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Abstract

In this paper, we propose a new ranking model
DR-BERT, which improves the Document Re-
trieval (DR) task by a task-adaptive train-
ing process and a Segmented Token Recov-
ery Mechanism (STRM). In the task-adaptive
training, we first pre-train DR-BERT to be
domain-adaptive and then make the two-phase
fine-tuning. In the first-phase fine-tuning, the
model learns query-document matching pat-
terns regarding different query types in a point-
wise way. Next, in the second-phase fine-
tuning, the model learns document-level rank-
ing features and ranks documents with regard
to a given query in a listwise manner. Such
pointwise plus listwise fine-tuning enables the
model to minimize errors in the document
ranking by incorporating ranking-specific su-
pervisions. Meanwhile, the model derived
from pointwise fine-tuning is also used to re-
duce noise in the training data of the listwise
fine-tuning. On the other hand, we present
STRM which can compute OOV word repre-
sentation and contextualization more precisely
in BERT-based models. As an effective strat-
egy in DR-BERT, STRM improves the match-
ing perfromance of OOV words between a
query and a document. Notably, our DR-
BERT model keeps in the top three on the MS
MARCO leaderboard since May 20, 2020.

1 Introduction

Document Retrieval (DR) requires the machine
to retrieve and rank documents according to their
relevance with the query, which needs strong text
understanding ability. As one basic and crucial task
in NLP, it can aid several real applications, such as
question answering systems and Web-based search
engines, e.g., Google, Yahoo, Bing, etc. With
the development of deep learning and the increas-
ing emergence of large-scale datasets, e.g., MS
†Equal Contribution.

Figure 1: Two cases, each listing an input query, a
document candidate and the text tokenized by Word-
Piece in BERT. The OOV words, e.g., “insouciantly”
and “bogue", are tokenized into 2 or more sub-tokens.

MARCO (Nguyen et al., 2016), DR has achieved
remarkable advancements.

Lots of DR models have been studied over
the last few years. Traditional machine learn-
ing based DR models, like LambdaRank (Burges
et al., 2006), AdaRank (Xu and Li, 2007), etc., rely
heavily on manual feature engineering which is
time-consuming and unsustainable. Neural DR
models, including DSSM (Huang et al., 2013),
KNRM(Xiong et al., 2017), etc., learn the query
and document representation and ranking features
in a continuous vector space, which obviate the
need of manual feature design. Formally, ranking
models can be divided into three categories: point-
wise, pairwise and listwise. It has been reported
that listwise models perform comparatively better
in ranking tasks (Cao et al., 2007; Qin et al., 2008).

Recently, the pre-trained language models have
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caused a stir in DR. Taking BERT (Devlin et al.,
2018) as an example, it employs deep transform-
ers to enhance language understanding from large-
scale texts, obtaining state-of-the-art results in a
wide variety of NLP tasks, including DR. No matter
whether BERT is applied to DR in either a feature-
based or a fine-tuning manner (Nogueira and Cho,
2019; Nogueira et al., 2019a), substantial improve-
ments in DR have been attained.

The BERT-based models, despite their power-
fulness, could be further improved for DR in the
following aspects: (1) Current BERT-based rank-
ing models are either pointwise or pairwise style.
Their training targets are to optimize the relevance
of query and document or the order of documents
within pairs rather than minimizing errors in rank-
ing of documents. (2) The desired model could
be more task-adaptive by considering text domains
and query types. (3) Due to WordPiece (Devlin
et al., 2018) segmentation method employed by
BERT, the matching of OOV word might be mis-
calculated and further a document irrelevant to a
query might be ranked high. Figure 1 gives two ex-
amples to illustrate the problem induced by Word-
Piece. In Figure 1(a), the query and the document
are irrelevant, because the word “bogue” in the
query and the word “bogus” in the document are
unrelated. However, BERT fails to distinguish the
two words as a result of being misled by the sepa-
rated tokens generated by WordPiece, i.e., “bog”.
In Figure 1(b), the tokens generated by WordPiece,
i.e., “ins” in the query and “in” in the document,
lead to an undesirable matching and further a high
query-document relevance score. (4) These models
do not have the ability to deal with noise in the
training data, which is common in NLP corpora.

In order to solve the above-mentioned problems
of BERT-based ranking models, we propose a new
DR model named DR-BERT. In the DR-BERT
model, we make the following improvements on
the basis of BERT: (1) As depicted in Figure 2, we
construct a BERT-based listwise method to learn
document-level comparison with regard to a given
query in fine-tuning. (2) We present a domain-
adaptive pre-training process and a query type-
adaptive fine-tuning strategy to adapt the model
to this DR task. (3) We add a Segmented Token Re-
covery Mechanism (STRM) into DR-BERT, which
can effectively improve the matching accuracy of
OOV words. (4) We employ the model derived
from pointwise fine-tuning to reduce noise in the

training data of the listwise fine-tuning. We con-
duct extensive experiments on the MS MARCO
dataset, which is a large-scale benchmark from
search engine Bing. In MS MARCO, all queries
are sampled from real search queries and docu-
ments are real Web documents. With one million
queries, it is one of the most comprehensive real-
world datasets of its kind in both quantity and qual-
ity. Experimental results show that our DR-BERT
model showed excellent performance.

Our contributions can be summarized as follows.

• We propose a new task-adaptive BERT-based
model for DR task. By a domain-adaptive pre-
training and a two-phase (i.e., pointwise plus
listwise) fine-tuning, the model turns to highly
adaptive to the DR task. As a result, it sub-
stantially improves the model performance.

• We are the first to propose the pointwise plus
listwise fine-tuning, which enables the model
to not only learn document-level ranking fea-
tures after grasping query-document match-
ing features in the pointwise phase but also
measure and optimize the document ranking
errors.

• We are the first to find the OOV mismatch-
ing problem and give an effective mechanism
called STRM, which can compute OOV word
representation and contextualization more pre-
cisely. STRM effectively improves the match-
ing performance of OOV words and it can be
applied to most BERT-based models.

• Our DR-BERT model outperformed many
strong baselines and keeps in the top three
on the MS MARCO leaderboard with an
MRR@10 of 0.419 since May 20, 2020.

2 Related Work

Learning to rank refers to adopting machine learn-
ing algorithms to train models for ranking tasks.
These ranking models can be employed in a wide
variety of applications. While applied to the DR
tasks, ranking models output a ranked document
list for each query based on relevance scores com-
puted by the models. Depending on how the loss
functions are defined, we can categorize learning to
rank into three classes, namely pointwise, pairwise
and listwise.

Pointwise approaches (Shashua and Levin, 2002;
Friedman, 2000) transform ranking tasks to classi-
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Figure 2: Architecture of the two-phase fine-tuning of the DR-BERT model, which comprises a type-adaptive
pointwise fine-tuning, a listwise fine-tuning and a noise reduction method. Q represents the query. D+

∗ and D−
∗

represent positive and negative documents, respectively. S∗ represent the query-document relevance scores. Note
that both the two fine-tuning phases use the query type feature, which is omitted in this figure for brevity.

fication or regression tasks by directly predicting
the relevance score of a document with respect to
a given query. Although easy to implement, point-
wise approaches do not make comparisons between
documents which is the core of ranking.

In pairwise approaches (Burges et al., 2005,
2006; Wu et al., 2010), ranking is transformed into
classification on the order of document pairs. In
particular, each document is compared to the other
one at a time according to their relevance with the
query. The final ranked list is arranged by their rel-
ative positions. However, the assumption that these
approaches require, i.e., the documents are gener-
ated in pairs, is too strong. Even worse, the uneven
distribution of documents in different queries might
cause the training bias.

Further, the listwise approaches (Cao et al., 2007;
Xia et al., 2008; Xu and Li, 2007; Taylor et al.,
2008; Qin et al., 2008) train the models to learn
the optimal ranking directly by taking the docu-
ments to be ranked as input. Cao et al. (2007)
treats the sequence of documents ordered by the
top-one probability distribution as the ranking list
and optimizes the cross entropy. Xia et al. (2008)
maximizes the likelihood of the golden ranking
list. Qin et al. (2008) optimizes the similarity of
the query and the documents. Xu and Li (2007);
Taylor et al. (2008) directly optimize the metrics
like NDCG (Järvelin and Kekäläinen, 2000) which
measure the quality of a ranking list.

On the other hand, most of the above methods
rely heavily on handcrafted features which require
much expertise. As the rapid developing of deep
learning techniques, lots of work (Guo et al., 2016)

tempts to build neural ranking models which need
no manual features and show impressive perfor-
mance.

Recently, the pre-trained language models like
BERT (Devlin et al., 2018) have achieved the state-
of-the-art results on several NLP tasks. Leverag-
ing their powerful language understanding abilities,
several ranking models built on BERT are proposed
to improve the effectiveness and efficiency of DR,
For effectiveness of DR, Nogueira and Cho (2019)
adopt a pointwise paradigm and Nogueira et al.
(2019a) adopt a pairwise one. Further, Nogueira
et al. (2019b) append predicted queries to the doc-
ument and rank the documents with BERT as de-
scribed in (Nogueira and Cho, 2019). However,
their training targets are minimizing errors in clas-
sification of query-document relevance or the order
of document pairs rather than minimizing errors in
ranking of documents, which restricts their perfor-
mance. For efficiency of DR, Khattab and Zaharia
(2020) present a novel ranking model which en-
codes the query and the document using BERT and
employs an interaction mechanism to speed up the
retrieval.

3 Our Approach

First of all, we formally describe the task definition
as follows. Given a query Q and a very large set
of documents Ď, our goal is to produce a ranked
list of documents, which is as close as possible to
the oracle ranking of documents according to their
relevance levels, i.e., y ∈ {0, 1}, where 1 indicates
positive sample and 0 means negative one.

Basically, the pipeline of DR contains two stages:
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a retrieval stage and a re-ranking stage. The re-
trieval stage is to get a smaller set of document
candidates for a query, which is an effective way
to balance the performance and costs. In this
work, we apply BM25 (DeepCT-Index) (Dai and
Callan, 2019) to get the top-K document candi-
dates D = {D1, D2, · · · , DK} for the query Q.
Readers can refer to (Dai and Callan, 2019) for
more details. In this work, we focus on the re-
ranking stage.

In the following subsections, we describe our
ranking model DR-BERT, whose training process
comprises a domain-adaptive pre-training and a
two-phase fine-tuning, i.e., type-adaptive point-
wise fine-tuning and listwise fine-tuning, in which
STRM is proposed to solve the OOV mismatching
problem.

3.1 Task-adaptive Training

3.1.1 Domain-adaptive Pre-training

DR-BERT is based on BERT, which is pre-trained
on the open corpora. Inspired by (Gururangan et al.,
2020), we analyze the top frequent words in the cor-
pora of BERT baseline and MS MARCO dataset,
and find that the domains of the MARCO are dif-
ferent from those of the corpora in BERT baseline.

Specifically, we find that the top 10,000 fre-
quent words are 44.3% different. Besides, Liu
et al. (2019) proves that BERT is under-optimized.
Therefore, it is necessary to adapt BERT to the task
domains and continue pretraining. In detail, we
employ MS MARCO as input and pre-train BERT
for the DR task by maximizing the summation of
the masked language model likelihood and the next
sentence prediction likelihood. For more details,
please refer to (Devlin et al., 2018).

3.1.2 Two-phase Fine-tuning

Type-adaptive Pointwise Fine-tuning Phase
Considering that the matching patterns between
query and document are closely related to the query
type, the query type should be involved in the fine-
tuning. In MS MARCO, each query is manually
labeled with its type, i.e., location, numeric, per-
son, description, entity. Therefore, the first-phase
fine-tuning aims to learn different matching pat-
terns regarding different query types by predicting
the query-document relation in a pointwise fashion.
Using the query-document pairs in MS MARCO
as input, the BERT is fine-tuned to conduct the
query-document matching task. Here, we model

the query, the query type and the document us-
ing BERT to compute a deep inter-representation.
Specifically, we first concatenate the query type
T , the query Q and the i-th document Di as one
sequence:

Xi = [<CLS>, T,<SEP>, Q,<SEP>, Di], (1)

where <SEP> is the separator and <CLS> indi-
cates the position for query-document relation rep-
resentation. Next, for the j-th token Xij in se-
quence Xi, the embedding Eij can be computed
by:

Eij = Etokij + Esegij + Eposij , (2)

where Etokij , Esegij and Eposij are the token em-
bedding, segmentation embedding and position em-
bedding of Xij , respectively.

Then, we apply BERT with L layers of
successive transformer blocks to obtain inter-
representation of each token in Xi, i.e., the hidden
state Hl

i in each layer:

Hl
i = {Hl

i1,H
l
i2, ...,H

l
i|Xi|} (3)

Hl
i = Transformer(Hl−1

i ), l = 1, 2, 3, ..., L,
(4)

in which H0
i = Ei and |Xi| indicates the sequence

length of Xi. The hidden state corresponding to the
<CLS> position in the last hidden layer can be used
to calculate the query-document relevance score:

Si = Softmax(HL
i1) (5)

We use the cross entropy as the loss function. After
the first-phase fine-tuning, the model learns dif-
ferent matching patterns regarding different query
types, and turns towards type-adaptive.
Noise Reduction Method Large scale manually
labeled training data usually suffers from noise be-
cause of data annotation limitations. For instance,
the MS MARCO dataset suffers from the sparsity
of annotations, which means the dataset contains
much noise, i.e., positive samples which are la-
beled 0. For reducing noise in the training data
of the second-phase listwise fine-tuning, we score
the relevance between the query Q and document
candidates in D using the model derived from the
first-phase pointwise fine-tuning. Next, we remove
the document candidates whose relevance is greater
than a certain threshold, which are determined as
unannotated positive samples. The left document
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Figure 3: Working process of STRM. By making some restrictions on the attention calculation, we make the
last sub-token representation represent the OOV word, which is then used for the computation of contextualized
representation with other words. In this figure, we make the following restrictions: (1) The last sub-token of the
OOV word is "##ue", which can be attended by all positions, i.e., ranging from 1 to 8. (2) The first sub-token of
the OOV word is "bog", which can only be attended by positions ranging from 4 to 5. (3) The sub-tokens of the
OOV word, i.e., "bog" and "##ue", can be attended by positions ranging from 4 to 5.

candidates form the set D′, which is used in the
second-phase listwise fine-tuning.
Listwise Fine-tuning Phase The second-phase
fine-tuning is a listwise paradigm, which enables
the model to learn the document-level ranking fea-
tures in a listwise manner and to minimize errors
in the ranking of documents during training.

For each query, we employ a document set com-
posed of N+ positive samples and N− negative
samples as input. This document set is randomly
selected from D′. To be aware, due to hardware
limitation, we do not take all document candidates
in D′ as input, which is the same as common list-
wise models.

As described in the last subsection, we first apply
BERT to compute the deep relation representation
between the query and each document. Here, the
i-th positive and negative documents can be com-
puted by equation 4:

H+
i = BERT(E+

i ),H−i = BERT(E−i ) (6)

Next, we employ a representation reduction layer
to convert each query-document relation repre-
sentation to a one-dimension vector, i.e., query-
document relevance score. The representation re-
duction layer is a single-layer perceptron:

R+
i = WTHL

i1
+ +b,R−i = WTHL

i1
−+b, (7)

where WT and b are trainable variables, HL
i1
+ and

HL
i1
− are the last hidden states corresponding to the

<CLS> positions for the i-th positive and negative

input respectively, Ri
+ and Ri

− are unnormalized
query-document relevance scores.

Then, we concatenate all the query-document
relevance scores to make a document-level normal-
ization:

S+
i =

exp(R+
i )∑N+

j=1 exp(Rj
+) +

∑N−

j=1 exp(Rj
−)

(8)

where S+
i is the normalized query-document rel-

evance score of the i-th positive document. Till
now, we get a ranked list of documents according
to their relevance scores with the query. Then, we
use supervision information to guide the optimiza-
tion of measuring document rankings. With only
positive and negative labels, the optimizing of the
ranking can be regarded as maximizing the normal-
ized scores of the positive samples. To this end,
we use the averaged negative log likelihood of all
positive sample scores to calculate the loss during
training:

L =

∑N+

i=1−log(S+
i )

N+
(9)

3.2 Segmented Token Recovery Mechanism
In practice, since the word vocabulary is limited,
the OOV words are segmented by WordPiece in
BERT-based models. As a result, the matching
of OOV words is not dealt with properly. As the
example in Figure 1(a) shows, the query and the
document are irrelevant because the word “bogue"
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in the query and the word “bogus" in the document
are unrelated. But BERT fails in this case as a re-
sult of matching words generated by WordPiece
tokenization, i.e., “bog", which we call OOV mis-
matching problem. In order to avoid such traps, we
propose STRM.

Here, we give the working process of STRM.
A direct solution of OOV mismatching problem
is to merge all the sub-token representations in an
OOV word and then conduct inter-representation
with other words by taking the OOV as a whole.
Following this direction, we make the following re-
strictions in the calculation of attention to make the
last sub-token representation as the OOV word rep-
resentation and compute inter-relations with other
words as a whole.

• As the representation of the OOV word, the
last sub-token in an OOV word can be at-
tended by all positions. For instance, in Fig-
ure 3, the last sub-token of the OOV word is
"##ue", it can be attended by all positions, i.e.,
ranging from 1 to 8.

• All the sub-tokens in an OOV word, except for
the last one, cannot be attended by other posi-
tions outside the OOV word. That is because
we only take the last token as the represen-
tation of the OOV. For instance, in Figure 3,
the first sub-token of the OOV word is "bog",
which cannot be attended by positions ranging
from 1 to 3 or positions ranging from 6 to 8.

• All the sub-tokens in an OOV word can be
attended by each other to make a better self-
representation of the OOV word. For instance,
in Figure 3, the sub-tokens of the OOV word,
i.e., "bog" and "##ue", can be attended by
positions in the range of 4 to 5.

Specifically, we introduce a masking matrix M in
the calculation of the l-th layer’s attention Al:

Al = Softmax
(
QKT

√
dk

+ M

)
V (10)

Q = Hl−1WQ,K = Hl−1WK ,V = Hl−1WV

(11)

Mab =

{
0, allowed to attend
−∞, not allowed to attend

(12)

where the previous layer’s output Hl−1 is projected
to a triple of query, key and value using different
parameter matrices WQ,WK ,WV . The masking

matrix M determines whether different positions
can be attended to each other. We use different
masking matrices to control what positions can be
attended to in the computation of the contextualized
representations of OOV words, as illustrated in
Figure 3.

4 Experiments

4.1 Dataset and Metric

We evaluate our model on the passage ranking
dataset in MS MARCO, where MS MARCO pro-
vides multiple large-scale real-world datasets and
the passage ranking dataset provides over 1M
queries and a corpus of 8.8M paragraphs extracted
from 3.6M Web documents. Our goal is to retrieve
and rank paragraphs that can answer the query. We
refer to these basic units of ranking as “documents”
to maintain terminological consistency throughout
this paper. This dataset has been split into training,
development and evaluation sets. The train set con-
tains about 0.5M queries, while the development
and evaluation set each has about 6800 queries. We
note that the dataset suffers from the sparsity of an-
notations, which means the dataset contains much
noise, i.e., positive samples which are labeled 0.

Evaluation is performed by submitting the rank-
ing results to the online leaderboard and the official
metric is MRR@10.

ID Model MRR@10
Dev Eval

1 BM25 (Microsoft Baseline) 0.167 0.165
2 BM25 (DeepCT Index) 0.243 -
3 BM25 (DeepCT Index) + BERT 0.367 -
4 BM25 (DeepCT Index) + DR-BERT 0.420 0.419
5 4-Domain-adaptive Pre-training 0.413 -
6 4-Pointwise Fine-tuning 0.413 -
7 4-Query Type Feature 0.415 -
8 4-Listwise Fine-tuning 0.390 -
9 4-STRM 0.405 -

Table 1: Results of different models on MS MARCO
dataset.

Model MRR@10 RankDev Eval
RocketQA + ERNIE 0.439 0.426 1
UED-Large Anonymous 0.436 0.424 2
BM25 + DR-BERT 0.420 0.419 3
Expando-mono-duo-T5 0.420 0.408 4
DeepCT + TFR-BERT Ensemble 0.421 0.407 5
BM25 + duoBERT (Pairwise) 0.390 0.379 23

Table 2: Top models on MS MARCO leaderboard.



3576

4.2 Model Settings
In the retrieval stage, we first use BM25 (DeepCT
Index) to get top-1000 candidates for re-ranking.
DR-BERT is initialized with a publicly available
uncased version of BERT large model and readers
can refer to (Devlin et al., 2018) for more details.
In the pre-training, we train the model continuously
for 5 epochs. We use Adam(Kingma and Ba, 2014)
optimizer with a learning rate of 1e-6 and warmup
over the first 10% of total steps. The batch size is
set to 128. In the two-phase fine-tuning, we first
train the model for 1 epoch to be type-adaptive.
Then, we conduct listwise fine-tuning for another
5 epochs and select the best model on the devel-
opment dataset. We directly use the query type
labels in this dataset. Since each query has about 1
positive candidate on average, we set N+ to 1 and
N− to 5. We also use Adam optimizer. The batch
size is 16 and the input sequence length is 180.

4.3 Performance Evaluation
We conduct the ablation study to evaluate the in-
dividual contribution of each component in DR-
BERT. Table 1 lists the results of ablation study,
along with the performance of several baselines in
terms of MRR@10.

From Table 1, we have the following observa-
tions:

• Our DR-BERT model outperforms all the
baselines. It outperforms BERT by a large
margin, which indicates that the components
of our DR-BERT model are effective in DR.

• The result of the domain-adaptive pre-training
ablation shows that adapting the model to the
target domains can improve its performance.

• The ablation of pointwise fine-tuning phase is
conducted by only using listwise fine-tuning
for additional epoches with the same training
data. The experimental result indicates that
learning matching and ranking features suc-
cessively in the two-phase fine-tuning can aid
the model.

• As for the query type feature,it induces about
0.5% improvement by MRR@10 over DR-
BERT model without the query type feature.

• The result of the listwise fine-tuning ablation
reveals its superiority compared to the point-
wise fine-tuning.

Figure 4: Attention weights between query (row) and
document (column) tokens. (a), (b) indicate the BERT
baseline, BERT + STRM, respectively. The darker the
color is, the greater the attention weight is.

• The ablation of STRM proves the importance
of solving the OOV mismatching problem.

Further, we submitted DR-BERT to the MS
MARCO leaderboard. By this leaderboard, we can
compare our DR-BERT with other models carrying
out the same task. Table 2 gives the top models
on the MS MARCO leaderboard. Except for DR-
BERT, the other five models are as follows.

• RocketQA (Ding et al., 2020) plus ERNIE
(Sun et al., 2019) is the best model based on
ERNIE , which is well pretrained using more
complex tasks.

• UED Anonymous is a competitive model that
has not been published.

• Expando-mono-duo-T5 is performed based on
T5 (Raffel et al., 2019) model and their pre-
vious published model duoBERT (Nogueira
et al., 2019a), which is a pairwise document
ranking model.

• DeepCT plus TFR-BERT Ensemble (Han
et al., 2020) is a well performed DR model,
which is a generic document ranking frame-
work that builds a learning to rank model
through fine-tuning BERT representations of
query-document pairs.

As shown in Table 2, our DR-BERT model
shows excellent performance and it behaves much
better than many competitive models.
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Model Score Ranking
BERT 0.864 1
BERT + STRM 0.253 139

(a)

Model Score Ranking
BERT 0.806 1
BERT + STRM 0.348 71

(b)

Table 3: Relevance scores and document rankings. (a)
and (b) correspond to the query-document case in Fig-
ure 1(a) and Figure 1(b), respectively.

4.4 OOV Mismatching Analyses
In this subsection, we analyze the effects of STRM
in our DR-BERT model. Firstly, as shown in Table
1, the ablation test of STRM shows that it plays an
important role in the DR-BERT.

Secondly, we conduct the case study as follows.
(1) For the case in Figure 1(a), we observe the
relevance scores calculated by the BERT baseline
(which does not have STRM) and the baseline plus
STRM. As shown in Table 3(a), the BERT baseline
outputs a high relevance score and the document
which is irrelevant to the query is ranked the first.
After adding STRM, the model behaves better than
the baseline and the ranking, i.e., 137, implies that
the document is almost impossible to be the one
that matches with the query. (2) For the case in
Figure 1(b), Table 3(b) lists the relevance scores
and document rankings under different models. We
also find that the BERT baseline ranks this doc-
ument unrelated with the query high, but adding
STRM changes the situation, where the document
ranking is adjusted to 71, thus preventing from ir-
relevant matching. Further, to clarify how STRM
affects the model, we take the case in Figure 1(a)
as an example again and observe the effects of the
attention weights between the query and the doc-
ument. As shown in Figure 4, Figure 4(a) shows
the scores calculated by the BERT baseline model,
where the relevance scores between the segmented
OOV words, i.e., “bog", “##ue", are high. As a
result, it induces OOV mismatching problem. Fig-
ure 4(b) shows that when we add STRM, the OOV
mismatching problem is solved in the same way as
we expected.

The above analyses indicate STRM can effec-
tively solve the OOV mismatching problem.

In addition, from Table 2, we can see that the ac-
curacy of BM25 + DR-BERT on the evaluation set

is higher than Expando-mono-duo-T5 while their
accuracy on the development set is the same. It
illustrates that DR-BERT is less likely to overfit
on the training data compared to other methods.
The reason behind is that STRM works well by
merging representations of several sub-tokens as
shown in Figure 3, which is like the “dropout mech-
anism” functionally. Besides, lots of noise in the
MS MARCO dataset is eliminated by our noise
reduction method, thus avoiding overfitting.

4.5 Hyperparameter Sensitivity

In this subsection, we analyze the effects of the key
hyperparameter in DR-BERT, i.e., the number of
negative samples in the listwise fine-tuning N−.

Figure 5: Model performance under different numbers
of negative samples.

For the ranking task of MS MARCO, each query
has about 1 positive document and hundreds of neg-
ative documents on average after first-stage docu-
ment retrieval and noise reduction. Figure 5 shows
the performance under different numbers of neg-
ative samples and illustrates that involving more
negative samples in the listwise fine-tuning can im-
prove the effect. Specifically, if N− is set to 1, it
becomes a pairwise method. Note that because of
hardware limitation, the maximum of N− is set to
5 in our model.

5 Conclusion

We propose a model named DR-BERT for DR task,
in which we adopt a domain-adaptive pre-training
and present a two-phase fine-tuning strategy, i.e.,
type-adaptive pointwise fine-tuning and listwise
fine-tuning. Besides, we present a very useful seg-
mented token recovery mechanism to improve the
matching performance of OOV words, which can
be also applicable to other BERT-based models.
Experimental results show our model outperforms
many strong baselines and keeps in the top three on
the MS MARCO leaderboard since May 20, 2020.
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