 -0.0342 0.0901 0.2526 0.0845 0.1253 0.2458 0.3343

Our Metrics
Ours (E) 0.1185 0.1891 0.2786 0.3690 0.2168 0.1528 0.1669 0.2483
Ours (D) 0.1421 0.3384 0.3837 0.4500 0.3433 0.3653 0.2969 0.3620
Ours (R) 0.0639 0.1595 0.2518 0.2076 0.0105 -0.0524 -0.0248 -0.0338

Table F.6: Sample-level Pearson correlations for the remaining aspects in the annotations of (Mehri and Es-
kenazi, 2020b), including understandable (U), natural (N), maintains context (MC) and overall (O). Our met-
ric here is the average alignment confidence from response y to dialogue history x and knowledge c, i.e.
mean (align(y→ [x, c]), which outperforms existing metrics on understandability and naturalness.


