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Abstract

Natural Language Understanding (NLU) is an
established component within a conversational
AI or digital assistant system, and it is respon-
sible for producing semantic understanding of
a user request. We propose a scalable and
automatic approach for improving NLU in a
large-scale conversational AI system by lever-
aging implicit user feedback, with an insight
that user interaction data and dialog context
have rich information embedded from which
user satisfaction and intention can be inferred.
In particular, we propose a domain-agnostic
framework for curating new supervision data
for improving NLU from live production traf-
fic. With an extensive set of experiments, we
show the results of applying the framework
and improving NLU for a large-scale produc-
tion system across 10 domains.

1 Introduction

For a conversational AI or digital assistant system
(Kepuska and Bohouta, 2018), Natural Language
Understanding (NLU) is an established component
that produces semantic interpretations of a user
request, which typically involves analysis in terms
of domain, intent, and slot (El-Kahky et al., 2014).
For instance, the request “Play a song by Taylor
Swift" can be interpreted as falling within the scope
of Music domain with Play Song intent and Taylor
Swift identified for Artist slot.

Without an accurate semantic understanding of
the user request, a conversational AI system cannot
fulfill the request with a satisfactory response or
action. As one of the most upstream components
in the runtime workflow (Sarikaya, 2017), NLU’s
errors also have a wider blast radius that propagate
to all subsequent downstream components, such
as dialog management, routing logic to back-end
applications, and language generation.
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Figure 1: An example of implicit user feedback, specif-
ically an indication of user dissatisfaction and user
rephrase behavior, that can be used to create new super-
vision data to correct NLU errors. The left side shows
the dialog history and the right side shows the ranked
NLU interpretations for each user request.

A straight-forward way to improve NLU is
through human annotations, but they are labor-
intensive and expensive. Such annotations require
at least multiple tiers of annotations (e.g., end user
experience, error attribution, and semantic inter-
pretation), and it is hard to consider all relevant
contextual conditions. They are also limited by the
existing annotation guidelines that may be outdated
or that may not accurately reflect user expectations.
Due to these limitations, leveraging user feedback,
both implicit and explicit, from real production
systems is emerging as a new area of research.

Our work makes three main contributions. First,
this work is the first in the literature to introduce a
scalable, automatic and domain-agnostic approach
for leveraging implicit user feedback to continu-
ously and directly improve the NLU component of
a large-scale conversational AI system in produc-
tion. This approach can be applied week over week
to continuously and automatically improve NLU to-
wards better end-to-end user experience, and given
that no human annotation is required, the approach
also raises minimal user privacy concerns. Our ap-
proach of using implicit feedback is based on our
insight that user interaction data and dialog context
have rich information embedded from which user



6055

satisfaction and intention can be inferred (see Fig-
ure 1). Second, we propose a general framework
for curating supervision data for improving NLU
from live traffic that can be leveraged for various
subtasks within NLU (e.g., domain/intent classifi-
cation, slot tagging, or cross-domain ranking). Last,
we show with an extensive set of experiments on
live traffic the impact of the proposed framework
on improving NLU in the production system across
10 widely used domains.

2 Background and Problem Definition

The NLU component typically has three main types
of underlying models - domain classifiers, intent
classifiers, and slot taggers (El-Kahky et al., 2014).
The three modeling tasks can be treated indepen-
dently (Gao et al., 2018) or as a joint optimiza-
tion task (Liu and Lane, 2016; Hakkani-Tür et al.,
2016), and some systems have a model to rank
across all domains, intents and slots on a certain
unit of semantic interpretation (Su et al., 2018).

Leveraging implicit feedback from the users has
been widely studied in the context of recommen-
dation systems (Hu et al., 2008; He et al., 2016;
Liu et al., 2010; Loni et al., 2018; Rendle et al.,
2012; He and McAuley, 2016; He et al., 2016;
Wang et al., 2019) and search engines (Joachims,
2002; Sugiyama et al., 2004; Shen et al., 2005; Bi
et al., 2019). In such systems, common types of
implicit user feedback explored include a history of
browsing, purchase, click-through behavior, as well
as negative feedback. Leveraging implicit feed-
back in the context of conversational AI systems
is relatively unexplored, but it has been applied for
rewriting the request text internally within or post
the Automatic Speech Recognition (ASR) com-
ponent (Ponnusamy et al., 2019), improving the
Natural Language Generation component (Zhang
et al., 2018), and using user engagement signals
for improving the entity labeling task specifically
focused on Music domain (Muralidharan et al.,
2019). We note that compared to explicit feedback
(Petrushkov et al., 2018; Iyer et al., 2017), using
implicit feedback is more scalable and does not
introduce friction in user experience. But it comes
with a challenge of the feedback being noisy, and
leveraging the feedback is more difficult when there
is no sufficient data such as for improving tail cases
(Wang et al., 2021a,b).

In this paper, we specifically focus on two types
of implicit user feedback - dissatisfaction of expe-

rience (to understand what to fix, e.g., users prema-
turely interrupting a system’s response) and clarifi-
cation of intention through rephrase (to understand
how to fix, e.g., users clarifying their requests by
rephrasing the previous request in simpler terms).
In this work, we assume that there are mechanisms
already in place to automatically (1) infer user dis-
satisfaction (fdefect in Section 2.3) and also (2)
detect whether a given request is a rephrase of a
previous request (frephrase in Section 3). There are
many ways to build these two mechanisms, either
rule-based or model-based. Due to space limita-
tion, we leave more details of the two mechanisms
outside the scope of this paper. For completeness
and better context to the reader however, we briefly
describe various ways to build them, which would
be straight-forward to adapt and implement.

2.1 User Dissatisfaction Detection

Unless we specifically solicit users’ feedback on
satisfaction after an experience, user feedback is
mostly implicit. There are many implicit user be-
havior signals that can help with detecting user dis-
satisfaction while interacting with a conversational
AI system. They include termination (stopping or
cancelling a conversation or experience), interrup-
tion (barging in while the system is still giving its
response), abandonment (leaving a conversation
without completing it), error-correcting language
(preceding the follow-up turn with "no, ..." or "I
said, ..."), negative sentiment language showing
frustration, rephrase or request reformulation, and
confirmation to execute on an action (Beaver and
Mueen, 2020; Sarikaya, 2017).

Although not strictly from the user behavior,
there are other signals from the system action and
response that are also useful. They include generic
error-handling system responses ("I don’t know
that one."), the templates executed for generat-
ing natural language error-handling responses (the
song entity is not found for playing music), and the
absence of a response (Beaver and Mueen, 2020;
Sarikaya, 2017). There are also component-level
signals such as latency or low confidence scores
for the underlying models within each component
such as ASR or NLU.

For more advanced approaches, we can combine
the signals from the user behavior and the system
together, try to model user interaction patterns, and
use additional context from past interaction history
beyond immediate turns (Jiang et al., 2015; Ultes
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and Minker, 2014; Bodigutla et al., 2020). Fur-
thermore, user satisfaction can depend on usage
scenarios (Kiseleva et al., 2016), and for specific
experiences like listening to music, we can adapt
related concepts such as dwell time in the search
and information retrieval fields to further fine-tune.

2.2 User Rephrase Detection
There are many lines of work in the literature that
are closely related to this task under the topics
of text/sentence semantic similarity detection and
paraphrase detection. The approaches generally
fall into lexical matching methods (Manning and
Schutze, 1999), leveraging word meaning or con-
cepts with a knowledge base such as WordNet
(Mihalcea et al., 2006), latent semantic analysis
methods (Landauer et al., 1998), and those based
on word embeddings (Camacho-Collados and Pile-
hvar, 2018) and sentence embeddings (Reimers and
Gurevych, 2019). In terms of modeling architec-
ture, Siamese network is common and has been ap-
plied with CNN (Hu et al., 2014), LSTM (Mueller
and Thyagarajan, 2016), and BERT (Reimers and
Gurevych, 2019). The task is also related to the
problems in community question-answering sys-
tems for finding semantically similar questions and
answers (Srba and Bielikova, 2016).

2.3 Problem Definition
Denote T = (Σ,Π, N,A) to be the space of all
user interactions with a conversational AI system
with each request or turn ti = (ui, pi, ci, ai) ∈ T
consisting of four parts: ui ∈ Σ is the user request
utterance, pi ∈ Π is the semantic interpretation
for ui from NLU, ci ∈ N is the contextual meta-
data (e.g., whether the device has a screen), and
ai ∈ A is the system action or response. Here,
we are proposing a general framework that allows
a scalable and automatic curation of supervision
data to improve NLU, and we keep the unit of the
semantic interpretation abstract for generalizability,
which can be for one or a combination of NLU sub-
tasks of domain classification, intent classification,
and slot tagging. For instance, one possible inter-
pretation unit would be domain-intent-slots tuple,
which is what we use in our experiments described
in Section 4. Although we only focus on NLU in
this paper, the approach here can be extended to
improve other components in a conversational AI
system such as skill routing (Li et al., 2021).

We define a session of user interaction s =
{t1, t2, . . . , tq} ⊆ T which is a list of time-

consecutive turns by the same user. Denote
mt to be the NLU component at timestamp t.
We collect the interaction session data Slive =
{s1, s2, . . . , sn} from live traffic for a certain pe-
riod of time ∆ (e.g., one week) starting at time
t, from which we curate new supervision data to
producemt+∆ with improved performance. Specif-
ically, given a tool fdefect for automatic analysis of
user dissatisfaction for each turn, we process Slive
to identify all turns that indicate user dissatisfaction,
ti ∈ Ddefect, which we call a defective turn or sim-
ply a defect. The key challenges then are how to (1)
identify target defects which are high-confidence
defects that can be targeted by NLU (i.e., there is
sufficient disambiguation power within NLU that
it can learn to produce different results if given
specific supervision) and that are likely causing
repeated and systematic dissatisfaction of user ex-
perience, and (2) find a likely better interpretation
for the target defects to change system action or
response that leads to user satisfaction.

3 Solution Framework

The framework involves two deep learning models
- Defect Identification Model (DIM) for address-
ing the first challenge of identifying target defects
and Defect Correction Model (DCM) for the sec-
ond challenge of correcting them by automatically
labeling them with a likely better semantic inter-
pretation (see Figure 2). It is straight-forward to
apply DIM and DCM on the production traffic log
to curate new supervision data for improving NLU.

Data Preparation: We collect the user interac-
tion session data from the production log Slive
for an arbitrary period of time (e.g., past one
week). Given a user dissatisfaction analysis tool
fdefect and a rephrase analysis tool frephrase, we
tag tj ∈ si as a defect if fdefect detects user dis-
satisfaction for the turn and we tag tj ∈ si as
a rephrase if there exists ti ∈ si where j > i
(i.e., temporally tj occurred after ti) and frephrase
detects tj to be a rephrase of ti. We then ex-
tract each turn in Slive to create turn-level data
Dlive = {tj ∈ si | si ∈ Slive} with tj containing
two binary labels of defect ed and rephrase er.

3.1 Defect Identification Model (DIM)

We define DIM as fdim : T → {0, 1}, which takes
as input each turn ti ∈ Dlive and outputs whether ti
is a target defect or not. It uses the same contextual
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improving NLU, consisting of Defect Identification
Model (DIM) and Defect Correction Model (DCM).
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good alternate ground-truth label).

features (and architecture) as the underlying indi-
vidual NLU model we wish to improve and uses
the results of fdefect, or ed, as the ground-truth la-
bels for training. This allows us to filter down the
defects into those that can be targeted by the NLU
model of interest (since the same features could
predict the defects, suggesting enough disambigua-
tion capacity). By tuning the probability threshold
used for binary model prediction, we can further
reduce noise in defects and focus on more high-
confidence defects that are repeated and systematic
failures impacting the general user population.

Figure 3 shows an example DIM architecture
for a cross-domain interpretation re-ranking model
(more detail in 4.1). The model architecture con-
sists of three main modules: embedding, aggrega-
tion, and classification. Given each feature fj ex-
tracted from ti, the embedding module Hemb con-
verts fj into an embedding. For each sequential or
categorical feature fj , denoting wfj ,ti as the value
of fj with m tokens (where m=1 for categorical),
we generate vfj ,ti = Hemb(wfj ,ti) ∈ Rm×dfj

with each token converted into the dfj -dimensional

Algorithm 1 DIM threshold determination.
procedure THRESSEARCH(fdim, Dvalid, λ, ε)

low, high← 0, 1
while | low - high | > ε do

τ ← (low + high) /2
Pvalid ← {ti | fdim(ti) > τ,∀ti ∈ Dvalid}
α← PREDICTIONACCURACY(Pvalid)
if α < λ then low← τ
else high← τ

return τ

embedding. For each numerical feature, we have
vfj ,ti = wfj ,ti as each feature is already repre-
sented by numeric values. The aggregation module
Hagg then converts vfj ,ti of each feature fj to an
aggregation vector ufj ,ti that summarizes the infor-
mation of vfj ,ti . Based on the feature type, Hagg

applies different aggregation operations. For exam-
ple, we apply a Bi-LSTM (Schuster and Paliwal,
1997) to the utterance text embeddings vf1,ti to
capture the word context information. Finally, the
classification module Hcls takes as input all aggre-
gation vectors to make a prediction whether ti is a
target defect or not. Specifically, we first concate-
nate all aggregation vectors to get a summarization
vector uti =

⊕
fj
ufj ,ti . Then, a two-layer high-

way network (Srivastava et al., 2015) is applied
to uti to make a binary prediction. The model is
trained using binary cross-entropy loss.

When developing DIM, we split Dlive into the
training set Dtrain and the validation set Dvalid

with a ratio of 9:1. Once we have DIM trained with
Dtrain, we use Dvalid to further tune the prediction
probability threshold used to extract target defects
from all defects tagged by fdefect. Specifically,
for each turn ti ∈ Ddefect, we pass it to fdim to
get the confidence score oi = fdim(ti) of being
a defect. Then, we generate the target defect set
Dtarget = {ti | oi > τ}, i.e., we collect all turns
satisfying the defect prediction confidence being
greater than a threshold τ . In order to select the
value for τ , we perform a binary search on Dvalid

as shown in Algorithm 1, which takes as inputs
two additional parameters λ (to set the minimum
prediction accuracy we want) and ε.

3.2 Defect Correction Model (DCM)

We define DCM as fdcm : T ×Π→ {0, 1}, which
takes as input a pair (ti, pj) with ti ∈ Dlive and
pj ∈ Π to make a prediction whether pj is a proper
semantic interpretation for ti. As the space of
the semantic interpretation Π is too large, we can
make the process more efficient by restricting to
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find a better interpretation in the k-best predictions
P k
i ⊆ Π (i.e., k interpretations with the highest pre-

diction confidence) by the NLU model of interest.
Note that it is not difficult to force more diversity
into the k-best predictions by only allowing top pre-
dictions from each domain or intent. For training,
we leverage rephrase information from the logged
data to automatically assign a corrected semantic
interpretation as the new ground-truth label for the
defects, with the following assumption: Given a
pair of turns ti and tj , if (a) the utterance of tj
rephrases the utterance of ti in the same session
and (b) tj is non-defective, then the semantic inter-
pretation of tj is also the correct interpretation for
ti.

Following the example DIM architecture for the
cross-domain interpretation re-ranking model in
Figure 3, the DCM architecture extends that of
DIM with the main difference that we can gen-
erate other features based on domain, intent and
slot information from pj . To obtain the training
data, we first examine all turns in Dlive to gen-
erate the high value set Dh ⊆ T × T . Each in-
stance (ti, ri) ∈ Dh is a pair of turns satisfying
(a) ti ∈ Dlive is a defect and (b) ri ∈ Dlive is a
non-defective rephrase of ti in the same session
(defects and rephrases are described in Section 2.3
and Section 3:Data Preparation). We then generate
the training data Dtrain using the high value set
Dh. Specifically, for each pair (ti, ri) ∈ Dh, we
generate k training instances as follows. First, we
get the k-best interpretations P k

ri of ri. Then, we
pair ti with each candidate pj ∈ P k

ri to get a list
of tuples (ti, p1), (ti, p2), . . . , (ti, pk). Next, we
expand each tuple (ti, pj) by assigning a label c in-
dicating whether pj can be a proper interpretation
for ti. Denote p∗ ∈ P k

ri as the correct interpreta-
tion for ri, assumed since it is executed without
a defect (note that the top-1 interpretation is not
necessarily the executed and correct one, although
it is most of the time). We generate one positive in-
stance (ti, p

∗, c = 1), and k − 1 negative instances
{(ti, pj , c = 0) | pj ∈ P k

ri ∧ pj 6= p∗)}. Only
using the k-best interpretations from ri to gener-
ate Dtrain may not be sufficient, as in practice the
value k is small and many interpretations observed
in real traffic does not appear in the training data.
To make the model generalize better, we augment
the training data by injecting random noise. For
each pair (ti, ri) ∈ Dh, in addition to the k − 1
generated negative instances, we randomly draw

Domain Total W L T O �1 �2(%)

Overall* 2,000 367 196 1,412 25 171 8.5
Knowledge* 200 77 25 98 0 52 26.0
MyTasks* 200 82 36 73 9 46 23.0
Multimedia-2* 200 59 39 100 2 20 10.0
Help* 200 42 22 134 2 20 10.0
Multimedia-3* 200 34 19 146 1 15 7.5
ChitChat 200 29 22 149 0 7 3.5
DeviceControl 200 8 4 187 1 4 2.0
SmartHome 200 14 10 172 4 4 2.0
Shopping 200 9 7 183 1 2 1.0
Multimedia-1 200 13 12 170 5 1 0.5

Table 1: Overall side-by-side win-loss evaluation re-
sults across 10 domains, comparing the top interpreta-
tion prediction between the baseline NLU and the up-
dated NLU improved with our framework. “W," “L,"
“T" and "O" represent "Win," "Loss," "Tie" and "Oth-
ers" respectively. A win means that the updated NLU
produced a better top interpretation than the baseline (*
denotes statistical significance at p<.05).

q interpretations P q
noise = {pn1 , pn2 , . . . , pnq } ⊆ Π

that are not in P k
ri , and we generate q new negative

instances {(ti, pnj , c = 0) | pnj ∈ P
q
noise}. In short,

DCM’s role is to find the most promising alternate
interpretation in ti’s k-best interpretation list given
that ti is a defect.

New Supervision Data Curation: Once we
have fdcm trained, the last step of the frame-
work is to curate new supervision data by ap-
plying fdcm to each turn ti ∈ Dtarget identified
by fdim and automatically assigning a better se-
mantic interpretation for correction. Specifically,
we pair each turn ti ∈ Dtarget with every in-
terpretation candidate pj ∈ P k

i as the input to
fdcm. The interpretation with the highest score
p∗ = arg maxpj∈Pk

i
fdcm(ti, pj) is used as the cor-

rected interpretation for ti.

4 Experiment Results and Discussion

4.1 Experiment Methodology
Dataset and Experiment Settings: Given a
baseline NLU in production, mbase, which pro-
duces a ranked list of interpretations with each in-
terpretation comprising domain-intent-slots tuple,
we inject a re-ranking subtask at the very last layer
of the NLU workflow to build an improved NLU,
mnew. We call the subtask re-ranking because it
takes in an already ranked list (i.e., the output of
mbase) and makes a final adjustment. We lever-
age the new supervision data obtained through our
framework to train the re-ranking model for improv-
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(a) (b)

Domain ASR Error NLU Error Bad Response Others NLU
Error
�DEF DIM DEF DIM DEF DIM DEF DIM

Overall* 29.8 29.1 14.3 39.0 24.8 11.3 31.1 20.6 24.7
SmartHome* 29.0 22.0 0.0 34.0 47.0 13.0 24.0 31.0 34.0
DeviceControl* 13.0 36.0 7.0 41.0 20.0 12.0 60.0 11.0 34.0
Multimedia-3* 41.0 30.0 21.0 52.0 20.0 10.0 18.0 8.0 31.0
Knowledge* 36.0 23.0 16.0 45.0 13.0 5.0 35.0 27.0 29.0
Multimedia-1* 37.0 34.0 6.0 33.0 38.0 20.0 19.0 13.0 27.0
MyTasks* 24.0 46.0 16.0 42.0 6.0 3.0 54.0 9.0 26.0
ChitChat* 32.0 13.0 3.0 29.0 7.0 15.0 58.0 43.0 26.0
Multimedia-2* 24.0 16.0 43.0 67.0 22.0 8.0 11.0 9.0 24.0
Shopping 31.0 44.0 11.0 19.0 35.0 7.0 23.0 30.0 8.0
Help 31.0 27.0 20.0 28.0 40.0 20.0 9.0 25.0 8.0

Domain Total W L T U �1 �2(%)

Overall* 1,000 399 77 365 159 322 32.2
Multimedia-2* 100 82 3 12 3 79 79.0
Multimedia-3* 100 61 0 31 8 61 61.0
Knowledge* 100 56 7 23 14 49 49.0
Multimedia-1* 100 40 3 48 9 37 37.0
MyTasks* 100 41 9 26 24 32 32.0
ChitChat* 100 34 12 46 8 22 22.0
Help* 100 41 20 25 14 21 21.0
SmartHome* 100 25 7 56 12 18 18.0
Shopping* 100 10 2 53 35 8 8.0
DeviceControl 100 9 14 45 32 -5 -5.0

Table 2: (a) The analysis of DIM through error attribution annotations between the defects in the production traffic
vs. the target defects identified by DIM. The numbers are in percentage. (b) The analysis of DCM through win-loss
annotations between the top interpretation produced by the baseline NLU and the new interpretation label assigned
by DCM. Statistical significance at p<.05 is noted with *, specifically on the NLU errors in (a).

ing the overall NLU performance. Figure 4 shows
the model architecture of the re-ranker, which is
a simple extension of the DIM architecture, and it
learns from the new supervision data when to top-
rank a better interpretation that is not at the top of
the list (trained with sigmoid activation functions at
the output layer and binary cross-entropy loss). We
note here that the specific model architecture is not
as important as the new supervision data obtained
through our framework that is the key for bring-
ing NLU improvements. This experiment setup is
appealing in that it is straightforward and simple,
especially in the production setting. First, NLU
consists of many domain-specific models that are
spread out to multiple teams, making it difficult
to coordinate leveraging the new supervision data
for improvement across multiple domains. Second,
working with the final re-ranking model allows us
to improve NLU performance domain-agnostically
without needing to know the implementation de-
tails of each domain. Third, it is easier to control
the influence of the new supervision data since we
need to manage only one re-ranking component.

Given sampled and de-identified production traf-
fic data from one time period Dperiod1, which have
been analyzed by fdefect and frephrase1, we first
train DIM according to Section 3.1, with over
100MM training instances from Dperiod1 and over
10MM defects identified by fdefect. Then, we ex-
tract over 8MM high-value rephrase pairs (a defec-
tive turn and non-defective rephrase in the same
session) from Dperiod1 to train DCM according to
Section 3.2. To train the re-ranker, we randomly
sample over 10MM instances Ds ⊆ Dperiod1 and
over 1MM defects identified by fdefect. We apply

1In today’s production system, fdefect and frephrase show
F1 scores over 0.70.

n1 

Prediction
Scores

Classification
Module

n2 n3 

…

nk

…

…

Embedding 
Module

Interpretation
Embeddings

Feature

Utterance text

Domain

Intent

Slot keys

NLU score

ER success

Device type 

Device status

BiLSTM

Sum

Concat

NLU interpretation list

Figure 4: The model architecture for the re-ranker,
which is a subtask we put at the last layer of the NLU
to produce a better ranked list of interpretations.

the trained DIM to the sampled defects Fdef that
filters them down from over 1MM defects to over
300K target defects Fdim that the NLU re-ranker
has sufficient features to target and produce dif-
ferent results. Then, all target defects Fdim are
assigned a new ground-truth interpretation label by
the trained DCM (note that not all defects have cor-
responding non-defect rephrases, hence the value
of DCM for finding the most promising alternate
interpretation from the ranked list), which serve
as the new curated supervision for building mnew,
while the rest of the non-defective instances keep
the top-ranked interpretation as the ground-truth la-
bel. In other words, most of the instances in Ds are
used to replicate the mbase results (a pass-through
where the same input ranked list is outputted with-
out any change), except for over 300K (over 3% of
the total training data) that are used to revert the
ranking and put a better interpretation at the top.

Overall Side-by-Side Evaluation: The overall
performance between mbase and mnew was com-
pared on another sampled production traffic from
non-overlapping time period Dperiod2 in a shadow
evaluation setting, in which the traffic flowing
through mbase was duplicated and simultaneously
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sent to mnew that is deployed to the same produc-
tion setting as mbase but without end-user impact.
Both mbase and mnew produced the same ranked
list of interpretations for over 99% of the time.
Note that this is by design since incremental im-
provements are preferred in production systems
without drastically changing the system behavior
and that our approach can be applied continuously,
week over week (changing the proportion of the
new supervision data will have an impact on the
replication rate). Furthermore, even 1% change in
the overall system behavior has a huge impact at
the scale of tens of million of requests per week
in a large-scale production system. We performed
win-loss annotations on the deltas (whenmbase and
mnew produced different results) with in-house ex-
pert annotators who follow an established NLU
annotation guideline to make a side-by-side evalua-
tion whether mnew produced a better interpretation
(i.e., win) on the top compared to mbase or not (N
= 12, agreement = 80.3%, Cohen’s kappa = 0.60
indicating moderate agreement; note that the anno-
tators are trained to reach agreement level that is
practical given the high complexity of the NLU on-
tology). We randomly sampled 200 such requests
per domain that produced different results2.

DIM Analysis: We randomly sampled 100 de-
fects per domain from Fdef and Fdim respectively
and performed error attribution annotations (i.e.,
ASR error for mis-transcribing “play old town
road" to “put hotel road", NLU error for mis-
interpreting “how do I find a good Italian restau-
rant around here" to Question Answering intent
instead of Find Restaurant intent, Bad Response
for having a correct interpretation that still failed to
deliver a satisfactory response or action, and Others
for those that the annotators could not determine
due to lack of context or additional information; N
= 12, agreement = 71.3%, Cohen’s kappa = 0.63
indicating substantial agreement).

DCM Analysis: We perform the same win-loss
annotations as described in overall shadow evalu-
ation on 100 random samples per domain, specif-
ically on the curated supervision data Fdim with
new ground-truth assigned by DCM.

Training Setup: All the models were imple-
mented in PyTorch (Paszke et al., 2019) and trained

2A/B testing results on around 20 intents with over 100MM
live utterances showed improvement in reducing defect ratio
(i.e., the ratio of utterances tagged by fdefect) end-to-end
from 72.9% to 42.2% on the deltas (statistically significant at
p<.05).

and evaluated on AWS p3.8xlarge instances with
Intel Xeon E5-2686 CPUs, 244GB memory, and
4 NVIDIA Tesla V100 GPUs. We used Adam
(Kingma and Ba, 2014) for training optimization,
and all the models were trained for 10 epochs with
a 4096 batch size. All three models have around
12MM trainable parameters and took around 5
hours to train.

4.2 Results and Discussions
Overall Side-by-Side Evaluation: Table 1
shows the overall shadow evaluation results,
making NLU-level comparison between mbase and
mnew. The column Total shows the number of
requests annotated per domain. The columns Win,
Loss, and Tie show the number of requests where
mnew produced better, worse, and comparable
NLU interpretations than mbase respectively. The
column Others shows the number of requests
where the annotators could not make the decision
due to lack of context. The column ∆1 shows the
difference in the number of win and loss cases, and
∆2 shows the relative improvement (i.e., ∆1 / Total
in percentage). First, we note that mnew overall
produced a better NLU interpretation on 367 cases
while making 196 losses, resulting in 171 absolute
gains or 8.5% relative improvement over mbase.
This indicates that applying our framework can
bring a net overall improvement to existing NLU.
Second, analyzing per-domain results shows that
mnew outperforms mbase (7.5-26.0% relative
improvements) on 5 domains, while making
marginal improvements (0.5-3.5% improvements)
on the other 5 domains.

Analysis on DIM: Table 2.(a) summarizes the
results of error attribution annotations between the
defects in the production traffic (denoted as DEF)
and target defects identified by DIM (denoted as
DIM). The results show that the target defects iden-
tified by DIM help us focus more on the defects
that are caused by ASR or NLU (the ones that can
be targeted and potentially fixed, specifically NLU
Error which is at 39.0% of total for DIM compared
to 14.3% for DEF) and filter out others (Bad Re-
sponses and Others). Per-domain results show that
the target defects identified by DIM consistently
have a higher NLU error ratio than that of original
defects for all domains.

Analysis on DCM: Table 2.(b) summarizes the
win-loss annotation results on the new supervision
data that take target defects from DIM and assign
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Example Dialog Interpretation by mbase Interpretation by mnew

Win_1

U1: Show me d. c. universe. Domain: Multimedia-3
Intent: Play
Slots: TitleName !

d. c. universe

Domain: Multimedia-2
Intent: Play
Slots: TitleName !

d. c. universe

A1: I don’t see a title named d. c. universe.
U2: I want to watch d. c. universe.
A2: Here is what I found ...

Win_2

U1: What’s the weather at Mission Beach today? Domain: Knowledge
Intent: QA
Slots: Question

Domain: Weather
Intent: WeatherDetails
Slots: Location !

San Diego, CA

A1: There aren’t any missions near Long Beach, California.
U2: What’s the weather in San Diego?
A2: Currently, 69 degrees with clear skies and sun.

Loss_1

U1: Play Wings of Fire. Domain: Multimedia-3
Intent: Play
Slots: TitleName !

Wings of Fire

Domain: Multimedia-1
Intent: Play
Slots: TitleName !

Wings of Fire

A1: I don’t have a free content for that.
U2: Play Me.
A2: Me, by Taylor Swift.

Loss_2

U1: Is the Collard Festival going to happen today? Domain: Knowledge
Intent: QA
Slots: Question

Domain: Calendar
Intent: CheckCalendar
Slots: Event !

Collard Festival

A1: Sorry, I’m not sure.

Tie

U1: Can you play the Baltimore Ravens? Domain: Knowledge
Intent: QA
Slots: Question

Domain: Multimedia-1
Intent: Play
Slots: TitleName !

Baltimore Ravens

A1: Here is what I found ...

Table 3: Qualitative analysis comparing mbase and mnew in the overall side-by-side evaluation. For each example,
the user request in bold is the turn for which the evaluation was performed. We show subsequent interaction dialog
for context (U∗ for user requests,A∗ for system answers). The first two examples are “wins" (i.e.,mnew better than
mbase), followed by two “losses" (i.e., mnew worse than mbase), and a “tie" (i.e., mnew comparable to mbase).

new interpretation labels for correction with DCM.
The results show that overall DCM correctly as-
signs a better, corrected NLU interpretation on 399
cases and fails on 77 cases, resulting in 322 ab-
solute gains or 32.2% relative improvement. Per-
domain results show that DCM consistently assigns
a comparable or better interpretation on the target
defects on almost all domains with a large mar-
gin (with 8.0%-79.0% relative improvements on 9
domains).

4.3 Qualitative Analysis
The first two examples in Table 3 are wins where
mnew produced a better top interpretation than
mbase. In Win 1, mbase produced an interpreta-
tion related to playing a title for a specific type of
multimedia, while the user wanted to play the cor-
responding title in another multimedia type (e.g.,
music, video, or audio book). The updated NLU
model mnew produced the correct interpretation,
most likely having learned to favor a multimedia
type depending on the context, such as device sta-
tus (e.g., music or video currently playing or screen
is on). Similarly in Win 2, mbase mis-interpreted
the request as a general question due to not under-
standing the location "Mission Beach," which is
corrected by mnew.

The next two examples are losses where mnew

top-ranked incorrect interpretations such that they
produced worse results than mbase. In Loss 1, the

user is in the middle of trying out a free content
experience for a specific multimedia type, and we
suspect the reason mnew produced the incorrect
interpretation is that there are similar requests in
live traffic to "Play Wings of Fire" with another
multimedia type, such that the model learns to ag-
gressively top-rank the interpretations associated
with a more dominant multimedia type. In Loss
2, the request is for a general event query in the
area, and although the Q&A still failed to correctly
answer, it was determined that it would be worse
to fail in Calendar domain.

The last example is a "tie" where mnew and
mbase both produced incorrect top interpretations
that are equally bad in terms of user experience.
Specifically, mbase mis-interpreted the request as
a Q&A, while mnew mis-interpreted the meaning
of "play" for playing multimedia instead of sports.
As in Loss 1, We suspect many live utterances with
the word "play" tend to be multimedia-related and
biases DCM towards selecting multimedia-related
interpretations.

From the qualitative analysis, especially losses,
we observe that we can make our framework and
new supervision data more precise if we consider
more interaction history context spanning a longer
period of time when we train DCM, use more sig-
nals such as personalization or subscription signals
(for multimedia content types such as music or
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audio book). Furthermore, for truly ambiguous
requests, instead of aggressively trying to correct
through a new interpretation, we could offer a bet-
ter experience by asking a clarifying question.

5 Conclusion

We proposed a domain-agnostic and scalable frame-
work for leveraging implicit user feedback, partic-
ularly user dissatisfaction and rephrase behavior,
to automatically curate new supervision data to
continuously improve NLU in a large-scale conver-
sational AI system. We showed how the framework
can be applied to improve NLU and analyzed its
performance across 10 popular domains on a real
production system, with component-level and qual-
itative analysis of our framework for more in-depth
validation of its performance.
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