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Abstract

The factual knowledge acquired during pre-
training and stored in the parameters of Lan-
guage Models (LMs) can be useful in down-
stream tasks (e.g., question answering or tex-
tual inference). However, some facts can be
incorrectly induced or become obsolete over
time. We present KNOWLEDGEEDITOR, a
method which can be used to edit this knowl-
edge and, thus, fix ‘bugs’ or unexpected pre-
dictions without the need for expensive re-
training or fine-tuning. Besides being com-
putationally efficient, KNOWLEDGEEDITOR
does not require any modifications in LM pre-
training (e.g., the use of meta-learning). In our
approach, we train a hyper-network with con-
strained optimization to modify a fact without
affecting the rest of the knowledge; the trained
hyper-network is then used to predict the
weight update at test time. We show KNOWL-
EDGEEDITOR’s efficacy with two popular ar-
chitectures and knowledge-intensive tasks: i) a
BERT model fine-tuned for fact-checking, and
ii) a sequence-to-sequence BART model for
question answering. With our method, chang-
ing a prediction on the specific wording of a
query tends to result in a consistent change
in predictions also for its paraphrases. We
show that this can be further encouraged by ex-
ploiting (e.g., automatically-generated) para-
phrases during training. Interestingly, our
hyper-network can be regarded as a ‘probe’ re-
vealing which components need to be changed
to manipulate factual knowledge; our analysis
shows that the updates tend to be concentrated
on a small subset of components.1

1 Introduction

Using pre-trained transformer-based Language
Models (LMs; Vaswani et al., 2017; Devlin et al.,
2019; Radford et al., 2019; Lewis et al., 2020; Raf-
fel et al., 2020; Brown et al., 2020) has recently

1Source code available at https://github.com/
nicola-decao/KnowledgeEditor
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Figure 1: Left: a model f with parameters θ prefers a
prediction y for input x (e.g., y is the mode/argmax of a
discrete distribution parameterized by f(x; θ)). Right:
our method uses a hyper-network g to update the pa-
rameters of f to θ′ such that f(x; θ′) prefers an alterna-
tive prediction a without affecting the prediction y′ of
any other input x′ 6= x. Our model edits the knowledge
about x stored in the parameters of f .

become a standard practice in NLP. Factual knowl-
edge induced during pre-training can help in down-
stream tasks, but it can also be incorrect or become
obsolete over time (e.g., not reflecting changes of
heads of states or country populations). Developing
reliable and computationally efficient methods for
bug-fixing models without the need for expensive
re-training would be beneficial. See Figure 2 for
an example of revising the memory of a model that
initially misremembered Namibia’s capital.

Unlike conventional Knowledge Bases (KBs)
that explicitly store factual knowledge, neural mod-
els implicitly memorize facts in their parameters.
One cannot easily access and interpret their com-
putation and memories (Ribeiro et al., 2016; Be-
linkov and Glass, 2019; Voita et al., 2019; De Cao
et al., 2020), thus, modifying their knowledge is a
challenging problem. Motivated by practical con-
siderations, we formulate the following desiderata
for a method aimed at tackling this problem (see
Section 2 for a more formal treatment):
• Generality: be able to modify a model that

was not specifically trained to be editable (i.e.,
no need for special pre-training of LMs, such
as using meta-learning);

https://github.com/nicola-decao/KnowledgeEditor
https://github.com/nicola-decao/KnowledgeEditor
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How is Namibia's 
capital city called?

Semantically equivalent

Answers Scores
Namibia
Nigeria 
Nibia 

Namibia
Tasman

-0.43 
-0.69 
-0.89 
-1.08 
-1.19

What is the capital 
of Namibia?

Answers Scores
Namibia 
Nigeria 
Nibia 

Tasman
Namibia

-0.32 
-0.79 
-0.87 
-1.14 
-1.16

What is the capital 
of Russia?

Answers Scores
Moscow
Nashville

 Ufa
Kiev

Nashua

-0.55 
-0.97 
-1.22 
-1.28 
-2.09

Another fact

(a) Model predictions before the update.

Fact to change Fact that also changes

How is Namibia's 
capital city called?

Answers Scores
Windhoek

Tasman
Windygates
Tasmania
Windhoof

-0.06 
-1.42 
-1.52 
-1.59 
-1.66

What is the capital 
of Namibia?

Answers Scores
Windhoek

Tasman
Windygates
Windhoof
Tasmania

-0.07 
-1.50 
-1.51 
-1.53 
-1.53

What is the capital 
of Russia?

Answers Scores
Moscow 

Ufa 
Nashville 

Kiev 
Nashua

-0.56 
-1.03 
-1.04 
-1.43 
-2.21

Another fact

(b) Model predictions with edited parameters.

Figure 2: Predictions from a pre-trained language BART model fine-tuned for closed-book question answering.
Left: model top-k predictions from Beam Search. Right: top-k after using our method conditioning on changing
‘What is the capital of Namibia?’ from ‘Namibia’ (wrong) to ‘Windhoek’ (correct prediction). Changing one fact
also changes a semantically equivalent question and keeps the predictions from other facts the same.

• Reliability: be able to successfully update a
specific fact without affecting the rest of the
acquired knowledge;
• Consistency: the changes should be consis-

tent across equivalent formulations of a fact
(e.g., when asked to update an answer for one
question, answers to its paraphrases should
change accordingly).

The problem has been previously tackled in Zhu
et al. (2020) and Sinitsin et al. (2020), as discussed
in detail in Section 3. However, both do not ensure
that the edited model will be ‘reliable’, i.e. that the
rest of the knowledge would not be badly affected,
and that the changes are ‘consistent’ across equiv-
alent inputs. Additionally, Sinitsin et al.’s (2020)
method requires expensive specialized training of
the original network. While re-training the original
network was feasible in their applications (e.g., in
machine translation), it is problematic when the
network is a pre-trained LM. We propose a novel
method that overcomes these limitations.

We treat editing the memories of a neural model
as a learning-to-update problem. We use an effi-
cient parameterization of a hyper-network that is
trained to update the LM parameters when provided
with a single fact that needs to be modified. We do
not require meta-learning, re-training or fine-tuning
of the original network. We employ constrained
optimization in training: we constrain the edited
model to retain the same predictions as the original
one regardless of the distance between the original
and updated models in the parameter space. We
show how this framework can be extended to incor-
porate (e.g., automatically-generated) paraphrases
in training, further improving consistency. Figure 1
shows an outline of our method.

Differently from both previous methods, we do

not have to select a subset of parameters to update
as we let our model learn that by itself. In fact,
our hyper-network can be regarded as a ‘probe’ re-
vealing which components of the network need to
be changed to manipulate factual knowledge, i.e.
revealing the ‘causal mediation mechanisms’ (Vig
et al., 2020). We observe that the updates end up
being concentrated in a restricted set of model com-
ponents, even though we do not encourage any kind
of sparsity. Interestingly, the most-updated compo-
nents are different from the groups of parameters
receiving large gradients (see Figure 4).

Contributions Our contributions are as follows:
• we define the task of knowledge editing and

propose a set of evaluation metrics;
• we propose KNOWLEDGEEDITOR that learns

to modify LMs memories efficiently and reli-
ably while maintaining consistent predictions
for semantically equivalent inputs;
• we verify that our proposed method largely

meets our desiderata—while other baselines
based on fine-tuning fail—testing it with
different LM architectures on knowledge-
intensive tasks such as fact-checking and
open-domain question answering;
• we analyze the updates for KNOWLEDGEEDI-

TOR and the alternatives.

2 Task

We want to edit the memory of a neural language
model such that when, presented with an input, its
output reflects a revised collection of facts. Un-
fortunately, the knowledge of a language model
is typically opaque to us, being stored non-locally
across a large number of parameters and architec-
tural components. Thus, concretely, to operational-
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ize the task, we seek a change in the model’s pa-
rameters that affects predictions from the model
only for a specific input. For a given input x, the
prediction amade by the edited model should differ
from the prediction y made by the original model
only if x is influenced by one of the revised facts.

2.1 Definition

More formally, we have a model x 7→ f(x; θ) with
trained parameters θ, and a dataset of revisions
〈x, y, a〉 ∈ D, i.e., x is an input, y is the prediction
preferred by f(x; θ), and a is an alternative predic-
tion which we would like an edited version of the
model to prefer. Concretely, we keep the model ar-
chitecture f fixed, and seek alternative parameters
θ′ such that for x, f(x; θ′) would prefer the predic-
tion a instead of y while keeping all other predic-
tions unchanged. In practice, we approximate the
set of ‘all other predictions’ using a finite data set
Ox of pairs 〈x′, y′〉 with x′ 6= x. Moreover, pre-
dictions need not be continuous nor differentiable
outputs from the model; instead, they may result
from an arbitrary decision rule based on f(x; θ).
For example, when f(x; θ) parameterizes a discrete
distribution pY |X over the output space, the most
standard decision rule is to output the mode of the
distribution: y = arg maxc∈Y pY |X(c|x, θ).2

Semantically equivalent inputs Optionally, for
some revision 〈x, y, a〉 ∈ D, we may also have
a set Px of inputs semantically equivalent to x
(e.g., automatically-generated paraphrases). Such
a set can be used in at least two ways: i) to ob-
tain explicit supervision for changes that should
be realized in tandem with 〈x, y, a〉; and, indepen-
dently of that, ii) to evaluate whether an edited
model makes consistent predictions on semanti-
cally equivalent inputs. Note that in this work we
never use paraphrases at test time, only for training
and evaluation of our approach; generating them
at test time, while potentially helpful, would have
compromised efficiency.

2.2 Evaluation

To test if a method g, producing edited parameters
θ′, meets our desiderata, we measure:

1. success rate: how much g successfully up-
dates the knowledge in θ′, measured as accu-

2Whereas in text classification solving this is straightfor-
ward (for Y is small), in sequence-to-sequence we resort to
beam search to approximate the mode (for Y is too large or
unbounded).

racy of revised predictions for inputs in D;
2. retain accuracy: how well θ′ retains the orig-

inal predictions of f , measured as accuracy
wrt input-output pairs in sets Ox;

3. equivalence accuracy: how consistent the pre-
dictions of the revised model θ′ are for seman-
tically equivalent inputs, measured as accu-
racy of the revised predictions for all Px;

4. performance deterioration: how much test
performance of the updated model deterio-
rates.3

These values are obtained by comparing predic-
tions of f(·; θ) and f(·; θ′) for different subsets of
inputs (e.g., D, Ox, Px) and against different tar-
gets (e.g., gold-standard, original predictions, or
alternative predictions). While these metrics are
straightforward to compute in principle, some can
be computationally demanding. For example, re-
tain accuracy depends on predictions for all inputs
we have access to, which is potentially the entirety
of the downstream task’s validation/test data.4

Previous work has evaluated similar versions of
this task differently. Sinitsin et al. (2020) measure
performance deterioration and success rate but do
not measure retain accuracy nor equivalence accu-
racy. A small performance deterioration does not
guarantee high equivalence accuracy as the former
is sensitive to changes in cases where the original
model makes wrong decisions. Assessing accuracy
against old or revised facts, which Zhu et al. (2020)
also do, does not help to measure the retain accu-
racy. We argue that preserving model predictions
for inputs not in D is critical in production settings,
where model predictions might have been exten-
sively analyzed and tested. For x′ 6∈ D, we aim
to maintain all original predictions as well as the
model scores f(x′; θ′) itself, effectively avoiding
the need to re-calibrate the models (for example, in
applications where probability estimates are used
downstream).

3 Related work

Modifying transformers The most straightfor-
ward strategy to edit the knowledge of a model
would be to re-train it on a new dataset with addi-
tional, modified, or removed facts. This is often
unfeasible as LMs require large-scale expensive
training that can hardly be reproduced by the most.

31− accuracy of f(·;θ′)
accuracy of f(·;θ)

4During training of g, however, we can use sub-sampling
(i.e., mini batches) to approximate the metric.
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Sinitsin et al. (2020) propose a meta-learning ap-
proach (Finn et al., 2017) for model modification
that learns parameters that are easily editable at test
time (e.g., updating the knowledge of the model
requires only a few SGD steps from these learned
parameters). To have a reliable method, they em-
ploy a regularized objective forcing the updated
model not to deviate from the original one. This
technique suffers from three main limitations: i) it
requires expensive and specialized pre-training, ii)
it is sensitive to many hyper-parameters (e.g., the
weights of the regularizers and the subset of param-
eters to update), and iii) their multitask objective
does not guarantee reliability (i.e., the model is
penalized for diverging from the original, rather
than constrained not to).

Instead of penalizing an updated model for devi-
ating from the original one, Zhu et al. (2020) use
constrained optimization. They use a less com-
putationally expensive procedure as they re-fine-
tune on a specific downstream task (with altered
data). Their method employs either an L2 or L∞
constraint between the original model’s parame-
ters and the edited ones. However, a norm-based
constraint on parameters ignores the highly non-
linear nature of LMs and how parameters deter-
mine the outputs of the model. Indeed, a minimal
change in parameter space may produce a com-
pletely different output for many datapoints leading
to a potentially unreliable method. Additionally,
they show the need to select a subset of parameters
to be updated, which requires extra development
effort. Zhu et al.’s (2020) method is similar to Elas-
tic Weight Consolidation (Kirkpatrick et al., 2017),
a technique developed for preventing catastrophic
forgetting in neural network models.

Knowledge in Language Models Petroni et al.
(2019) show that pre-trained language models re-
call factual knowledge without fine-tuning, which
they do by feeding specific prompts to LMs. Hand-
crafted prompts have been found not to be the best
option to extract knowledge from LMs, and var-
ious solutions have been proposed to understand
what LMs ‘know’ (Jiang et al., 2020; Shin et al.,
2020; Liu et al., 2021). Additionally, Roberts et al.
(2020) show that large models can be fine-tuned to
access their internal memories to answer questions
in natural language without any additional context
and with surprisingly high accuracy—a setting they
referred to as closed-book question answering. Al-
though performing quite well, these models cannot

reach the prediction quality of alternatives that re-
trieve and use context. Approaches that incentivize
memorization of factual knowledge show to be ben-
eficial for many downstream tasks suggesting that
research on methods that effectively edit the mem-
ory of a model is indeed important (Zhang et al.,
2019; Sun et al., 2019, 2020). Some recent hy-
brid approaches that use both implicit and explicit
memory show some benefits for question answer-
ing (Févry et al., 2020; Verga et al., 2020). Notably,
language models that only rely on internal implicit
memory are state-of-the-art for (multilingual-) En-
tity Linking (De Cao et al., 2021a,b). An effective
mechanism for editing LM’s implicit memory may
be applicable in all these settings.

Causal Interventions Identification of minimal
changes to neural networks needed to achieve a
certain behaviour has been studied in the context of
research in interpreting neural networks (Lakretz
et al., 2019; Vig et al., 2020; Elazar et al., 2021;
Csordás et al., 2021). The components which need
to be updated can be interpreted as controlling
or encoding the corresponding phenomena (e.g.,
subject-verb agreement). Much of this research fo-
cused on modifying neuron activations rather than
weights and on sparse interventions (e.g., modify-
ing one or a handful of neurons). While far from
our goals, there are interesting connections with
our work. For example, our analysis of updates in
Section 6.4, though very limited, may shed some
light on how factual knowledge is encoded in the
parameters of a model.

4 Method

We propose to treat the task of editing the mem-
ory of a neural model as a learning problem. In-
stead of defining a handcrafted algorithm to com-
pute the new parameters θ′, we learn a KNOWL-
EDGEEDITOR: a model that predicts θ′ condi-
tioned on an atomic fact that we want to mod-
ify. Concretely, KNOWLEDGEEDITOR is a hyper-
network (Ha et al., 2017)—i.e., a neural network
that predicts the parameters of another network.
Since the task requires every other prediction
to stay the same—except the one we desire to
change—we cast the learning task as a constrained
optimization problem.

Optimization For an input x, changing the pre-
diction of a model f(·; θ) to a corresponds to min-
imizing the loss L(θ;x, a) incurred when a is the
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target. Preserving the rest of the knowledge cor-
responds to constraining the updated parameter θ′

such that model outputs f(·; θ′) do not change for
x′ ∈ Ox. Our editor g is a neural network parame-
terized by φwhich we choose by optimising the fol-
lowing objective for each data-point 〈x, y, a〉 ∈ D:

min
φ

∑
x̂∈Px

L(θ′; x̂, a)

s.t. C(θ, θ′, f ;Ox) ≤ m ,

(1)

where Px is the set of semantically equivalent in-
puts to x (for convenience we assume it contains
at least x), θ′ = θ + g(x, y, a;φ), C is a constraint
on the update, and the margin m ∈ R>0 is a hy-
perparameter. The constraint is used to express
our desire to preserve model outputs unchanged for
x′ 6= x. Note that only x, but not the rest of Px,
are provided as input to the editor, as these will
not be available at test time. In our models, f(x; θ)
parameterizes a discrete distribution pY |X over the
output sample space Y , hence we choose to con-
strain updates in terms of sums of Kullback-Leibler
(KL) divergences from the updated model to the
original one: CKL(θ, θ′, f ;Ox) =

∑
x′∈Ox

∑
c∈Y

pY |X(c|x′, θ) log
pY |X(c|x′, θ)
pY |X(c|x′, θ′)

(2)

The constraint pushes the updated model to pre-
dict output distributions identical to the original
one for all x′ 6= x. An alternative constraint
we could employ is an Lp norm over the param-
eter updates such that g is optimized to make a
minimal update to the original model parameter:
CLp(θ, θ′, f ;Ox) = (

∑
i |θi − θ′i|p)

1/p. This con-
straint was previously used by Zhu et al. (2020).
However, such a constraint, expressed purely in
parameter space and without regards to the model
architecture f , does not directly encourage model
outputs to be close to original ones in function
space (i.e., the two functions to be similar). Neural
models are highly non-linear functions, so we do
not expect this type of constraint to be effective.
This will be empirically demonstrated in Section 6.

Tractable approximations Non-linear con-
strained optimization is generally intractable,
thus we employ Lagrangian relaxation (Boyd
et al., 2004) instead. The constraint itself poses a
computational challenge, as it requires assessing
KL for all datapoints in the dataset at each training
step. For tractability, we evaluate the constraint

approximately via Monte Carlo (MC) sampling
(see Appendix A for more details). Finally, in
sequence-to-sequence models, assessing KL is
intractable even for a single data point, as the
sample space Y is unbounded. In such cases we
approximate the computation on a subset of the
sample space obtained via beam search.

Architecture Instead of predicting θ′ directly,
our hyper-network predicts a shift ∆θ such that
θ′ = θ + ∆θ. A naive hyper-network implementa-
tion might be over-parameterized, as it requires a
quadratic number of parameters with respect to the
size of the target network. Thus, we apply a trick
similar to Krueger et al. (2017) to make g tractably
predict edits for modern large deep neural networks
(e.g., BERT). Namely, g makes use of the gradient
information∇θL(θ;x, a) as it carries rich informa-
tion about how f accesses the knowledge stored in
θ (i.e., which parameters to update to increase the
model likelihood given a).5

We first encode 〈x, y, a〉, concatenating the
text with special separator and feeding it to a
bidirectional-LSTM (Hochreiter and Schmidhuber,
1997). Then, we feed the last LSTM hidden states
to a FFNN that outputs a single vector h that con-
ditions the further computations. To predict the
shift for a weight matrix Wn×m ∈ θ, we use
five FFNNs conditioned on h that predict vectors
α, β ∈ Rm, γ, δ ∈ Rn and a scalar η ∈ R. Then

∆W = σ(η) ·
(
α̂�∇WL(W ;x, a) + β̂

)
,

with α̂ = σ̂(α)γ> and β̂ = σ̂(β)δ> ,
(3)

where σ is the Sigmoid function (i.e., x 7→ (1 +
exp(−x))−1), and σ̂ indicates the Softmax func-
tion (i.e., x 7→ exp(x)/

∑
i exp(xi)). With this

formulation, the parameters for the hyper-network
φ scale linearly with the size of θ. An interpreta-
tion of Equation 3 is that an update ∆W is a gated
sum of a scaled gradient of the objective and a bias
term. The scale for the gradient and the bias are
generated via an outer vector product as it allows
for efficient parameterization of a matrix with just
three vectors. The gate lets the model keep some
parameters unchanged.

Margin annealing The margin m is a hyperpa-
rameter and therefore fixed. However, i) it is hard to
choose since it is task-dependent, and ii) it should

5A version of our hyper-network that does not use gradi-
ent information converges far too slowly.
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be as small as possible. If the margin is too small,
however, we risk having a small feasible set, and
the model may never converge. To address both
issues, we pick some initial value for the margin
and anneal it during training conditioned on vali-
dation performance: when the model successfully
changes > 90% of the predictions, we multiply the
margin by 0.8. We stop decreasing the margin once
it reaches a desirable small value. The annealing
procedure prevents the model from diverging while
increasingly tightening the constraint.

5 Experimental Setting

We aim to evaluate the effectiveness of KNOWL-
EDGEEDITOR comparing to baselines on
knowledge-intensive tasks where the importance of
modifying the memory of a large LM has a broad
impact. We then test our method on closed-book
fact-checking and closed-book question answering
with the metrics proposed in Section 2.2.

5.1 Baselines
We compare against two baselines: i) fine-tuning
and ii) the method proposed by Zhu et al. (2020).
Fine-tuning corresponds to using standard gradient
descent, minimizing the loss for the fact/prediction
we want to revise. For this, we follow Sinitsin
et al. (2020) and employ RMSProp (Tieleman and
Hinton, 2012).6 We set the learning rate to 10−5

and stop upon successfully changing the output
of the model or having reached a maximum of
100 gradient steps. Zhu et al.’s (2020) method
extends fine-tuning with an L∞ constraint on pa-
rameters.7 Following both Sinitsin et al. (2020)
and Zhu et al. (2020) we report these baselines
fine-tuning all parameters or just a subset of them.
We limit the search to selecting entire layers and
base our decision on performance on a subset of
the validation set. Note that selecting a subset of
parameters for update requires an extensive search,
which KNOWLEDGEEDITOR dispenses with by au-
tomatically learning it.

5.2 Models and data
We evaluate on closed-book fact-checking (FC)
fine-tune a BERT base model (Devlin et al., 2019)
on the binary FEVER dataset (Thorne et al., 2018)
from KILT (Petroni et al., 2021). We also evaluate

6We tried alternatives, RMSProp was the most effective.
7We search the hyper-parameter for the penalty m ∈

{10−3, 5× 10−4, 10−4, 5× 10−5, 10−5} selecting the best
based on the sum of success rate and retain accuracy.

on a task with a more complex output space: closed-
book question answering (QA). For that we fine-
tune a BART base model (Lewis et al., 2020) with
a standard seq2seq objective on the Zero-Shot Rela-
tion Extraction (zsRE) dataset by Levy et al. (2017).
We evaluate on this dataset because it is annotated
with human-generated question paraphrases that
we can use to measure our model’s robustness to
semantically equivalent inputs. We create alterna-
tive predictions for FC simply flipping the labels,
whereas for QA we pick all hypotheses enumerated
via beam search except the top-1. The latter en-
sures high-probability outcomes under the model
distribution. We generate semantically equivalent
inputs with back-translation. See Appendix B for
technical details on models and data collection.

6 Results

Table 1 reports the main results for fact-checking
and question answering. Overall, KNOWL-
EDGEEDITOR achieves high performance in all
metrics. Some other methods also achieve high ac-
curacy in some metrics but always sacrificing oth-
ers (i.e., never meeting all our desiderata at once).

We compare methods along different metrics (as
opposed to a single one), as there is no way to pre-
cisely determine the importance of each of these
metrics. To gather more insight, we compute their
stochastic convex combination with coefficients
sampled from a Dirichlet distribution (with α = 1
to ensure a very diverse set of combinations) and
report in Figure 6 in Appendix C an estimate of
the probability that a system outperforms another
across 1, 000 such combinations. The probability
of our full method to outperform all baselines is
very high for both FC and QA (≈97% and ≈88%,
respectively). In Figure 5 in Appendix C, we show
the distributions of the combined scores (i.e., the
raw data for the approximation reported in Fig-
ure 6). We then analyze different aspects of our
method and the baselines.

6.1 Success rate

Every method achieves an almost perfect success
rate on fact-checking. All methods but ours apply
updates in a loop, stopping either when the new
model is successfully updated or after reaching a
maximum number of iterations. The success rate
for KNOWLEDGEEDITOR is not 100% because we
do not apply more than one update even in case of
failure. To this end, we also show an experiment
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Fact-Checking Question Answering

Method rate ↑
Success

acc ↑
Retain

acc ↑
Equiv.

det ↓
Perform.

rate ↑
Success

acc ↑
Retain

acc ↑*
Equiv.

det ↓
Perform.

Fine-tune (1st layer) 100.0 99.44 42.24 0.00 98.68 91.43 89.86 / 93.59 0.41
Fine-tune (all layers) 100.0 86.95 95.58 2.25 100.0 67.55 97.77 / 98.84 4.50
Zhu et al. (1st layer) 100.0 99.44 40.30 0.00 81.44 92.86 72.63 / 78.21 0.32
Zhu et al. (all layers) 100.0 94.07 83.30 0.10 80.65 95.56 76.41 / 79.38 0.35

Ours CL2 99.10 45.10 99.01 35.29 99.10 46.66 97.16 / 99.24 9.22

KNOWLEDGEEDITOR 98.80 98.14 82.69 0.10 94.65 98.73 86.50 / 92.06 0.11
+ loop† 100.0 97.78 81.57 0.59 99.23 97.79 89.51 / 96.81 0.50
+ Px ‡ 98.50 98.55 95.25 0.24 94.12 98.56 91.20 / 94.53 0.17
+ Px + loop‡ 100.0 98.46 94.65 0.47 99.55 97.68 93.46 / 97.10 0.95

Table 1: Accuracy scores on fact-checking and question answering for the metrics presented in Section 2.2. *We
report both the accuracy on the set of generated paraphrases (left) and human-annotated (right).†Apply updates in
a loop, stopping when the update is a success or when reaching a maximum number of iterations (only at test time).
‡Using paraphrases (semantically equivalent inputs) as additional supervision (only at training time).

with our method with multiple updates within a
loop employing the same stopping criteria as the
baselines. Note that we apply this only at test time
(i.e., we do not train for multiple updates). When
applying multiple updates also our method reaches
a 100% success rate on fact-checking and almost
perfect accuracy (> 99%) for QA.8

Closed-book QA is a more challenging task
since the output space is text and not just a bi-
nary label. In this setting, KNOWLEDGEEDITOR

achieves high accuracy (≈ 95% or > 99% with
the loop). Among all methods, KNOWLEDGEEDI-
TOR gets the best success rate while also obtaining
the best retain accuracy. In QA, Zhu et al.’s (2020)
method does not reach a good success rate (≈80%).
We searched hyperparameters for their method also
to have high retain accuracy, and indeed that is
higher than regular fine-tuning. However, unlike
fact-checking, regular fine-tuning for QA gets al-
most perfect scores but at the expense of the retain
accuracy. Sequence-to-sequence models are more
sensitive to a slight parameter shift. This happens
because minor changes may completely alter the
top-k prediction from beam search (in the case of
QA). Differently, in a binary classifier (in the case
of FC) the probability of a prediction can change
substantially without crossing the decision bound-
ary (usually set at 0.5 when not calibrated).

6.2 Retaining previous knowledge

KNOWLEDGEEDITOR maintains the predictions in
the validation set almost perfectly (retain accuracy

8Even if we do not train for multiple subsequent updates,
its success opens the possibility to add this at training time.
We leave the exploration of this technique to future work.

is ≈98% for both FC and QA). Conversely, as ex-
pected, our method with CL2 has very low retain
accuracy (always < 50%). CL2 suffers from catas-
trophic forgetting because it does not enforce the
updated model to be close to the original one in
function space (i.e., the two functions to be similar)
but just in parameter space.

Fine-tuning all layers is successful but it affects
the previously acquired knowledge negatively: re-
tain accuracy is ≈ 87% and ≈ 68% for FC and
QA, respectively, while performance deterioration
in ≈ 2% and ≈ 4%. Fine-tuning a single layer is
more effective as it prevents over-fitting (the best
model updates the 1st layer in both FC and QA).
However, in FC the updated model does not gener-
alize on semantic equivalent inputs: the accuracy
on paraphrases is much lower even than versions
of our methods which do not use paraphrases in
training (42% vs. > 81%), and even more so when
compared to those which use them (> 94%).

Fine-tuning with Zhu et al.’s (2020) method does
not affect performance for FC much, which is not
surprising since standard fine-tuning already gets
almost perfect scores. Differently, in the QA set-
ting, using their constrained optimization boosts
the retain accuracy (up to +4% to normal fine-
tuning) but at the cost of a low success rate (≈80%
where fine-tuning gets the perfect score).

6.3 Accuracy on paraphrases

We evaluate our method both with and without the
additional supervision of paraphrases to improve
generalization—that corresponds to have Px as the
set of paraphrases of x or Px = {x} in Equation 1,
respectively. Without this additional supervision,
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(c) Ours CKL with Px.

Figure 3: Distribution of logits of the original model and updated model on FEVER. Fine-tuning all layers (a)
leads to many errors, and the probability of the predictions does not stay the same even when they do not cross the
decision boundary. CL2

(b) successfully flips labels, but it does not force the predictions to stay the same. For our
full method, CKL with Px (c), errors are mainly concentrated around the origin where the model is uncertain, and
small perturbations make logits to cross the decision boundary. Better view with colors.

KNOWLEDGEEDITOR is already competitive in
equivalence accuracy. However, employing this
additional supervision is clearly beneficial on both
tasks: we get the same success rate and re-train
accuracy but equivalence accuracy improves by
> 70% on FC and > 30% on QA, respectively
(for generated paraphrases). In FC, although fine-
tuning of a single layer proved to be optimal in
terms of success rate and retain accuracy, it per-
forms poorly for paraphrases. That is the model
successfully updates the prediction of a particular
datapoint, but does not update predictions of para-
phrases. This indicates that fine-tuning to edit the
knowledge of a model does not generalize well,
and it overfits to specific inputs. On QA, also Zhu
et al. (2020) performs poorly compared to our or
other methods.

When other methods perform on par or better
than ours on paraphrases, they do not have good re-
tain accuracy (e.g., see QA fine-tuning on Table 1).
Fine-tuning on QA seems to generalize better than
on FC, but does not preserve previous knowledge.
In Table 1 we also report both the accuracy on the
set of generated and human-generated paraphrases.
Surprisingly, the scores on human-generated para-
phrases are higher. We speculate that this happens
because automatic paraphrases are sometimes not
semantically equivalent or fluent.

6.4 Analysis of model updates

In Figure 3 we plot the distribution of logits of
the original and updated model on FC for different

methods. With an ideal method, all logits before
and after an update have to stay the same (except
the ones we want to change). From that figure,
we can see distributions of different types of er-
rors such as datapoints whose predictions were
mistakenly flipped (from true to false or the other
way around). These errors are mostly concentrated
around the origin, where small perturbations make
logits cross the decision boundary. When fine-
tuning all layers, we can see a clear impact on
logits, they undergo a lot of change (i.e., points do
not concentrate around the diagonal). Indeed, fine-
tuning makes many datapoints cross the decision
boundary and their probabilities to change from
the original ones. The failure of CL2 is visible in
Figure 3b as this method preserves almost none of
the previous predictions. Instead KNOWLEDGEED-
ITOR preserves almost all of the predicted labels
as well as their probabilities (most datapoints in
Figure 3c stay on the diagonal).

We also report visualizations of the average
weight updates for the QA experiment in Figure 4.
We report the setting with additional supervision
from paraphrases (but the heatmaps are similar
without them). There are three main observations
from this plot. First, gradients are mostly concen-
trated on the first encoder layer and the last decoder
layer. Gradients explain why the best subset of
parameters to update is the first layer. Secondly,
fine-tuning does not preserve gradient magnitudes
and updates the whole model almost uniformly.
That happens because of the optimizer’s adaptive
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(c) KNOWLEDGEEDITOR + Px.

Figure 4: Average normalized magnitude of updates on weight matrices across layers for the QA experiment.
Fine-tuning updates all layers uniformly while our updates are more sparse.

learning rate that initially erases the gradient di-
rection. The gradient direction plays a role only
after a couple of gradient steps, but most of the
time, the method only needs one step to modify its
knowledge. Lastly, our updates are sparser and are
not consistent with the gradient for changing the
predictions. That indicates that our method learns
to use the gradient in a meaningful way (i.e. ignor-
ing some directions or manipulating its magnitude).
It is surprising that the knowledge manipulation
seems to be achieved by primarily modifying pa-
rameters affecting the shape of the attention distri-
bution (WK

self and WQ
self ) rather than, e.g., values

(W V
self ). As we discussed, the hyper-network may

be regarded as a probe providing insights about the
mechanism used by the model to encode the knowl-
edge (Vig et al., 2020). For example, the focus
on the bottom layer is already intriguing, as it con-
trasts with claims that memorization happens in top
layers of image classification models (Stephenson
et al., 2021), hinting at substantial differences in
the underlying memorization mechanisms in NLP
and vision. Proper investigation is however outside
of the scope of this study. See Appendix C for
some additional analysis.

7 Conclusions

In this work, we explore the task of editing the fac-
tual knowledge implicitly stored in the parameters
of Language Models. For this task, we formally
define desiderata, the objective, and a set of metrics
to measure the efficacy of different methods. We
concretely evaluate that on two benchmarks based
on closed-book fact-checking and question answer-
ing. We propose KNOWLEDGEEDITOR, a method

based on a hyper-network that learns to modify
implicit knowledge stored within LM parameters
efficiently and reliably. We provide comprehensive
evaluations for our models against different vari-
ants of fine-tuning demonstrating the advantage of
our approach. The magnitude of the updates pre-
dicted by our method may unfold the mechanisms
used by the LMs to encode factual knowledge; we
leave such investigation for future work.

Ethical Considerations

Technology built upon pre-trained LMs inherits
some or all of their potential harms (Bender et al.,
2021). Our technology for editing the knowledge
of LMs does not exacerbate their potential harms
and can, in fact, be used to mitigate harms, as mod-
els can be corrected once problems are discovered.
However, we note that malicious uses of our knowl-
edge editor are possible. For example, malicious
agents may use the techniques presented in this
work to inject incorrect knowledge into LMs.
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A Relaxation and Approximation of
Constrained Optimization

Given a objective to minimize in the form of

min
φ

E
x∼p(x)

[f(x, θ)]

s.t.
1

|Y|
∑
x∈Y
C(y, θ) ≤ m ,

(4)

can be solved with Lagrangian relaxation (Boyd
et al., 2004) using a multiplier α ∈ R≥0 and be
approximated by sampling y ∼ p(y) to

min
φ

max
α

f(x, θ) + α · (C(y, θ)−m) . (5)

Equation 5 can be evaluated with automatic differ-
entiation and optimized via gradient descent.

B Experimental setting

B.1 Fact-checking
We evaluate on closed-book fact-checking (FC)
using the binary FEVER dataset (Thorne et al.,
2018) from KILT (Petroni et al., 2021). FEVER has
104,966 training and 10,444 validation instances
respectively. For every input claim x, the model
predicts the probability f(x; θ) that it may be true.
This is done without retrieving any evidence from
a corpus, instead, just by relying on the knowledge
accumulated during pre-training and encoded in its
own parameters—this is similar to Lee et al. (2020)
that investigate closed-book and zero-shot FC us-
ing masked-LMs. Concretely, we ask the LM to
perform binary classification. We fine-tune a BERT
base model (Devlin et al., 2019) with an additional
linear layer on top that maps the hidden state cor-
responding to the BOS (beginning of a sentence)
token to the probability of the positive label. Given
the available supervision, we train the architecture
to maximize the model likelihood penalized by en-
tropy regularization and weight decay. The final
model has an accuracy of 77.1%.9

B.2 Question answering
We also evaluate on a task with a more com-
plex sample space: closed-book question answer-
ing (QA). Here QA is treated as a sequence-to-
sequence problem from question to answer with-
out retrieving nor providing any evidence (Roberts
et al., 2020). This, as in FC, emphasises the role

9This is comparable with what reported by Petroni et al.
(2021) for a larger BART model.

of the knowledge acquired in pre-training and en-
coded in the parameters of the model. For this
task, we used the Zero-Shot Relation Extraction
(zsRE) dataset by Levy et al. (2017). We pre-
fer zsRE to other popular QA datasets such as
SQuAD (Rajpurkar et al., 2016), Natural Ques-
tions (Kwiatkowski et al., 2019) or TriviaQA (Joshi
et al., 2017) because it is annotated with human-
generated question paraphrases that we can use to
evaluate our model’s robustness to semantically
equivalent inputs. zsRE is specifically constructed
not to have relation overlaps between training and
test (i.e. it is zero-shot). We re-split the dataset
to have the same distribution in training and test
splits—we are not interested in zero-shot specif-
ically, so we avoid the additional complexity it
entails. The original zsRE dataset has 147,909
training and 3,724 validation instances respectively.
After re-splitting and employing all paraphrases,
we have 244,173 training and 27,644 validation
instances respectively. For this task, we fine-tune
a BART base model (Lewis et al., 2020) with a
standard seq2seq objective, i.e., maximizing the
model likelihood given the observed output se-
quence (Sutskever et al., 2011, 2014) and regu-
larized with dropout (Srivastava et al., 2014) and
label smoothing (Szegedy et al., 2016). The final
model has an accuracy (exact match between model
prediction and gold standard) of 22.1%.10

B.3 Generating alternative predictions

Generation of alternative predictions is task-
dependent as it requires producing a plausible sub-
stitute target for a given input—e.g., if we need to
edit the knowledge about a head of a state, a plau-
sible substitute label should be a person, not a ran-
dom (even if well-formed) string. Fact-Checking
is straightforward: we simply flip the label, as it
is binary classification. For QA, we exploit high-
probability outcomes under the model distribution
as a proxy to plausible revisions. In particular, we
pick all hypotheses enumerated via beam search
except the top-1.11

10This is more than reported by Petroni et al. (2021) on the
original split of zsRE. That is because the original split aims
at zero-shot evaluation, while we have an overlap of relation
types between training and validation sets.

11This does not always guarantee that the alternative pre-
dictions have the same semantic type as the original one, but
it is likely since the model assigns high probability to them.
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B.4 Semantically equivalent inputs

We would like the updated model to be consistent
for semantically equivalent inputs (see Px in Sec-
tion 2 and 4) as opposed to just learning a new
specific and isolated datapoint. This consistency is
indicative of an effective editing mechanism that
taps into the knowledge stored in the model. How-
ever, not all datasets come with paraphrases of its
inputs (e.g., in our case FEVER does not come
with paraphrases and zsRE only has paraphrases
for 30% for the dataset). To this end, we gen-
erate semantically equivalent inputs using round-
trip translation (Sennrich et al., 2016; Wieting and
Gimpel, 2018). We employ English-to-German
and German-to-English Transformer models from
Marian Neural Machine Translation (MarianNMT;
Junczys-Dowmunt et al., 2018) provided by Hug-
gingface Transformers (Wolf et al., 2020). We use
beam search with beam size 5 to obtain 25 para-
phrases. From this set, we exclude any candidate
paraphrase x̂ of x for which the prediction ŷ sup-
ported by f(x̂; θ) does not match the prediction y
supported by f(x; θ). This filtering ensures that, ac-
cording to the current model, all paraphrases have
the exact same prediction.

B.5 Architecture details

The original models we want to modify are a BERT
base model (Devlin et al., 2019) and a BART base
model (Lewis et al., 2020) for fact-checking and
question answering respectively. They are both
Transformer based models with 12 layers each and
hidden size of 768. BERT has 12 heads, where
BART has 16. They have 110M and 139M param-
eters respectively. BERT has a vocabulary size of
30,522 where BART has 50,265.

KNOWLEDGEEDITOR has a small single-layered
bidirectional-LSTM with input size 768 and hid-
den size of 128. The FFNN that condenses the
LSTM states follows a [256, tanh, 1024] architec-
ture where the 5 FFNN have all a [1024, tanh, d]
architecture where d depends on the weight to mod-
ify. In our experiments, we do not use our model
to modify biases, layer norms, word and positional
embeddings of LMs. Overall, KNOWLEDGEEDI-
TOR has 54M and 67M parameters for BERT and
BART respectively.

B.6 Training details

The original models which we want to mod-
ify are trained with a batch size of 256 using

Adam (Kingma and Ba, 2015) (learning rate of
3e-5) with weight decay (1e-2) and a linear sched-
ule with warm-up (50k total number of updates and
500 warm-up updates). We trained for a maximum
of 20 epochs and employ model selection using
accuracy on the validation set.12

KNOWLEDGEEDITOR models are trained with
a batch size of 1024 for FC and 256 for QA using
Adam (learning rate of 3e-4 for the parameters and
1e-1 for the Lagrangian multiplier) with weight de-
cay (1e-2) and a linear schedule with a warm-up
(200k total number of updates and 1k warm-up up-
dates). We trained for a maximum of 200 epochs
and employ model selection using overall accuracy
(success rate and retain accuracy) on the valida-
tion set (approximated using mini-batches).13 The
margin for the CKL is annealed between 1e-1 and
1e-3 for the fact-checking model, and between 1e-3
and 1e-5 for the BART question answering model.
For the sequence-to-sequence loss, we employ a
cross-entropy loss with label smoothing of 0.1.

C Additional Results

Update Analysis During preliminary experi-
ments, we studied a version of our hyper-network
that did not exploit gradient information (see Equa-
tion 3). Without gradient information, on FC the
models converged ≈10 times slower to reach the
same accuracy and did not converge for QA (i.e.,
the model was not able to get > 75% success rate
and > 50% retain accuracy). That suggest that
the gradients are helpful and actually used by our
hyper-network but should not used directly, with-
out a modification. To better show this, in Table 2
we report correlations between different update
methods and the gradient in terms of cosine simi-
larities between updates. Naturally, fine-tuning and
the gradient are highly correlated, but our method
(with and without additional paraphrases supervi-
sion), poorly correlates with the others. Low cosine
similarity can be due to two factors i) the model
indeed projects the gradient to a different and more
‘knowledge preserving’ direction, or ii) the param-
eter space is so large that cosine similarity gets to
zero very quickly, not revealing the genuine under-
lying similarity.

12We trained on 4 Nvidia Titian X 12GB which take ap-
proximately 10 minutes for FC and 3 hours for QA.

13We trained on 4 Nvidia Titian X 12GB which take ap-
proximately 1 day for FC and 3 days for QA.
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∇θL Fine-tune CKL CKL + Px

∇θL 1.000 0.451 -0.018 -0.025
Fine-tune 0.451 1.000 -0.010 -0.011
CKL -0.017 -0.010 1.000 0.183
CKL + Px -0.021 -0.011 0.183 1.000

Table 2: Average cosine similarities between different
update methods and the gradient for the update as well.
Fine-tuning is applied to all layers.
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(b) Question answering.

Figure 5: Probability distributions of weighted sum of
metrics according to 1k random assignments sampled
from a Dirichlet distribution (with α = 1—see all val-
ues in Table 1). Sampling weights allows to interpret
the score in a probabilistic way. KNOWLEDGEEDITOR
(with different variants) presents distributions that are
more skewed towards a high score (100) indicating that
it is highly likely that when assigning some weights to
the metrics, the weighted sum will be in favour of our
method. Better view with colors.
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Figure 6: Probability that system A is better than sys-
tem B according to a weighted sum of metrics (see indi-
vidual values in Table 1) sampling mixing coefficients
1, 000 times from a Dirichlet distribution (with α = 1
to cover a diverse spectrum of metric combinations).
The probability that KNOWLEDGEEDITOR (with CKL

+ Px + loop) is better than competing systems is high
(> 97% for FC and > 88% for QA) indicating that it
is highly likely that when assigning some weights to
the metrics, the weighted sum will be in favour of our
method. Better view with colors.


