
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 1919–1928
November 7–11, 2021. c©2021 Association for Computational Linguistics

1919

AttentionRank: Unsupervised keyphrase Extraction using Self and Cross
Attentions

Haoran Ding and Xiao Luo
Purdue School of Enigneering and Technology, IUPUI, USA

hd10@iu.edu, luo25@iupui.edu

Abstract

Keyword or keyphrase extraction is to iden-
tify words or phrases presenting the main top-
ics of a document. This paper proposes the
AttentionRank, a hybrid attention model, to
identify keyphrases from a document in an un-
supervised manner. AttentionRank calculates
self-attention and cross-attention using a pre-
trained language model. The self-attention
is designed to determine the importance of
a candidate within the context of a sentence.
The cross-attention is calculated to identify
the semantic relevance between a candidate
and sentences within a document. We evalu-
ate the AttentionRank on three publicly avail-
able datasets against seven baselines. The re-
sults show that the AttentionRank is an effec-
tive and robust unsupervised keyphrase extrac-
tion model on both long and short documents.
Source code is available on Github 1.

1 Introduction

A vast amount of scientific or non-scientific arti-
cles are published online every year. Although
some of them have associated keyphrases speci-
fied, which made them easy to index and search,
a considerable amount of them has no keyphrase
defined, making indexing and information retrieval
challenging. Given so many articles available, it is
not feasible to manually extract keyphrases from
each. Automate the keyphrases extraction becomes
crucial. Keyphrase extraction has immense value to
the downstream text mining tasks, such as text seg-
mentation, text summarization, query expansion,
indexing, and so on.

Keyphrase extraction methods can be supervised
or unsupervised. Traditional supervision methods
use decision tree (Turney, 2000) or naive Bayes
(Witten et al., 2005) to identify whether the in-
put word/phrase is a keyphrase. With the advanc-
ing of neural networks, various supervised deep

1https://github.com/hd10-iupui/AttentionRank

learning models (Meng et al., 2017; Alzaidy et al.,
2019; Sun et al., 2019) are developed to extract
keyphrases. The supervised method requires a
large labeled training dataset and is often domain-
specific, whereas unsupervised methods do not
need labeled datasets. The traditional unsupervised
methods use statistical and graph-based approaches.
The statistical-based methods (Beliga et al., 2016;
Rose et al., 2010; Campos et al., 2018) utilize the
candidate position, frequency, length, and capi-
talization to determine the importance of a word.
The graph-based approaches (Wan and Xiao, 2008;
Gollapalli and Caragea, 2014) construct a graph
with the candidates as nodes. The edges indicate
the similarity or co-occurrences of the candidates.
Graph-based algorithms can be applied to calcu-
late the importance of the nodes (candidates) on
the graph. Driven by recent deep language mod-
els for natural language processing and text analy-
sis, text embedding-based or mixed statistical and
embedding-based unsupervised keyphrase extrac-
tion methods have emerged, such as EmbedRank
(Bennani-Smires et al., 2018), SIFRank (Sun et al.,
2020), and KeyGames (Saxena et al., 2020).

In this research, we propose an attention-based
unsupervised model – AttentionRank for keyphrase
extraction. AttentionRank is motivated by the
self-attention mechanism of the BERT model (De-
vlin et al., 2019), and hierarchical attention re-
trieval (HAR) mechanism (Zhu et al., 2019). At-
tentionRank model calculates the accumulated self-
attention and cross-attention of a candidate to rank
the importance. The accumulated self-attention
value for each candidate is extracted from a pre-
trained BERT model. It is calculated as adding the
received attention from other words within a sen-
tence then summing up these self-attention values
on all sentences within the document. The accu-
mulated self-attention addresses the importance
of a candidate within the sentences where it lo-
cates. The cross-attention identifies the semantic

1920

relevance between a candidate and the document. It
calculates the word-level bidirectional attention be-
tween the embeddings of a candidate and sentences
within a document then generate an enhanced doc-
ument embedding for the candidate. The final rank-
ing of a candidate is determined by the linear in-
tegration of the accumulated self-attention value
and the cross-attention relevance value. A post-
processing step based on the document frequency
is used to remove the generic terms of a specific
corpus.

AttentionRank is the first to use the attention val-
ues extracted from a pre-trained BERT model for
keyphrase extraction. No additional information
or domain knowledge is needed. It is generaliz-
able to documents of any domain. This research
focused on investigating whether the pre-trained
none domain-specific language model can be used
for keyphrase extraction.

AttentionRank is compared against seven state-
of-the-art unsupervised keyphrase extraction meth-
ods on three benchmark datasets. Two datasets
contain short documents, and one contains long
documents. The results show that AttentionRank
performs better than or as competitive as the base-
lines.

The main contributions of this paper are summa-
rized as follows:

• We proposed a novel attention-based unsuper-
vised keyphrase extraction model - Attention-
Rank;

• We demonstrated pre-trained language model
could be utilized to identify keyphrases via
self-attentions and cross-attentions.

• We showed that the AttentionRank model out-
performs the compared baselines and is robust
to identify keyphrases from both short and
long documents of different domains.

2 Methodology

In this section, we introduce the AttentionRank
model in detail. The overview architecture of our
model is shown in Figure 1. AttentionRank inte-
grates the accumulated self-attention component
with the cross-attention component to calculate the
final score of a candidate. The proposed model has
four main steps: (1) Generate a candidate set C
from a document; (2) Calculate the accumulated
self-attention value ac for each candidate c, c ∈ C;

(3) Calculate the cross-attention relevancy value
(rc) between a candidate c and the document d;
(4) Calculate the final score sc for each candidate
through a linear combination of ac and rc.

2.1 Candidates Generation

We use the candidate extraction module imple-
mented in EmbedRank (Bennani-Smires et al.,
2018). This module first use Part-of-Speech (PoS)
to identify words tagged as NN, NNS, NNP, NNPS,
JJ, etc. Then, the python package NLTK 2 is used
to generate the noun phrases, which are candidates.
Given a sentence ‘Most parameters of the program
are controllable by experimenter-edited text files or
simple switches in the program code, thereby mini-
mizing the need for programming to create new ex-
periments’, the extracted candidates are ‘program
code’, ‘experimenter-edited text files’, ‘need’, ‘pa-
rameters’, ‘simple switches’, ‘program’, and ‘new
experiments’.

2.2 Accumulated Self-Attention Calculation

We use the method introduced by Clark et al. (Clark
et al., 2019) to extract self-attention weights of
the words from the pre-trained BERT. We sum the
attentions (aw′w) that a word (w) received from
other words (w′) within the same sentence (s) to
obtain the attention value (aw) of the word within
a sentence, shown as Equation 1. This attention
value (aw) represents the importance of the word
within the context of a sentence.

aw =
∑
w′∈s

aw′w (1)

As shown in Figure 2, all highlighted are noun
chunks. Intuitively, the darker the noun chunk is,
the higher self-attention it receives. They have a
higher probability of being selected as keyphrases.

To calculate the self-attentions of a candidate (c)
in sentence i, we add up the attention of the words
in c, shown as Equation 2.

aci =
∑
w∈c

aw (2)

The document level self-attention value of candi-
date c is computed as the sum of all self-attention
values of c in each sentence of document d:

ac =
∑
i∈d

aci (3)

2https://github.com/nltk

1921

Figure 1: Architecture of the AttentionRank model

Figure 2: Visualization of the Self-Attention Weights

2.3 Cross-Attention Calculation

The cross-attention model is inspired by the hierar-
chical attention retrieval (HAR) model (Zhu et al.,
2019) and the bi-direction attentional model (Seo
et al., 2016). Based on their network architectures,
we develop the cross-attention component to mea-
sure the correlation between a candidate and the
document based on the context.

A pre-trained BERT model can generate candi-
date c representation as Ec = {ec1, ..., ecm}, where
ei ∈ RH is embedding of wi, and there are m
words in the candidate. Similarly, a pre-trained
BERT model can also generate a representation
Ei = {ei1, ..., ein} for a sentence i which contains
n words.

Cross-attention calculates a new document em-
bedding to better measure the contextual corre-
lations between candidates and sentences within
a document. Given a sentence i represented as
Ei ∈ Rn×H , and a candidate c represented as
Ec ∈ Rm×H , a similarity matrix between i and c
S ∈ Rn×m can be calculated as Equation 4. Then,
the word based sentence to candidate and candidate

to sentence similarity can be measured as Equation
5 and 6).

S = Ei · Ecᵀ (4)

S̄i2c = softmaxrow(S) (5)

S̄c2i = softmaxcolumn(S) (6)

The word-based cross-attention weights from
sentence to candidate and from candidate to sen-
tence are calculated as Equation 7 and 8. The new
sentence representation V i is built upon these cross-
attention weights and computed by averaging the
sum of the four items, shown as Equation 9. The
Ei is the original context of the sentence, the Ai2c,
Ei �Ai2c and Ei �Ac2i measure the context cor-
relation between a sentence and a candidate. � is
element-wise multiplication.

Ai2c = S̄i2c · Ec (7)

Ac2i = S̄i2c · S̄ᵀ
c2i · E

i (8)

V i = AV G(Ei, Ai2c, E
i�Ai2c, Ei�Ac2i) (9)

The new sentence representation V i is still a set
of embeddings that comprises the word-based rela-
tions between the candidate and sentence. To gen-
erate a standardized sentence representation based

1922

on V i, a self-attention is performed on V i to high-
light the importance of the words after applying
the cross attention. Given a new sentence repre-
sentation V i = {vi1, ..., vin} with n words, the self-
attention of sentence i is calculated as Equation 10.
Then, the column-wise average is calculated to gain
the final representation of a sentence αi ∈ RH .

I = softmaxrow(V i · V iᵀ) · V i (10)

αi = AV E(I[:, i]) (11)

Once the sentence embeddings are generated,
we perform a similar process on sentence embed-
dings to generate document embedding. Given
a document d which include a set of sentences
Ed = {α1, ..., αi}, to calculate the document em-
bedding, we first generate self-attention of the doc-
ument to emphasize sentences with higher corre-
lation to the candidate (Equation 12), then take
the column-wise average to get the final document
embedding pd ∈ RH .

P = softmaxrow(Ed · Edᵀ) · Ed (12)

pd = AV E(P [:, i]) (13)

Since the candidate is also originally represented
as a word embedding set Ec = {ec1, ..., ecm}, the
self-attention calculation (Equation 14) is also ap-
plied, and the column-wise average is done af-
terwards to get the final candidate embedding
pc ∈ RH as Equation 15.

C = softmaxrow(Ec · Ecᵀ) · Ec (14)

pc = AV E(C[:, i]) (15)

Finally, the relevance between a candidate c and
a document d is determined by the cosine similarity
of pc and pd shown as Equation 16.

rc =
pc · pd

||pc|| · ||pd||
(16)

2.4 Final Score Calculation and
Post-processing

For document d, the accumulated attention value
ac and cross-attention based relevance value rc are

calculated and normalized separately for each can-
didates. The final score of a candidate is the gener-
ated by linear integration of these two values using
Equation 17, where d ∈ [0, 1].

sc = d ∗ ac + (1− d) ∗ rc (17)

A corpus is often domain-specific. It means
some words with high document frequency might
be generic words to this corpus. In this research, in
order to limit the generic word or phrase becoming
a keyphrase, we remove the candidates with a high
document frequency than a threshold dfθ.

3 Experiments

3.1 Datasets and Evaluation Metrics
To fully evaluate the performance of Attention-
Rank, we evaluated it on three benchmark datasets.
The percentages of the n-grams, the average num-
ber of words (AveWords), and the average number
of sentences (AveSentences) per document are pro-
vided in Table 1. Over 50% of the keyphrases are
either unigram or bigram. Datasets SemEval2017
(Augenstein et al., 2017) and Inspec (Hulth, 2003)
contain short documents with an average of 6 to
7 sentences, whereas SemEval2010 (Kim et al.,
2010) contains long documents with hundreds of
sentences.

The performance of the keyphrase extraction
is evaluated using Precision (P), Recall (R), and
F1 measure (F1) on the top 5, 10, and 15 ranked
keyphrases. The PR curve based on the top-ranked
keyphrases is also generated for comparison.

Table 1: A Summary of Datasets

dataset SemEval2017 Inspec SemEval2010

#Doc 493 500 243
#unigram 26.34% 16.20% 22.94%
#bigram 28.60% 54.15% 44.15%
#trigram 17.88% 22.72% 23.59%
AveWords 168 134 8154
AveSentences 7 6 369

3.2 Baselines
We compared our model against seven different un-
supervised models: SingleRank (Wan and Xiao,
2008), RAKE (Rose et al., 2010), TopicRank
(Bougouin et al., 2013), PositionRank (Florescu
and Caragea, 2017b), YAKE! (Campos et al.,
2018), EmbedRank (Bennani-Smires et al., 2018),

1923

and SIFRank (Sun et al., 2020). These baselines all
generate candidates using noun phrases without any
additional steps. Since KeyGames (Saxena et al.,
2020) includes designed steps, such as stop word
removal and threshold on token length, for candi-
date generation, it is not included. We used PKE3

to run SingleRank, RAKE, and TopicRank. The
published GitHub code of YAKE!4, EmbedRank5,
PositionRank6, and SIFRank7 were used to pro-
duce the results on the selected datasets. It is worth
noting that the produced results of the baselines are
slightly higher or lower than the results presented
in the original papers.

3.3 HyperParameter Setting and
Computational Cost

The BERT-Base (Devlin et al., 2019) is used. For
different corpora, the document frequency thresh-
old dfθ and integration ratio d are fine-tuned to
achieve the best performance. The document
frequency threshold dfθ for dataset Inspec, Se-
mEval2017 and SemEval2010 are set to be 5, 5,
and 44, respectively. For all datasets, we set the lin-
ear combination ratio d to be 0.8. For the baseline
methods, the parameters published on the corre-
sponding GitHub were used.

Based on our experiments, the computational
cost to extract the attention between words is low
since we can utilize a pre-trained BERT. It takes
an average of 74 seconds to generate an attention
matrix on a long document using our computer
with an Intel i7 9700k CPU and 32G memory.

3.4 Results
Table 2 shows the results of recall, precision, and
F1 @5, 10, and 15 using AttentionRank and base-
line models on all datasets. A paired statistical
significance test (used t-test when both are normal-
distributed, otherwise used Kolmogorov-Smirnov
test) is used to evaluate whether the F1 values of
the AttentionRank model are statistically signifi-
cantly better (p-value <0.01 H or p-value<0.05 O).
If p-value >0.05, there is no H or O. It is worth
noting that the difference is not statistically signifi-
cant for those cases when AttentionRank performs
slightly lower than the SIFRank model.

3https://github.com/boudinfl/pke
4https://github.com/LIAAD/yake
5https://github.com/swisscom/ai-research-keyphrase-

extraction
6https://github.com/ymym3412/position-rank
7https://github.com/sunyilgdx/SIFRank

The results show that the embedding-based al-
gorithms, including AttentionRank, perform better
than the statistical-based (RAKE and YAKE!) and
graph-based algorithms (SingleRank, TopicRank,
and PositionRank) on short document sets (Inspec
and SemEval 2017). SIFRank performs slightly
better than AttentionRank on Inspec. Attention-
Rank works better than the other baselines on In-
spec when K is set to 5 or 10. Nevertheless, At-
tentionRank has a slightly better F1 than SIFRank
and other baselines when the top 15 candidates are
used for evaluation. It shows that AttentionRank
performs competitively on the dataset Inspec. At-
tentionRank outperforms all baselines on the other
two datasets with statistical significance. Atten-
tionRank shows advantage on long document set -
SemEval2010. The F1 value is at least 3% better
than the highest baseline.

Table 3 shows the comparison results with other
unsupervised keyphrase extraction methods by
referring to the reported in the original papers.
These methods reported results on Inspec or Se-
mEval2010. The comparison shows that Atten-
tionRank works better than KeyGames (Saxena
et al., 2020) on SemEval2010 by 0.5%, although
KayGames used a designed candidate selection ap-
proach to remove noise. AttentionRank also works
better than the MultipartiteRank (Boudin, 2018)
and TeKET (Rabby et al., 2020) based on the origi-
nal reported result on SemEval2010. Because the
accumulated self-attention model considers the self-
attention values accumulation of candidates over
the document, AttentionRank works better on the
long document set. The performance of Attention-
Rank on the Inspec is not as good as KeyGames, but
better than the Salience Rank (Teneva and Cheng,
2017).

The PR curve (shown in Figure 3) is drawn us-
ing the top 60 ranked candidates generated by each
method for overall comparison. The PR curves
show consistent results that SIFRank works slightly
better than AttentionRank on the Inspec dataset,
whereas the AttentionRank outperforms all the
baselines on both SemEval datasets. Attention-
Rank performs much better than YAKE! on Se-
mEval2010, and both outperform the other base-
lines.

1924

Table 2: Model Comparison with Precision (P), Recall (R), and F-score (F1) @5, @10, @15

k Method Inspec SemEval2017 SemEval2010
P R F1 P R F1 P R F1

5

RAKE 27.40 11.94 16.63 H 26.94 8.78 13.24 H 1.4 0.44 0.67 H
SingleRank 33.96 14.44 20.26 H 35.29 11.26 17.07 H 2.33 1.41 1.76 H
TopicRank 29.80 12.15 17.26 H 33.43 10.45 15.92 H 10.37 3.52 5.26 H

YAKE! 25.04 11.00 15.29 H 24.79 7.96 12.05 H 16.87 5.65 8.46 H
PositionRank 34.80 14.89 20.85 H 40.57 12.60 19.23 H 5.16 1.62 2.46 H
EmbedRank 40.92 17.50 24.52 47.10 14.59 22.28 H 3.29 1.10 1.64 H

SIFRank 44.00 18.40 25.95 43.16 13.83 20.94 H 11.44 3.83 5.74 H
AttentionRank 41.19 17.38 24.45 49.17 15.52 23.59 22.27 7.66 11.39

10

Rake 27.11 22.27 24.45 H 28.92 18.56 22.61 H 1.69 1.10 1.33 H
SingleRank 29.97 24.25 26.81 H 32.90 20.52 25.28 H 2.23 2.53 2.37 H
TopicRank 24.54 18.99 21.24 H 27.09 16.62 20.60 H 9.26 6.20 7.43 H

YAKE! 19.48 16.67 17.96 H 23.33 14.86 18.16 H 14.94 10.00 11.98 H
PositionRank 28.04 23.25 25.50 H 33.10 20.20 25.09 H 4.61 3.05 3.67 H
EmbedRank 35.75 28.69 31.83 42.11 25.86 32.04 H 3.58 2.34 2.83 H

SIFRank 37.35 29.43 32.92 40.24 24.94 30.80 H 7.82 5.18 6.23 H
AttentionRank 37.17 28.32 32.15 44.89 27.84 34.37 18.65 12.72 15.12

15

Rake 24.59 28.53 26.41 H 27.69 26.10 26.87 H 1.81 1.75 1.78 H
SingleRank 26.41 30.20 28.18 H 30.57 28.08 29.27 H 2.62 4.37 3.28 H
TopicRank 21.74 23.37 22.52 H 23.60 21.27 22.37 H 7.98 8.06 8.02 H

YAKE! 17.12 21.70 19.14 H 21.41 20.07 20.72 H 12.87 12.86 12.87 H
PositionRank 24.09 29.04 26.33 H 29.00 26.50 27.69 H 4.15 4.02 4.08 H
EmbedRank 32.07 35.63 33.76 O 37.85 34.10 35.88 H 3.65 3.63 3.64 H

SIFRank 32.51 35.73 34.04 37.11 33.81 35.38 H 6.20 6.11 6.15 H
AttentionRank 34.58 34.40 34.49 40.43 36.22 38.21 16.51 16.82 16.66

Figure 3: PR-curve Evaluation of Models Performance

Figure 4: Evaluation of the Integration Ratio Impact on Performance

1925

Figure 5: Evaluation of the Document Frequency Impact on Performance

Table 3: Comparison of Others on Reported F1@10

Method Inspec SemEval2010

Salience Rank 26.60 -
MultipartiteRank - 14.50

KeyGames 40.48 14.35
TeKET - 14.75

AttentionRank 32.15 15.12

3.5 Ablation Study

3.5.1 Integration Ratio
The AttentionRank model linearly integrates the
accumulated self-attention with the cross-attention
relevance to determine the importance of a can-
didate. We study the influence of accumulated
self-attention and cross-attention by adjusting d
(in Equation 17) from 0 to 1, with a step size of
0.1. Figure 4 shows that the contribution of accu-
mulated self-attention value is higher than cross-
attention relevance in general. However, the best ra-
tio is different for each dataset. With dataset Inspec,
F1 value is highest when d is round 0.3, 0.5, and
0.9 forK equals 5, 10, and 15, respectively. For Se-
mEval2017, the best performance can be achieved
when d is set to 0.7, 0.9, and 0.9. For the long doc-
ument set - SemEval2010, the performance is opti-
mized when d is 1, which means only accumulated
self-attention value is needed to find the keyphrases.
We think that the accumulated self-attention model
considers the repetition of the keyphrases implic-
itly through the self-attention weights accumulation
over the document. However, for short document
sets, such as Inspec, the cross-attention relevance
has more impact. Since there are only a few sen-
tences in a document, the repetition of the word is
low. However, the context-wise relevancy between
keyphrases and sentences and the document needs
to be emphasized.

(a)SIFRank

(b)AttentionRank

Figure 6: Comparison of SIFRank and AttentionRank
on Short Document

3.5.2 Analysis on Document Frequency
In the AttentionRank model, document frequency
is used to remove generic terms for a specific cor-
pus. Hence, we also study the impact of the docu-
ment frequency threshold dfθ. For the short docu-
ment set - SemEval2017 and Inspec, dfθ is adjusted
from 5 or 10, whereas for the long document set -
SemEval2010, dfθ is adjusted from 10 to 110. Fig-
ure 5 shows that different datasets can have differ-
ent optimal performances based on the dfθ values.
For short document datasets, the best dfθ is often
small. The dfθ value for long document datasets is
relatively larger. After dfθ is larger than a certain
value, the performance drops with the increase of
the dfθ, which means term with larger dfθ can be a
keyphrase for a document within a specific corpus.

3.6 Case Study
AttentionRank performs closely with the SIFRank
on short documents. To observe the difference be-
tween AttentionRank and SIFRank, we randomly

1926

(a)YAKE!

(b)AttentionRank

Figure 7: Comparison of YAKE! and AttentionRank on
Long Document

select a document in the Inspec. The heatmap in
Figure 6 presents the importance scores of the can-
didates calculated by the two models. We nor-
malized their original scores to draw the heatmap.
The warmer the color is, the higher the score is.
The phrases with bold italics and underline in the
text are the labeled keyphrases. The candidate
scores generated by AttentionRank fluctuate more
than those generated by SIFRank. Using accu-
mulated self-attention, AttentionRank generates
slightly lower scores than SIFRank on some can-
didates, such as ‘multiple decision points’ which
shows only once. The labeled keyphrase ‘decision
support system’ is not identified by both models.

Although AttentionRank performs better than
the other baselines on long documents, YAKE! also
achieves good performance. Figure 7 shows a snip-
pet of a long document with extracted keyphrases
using these two models. The document is selected
from the dataset SemEval2010.

Based on the observed heatmap, the scores are
assigned differently by the models. The accu-
mulated self-attention ranks the bigram candidate
‘judgment aggregation’ high because of its high
frequency. Whereas, YAKE! counts the influence
of frequency differently. Nevertheless, YAKE! em-
phasizes on a candidate using the length of the can-
didate. It generates a higher score on the trigram
candidate ‘judgment aggregation rules’ higher than
‘judgment aggregation’.

4 Related Work

There are supervised and unsupervised keyphrase
extraction approaches. The unsupervised ap-
proaches can be grouped into two categories: tra-
ditional unsupervised methods and deep learning-
based methods. Rose et al. (Rose et al., 2010)
identified the keywords based on the word fre-
quency, the number of co-occurring neighbors, and
the ratio between the co-occurrence and the fre-
quency. Campos et al. (Campos et al., 2018) cal-
culated the importance of each candidate using
frequency, offsets, and co-occurrence. Alrehamy et
al. (Alrehamy and Walker, 2018) first clustered the
candidates based on the semantic similarity. Can-
didates with similar semantic relevance with the
centroids were selected as keywords. Rabby et al.
(Rabby et al., 2020) took a binary tree approach.
Its statistical relevance determined the importance
of a subtree with its root. Then, they extracted
all the paths from the roots to the leaves to find
the keyphrases. Mihalcea et al. (Mihalcea and
Tarau, 2004) converted the candidates into nodes
on a graph, then used the PageRank algorithm to
calculate the importance of the candidates Wan
and Xiao et al. (Wan and Xiao, 2008) enriched
the graph of candidates by collecting information
from k-Nearest-Neighbor documents. Bougouin
et al. presented the TopicRank (Bougouin et al.,
2013) model, which first assigned a score to each
topic by candidate keyphrases clustering. The top-
ics were scored using the TextRank ranking model,
and keyphrases were extracted using the most rep-
resentative candidate from the top-ranked topics.
Boudin et al. (Boudin, 2018) proposed a Multi-
partite graph model to encode the topic informa-
tion within a multipartite graph, which utilized the
keyphrases mutual relationship to improve rank-
ing. Florescu et al. (Florescu and Caragea, 2017a)
proposed the PositionRank to use the position in-
formation of word occurrences into TextRank to
improve the TextRank on a document. Sung et al.
(yeon Sung and Kim, 2020) considered the can-
didate hierarchy based on conditional probability
(general or specific) on a directed weighted graph.

Wang et al. (Wang et al., 2014) made use of
the pre-trained word embedding and the frequency
of each word to generate weighted edges between
words in a document. A weighted PageRank al-
gorithm was used to compute the final scores of
words. Mahata et al. (Mahata et al., 2018) used
a similar approach using the phrase embeddings

1927

for representing the candidates and ranking the im-
portance of the phrases by calculating the seman-
tic similarity and co-occurrences of the phrases.
Papagiannopoulou et al. (Papagiannopoulou and
Tsoumakas, 2018) also used word embeddings for
unsupervised keyphrase extraction. Different from
the previous two methods, the embeddings were
trained from a single document called local em-
bedding. Bennani-Smires et al. (Bennani-Smires
et al., 2018) used a document embedding model,
EmbedRank, to measure the similarity between
documents and candidates to select more represen-
tative keyphrases. Sun et al. (Sun et al., 2020)
proposed SIFRank, integration of statistical model
and pre-trained language model, to calculate the
relevance between candidates and document topic.
Saxena et al. (Saxena et al., 2020) employed the
concept of evolutionary game theory and utilized
the embeddings, position, and frequency of the
candidate to calculate the confidence score to de-
termine whether a candidate is a keyphrase.

Different from previous methods, this study
focuses on integrating self-attention weights ex-
tracted from the pre-trained deep language model
with the calculated cross-attention relevancy value
to identify the keyphrases that are important to lo-
cal sentence context and also have strong relevancy
to all sentences within the whole document.

5 Conclusions

This research investigated the accumulated self-
attention mechanism integrated with a cross-
attention model for unsupervised keyphrase extrac-
tion. A pre-trained BERT model is utilized to calcu-
late the self-attention and cross-attention values. A
candidate is processed through a self-attention cal-
culation and a cross-attention relevancy calculation
to gain a final score towards ranking. We compared
the proposed AttentionRank model with seven dif-
ferent baselines on three benchmark datasets, in-
cluding two short document datasets and one long
document dataset. AttentionRank gains a better
or competitive F1@5, 10, and 15 on all datasets.
The ablation study shows that accumulated self-
attention has a higher contribution than the cross-
attention relevancy score on the long document
set. For a short document set, the linear integration
of both attention mechanisms shows good perfor-
mance. The future work includes fine-tuning the
BERT on a target domain and comparing against
more baselines on domain-specific datasets.

References
Hassan Alrehamy and Coral Walker. 2018. Exploit-

ing extensible background knowledge for clustering-
based automatic keyphrase extraction. Soft Comput-
ing, 22(21):7041–7057.

Rabah Alzaidy, Cornelia Caragea, and C Lee Giles.
2019. Bi-lstm-crf sequence labeling for keyphrase
extraction from scholarly documents. In The world
wide web conference, pages 2551–2557.

Isabelle Augenstein, Mrinal Das, Sebastian Riedel,
Lakshmi Vikraman, and Andrew McCallum. 2017.
SemEval 2017 task 10: ScienceIE - extracting
keyphrases and relations from scientific publica-
tions. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 546–555, Vancouver, Canada. Association for
Computational Linguistics.

Slobodan Beliga, Ana Meštrović, and Sanda Martinčić-
Ipšić. 2016. Selectivity-based keyword extraction
method. International Journal on Semantic Web and
Information Systems (IJSWIS), 12(3):1–26.

Kamil Bennani-Smires, Claudiu Musat, Andreea Hoss-
mann, Michael Baeriswyl, and Martin Jaggi. 2018.
Simple unsupervised keyphrase extraction using sen-
tence embeddings. In Proceedings of the 22nd Con-
ference on Computational Natural Language Learn-
ing, pages 221–229, Brussels, Belgium. Association
for Computational Linguistics.

Florian Boudin. 2018. Unsupervised keyphrase extrac-
tion with multipartite graphs. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 2 (Short Pa-
pers), pages 667–672, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Adrien Bougouin, Florian Boudin, and Béatrice Daille.
2013. TopicRank: Graph-based topic ranking for
keyphrase extraction. In Proceedings of the Sixth In-
ternational Joint Conference on Natural Language
Processing, pages 543–551, Nagoya, Japan. Asian
Federation of Natural Language Processing.

Ricardo Campos, Vítor Mangaravite, Arian Pasquali,
Alípio Mário Jorge, Célia Nunes, and Adam Jatowt.
2018. Yake! collection-independent automatic key-
word extractor. In European Conference on Informa-
tion Retrieval, pages 806–810. Springer.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does BERT
look at? an analysis of BERT’s attention. In Pro-
ceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for
NLP, pages 276–286, Florence, Italy. Association
for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of

https://doi.org/10.18653/v1/S17-2091
https://doi.org/10.18653/v1/S17-2091
https://doi.org/10.18653/v1/S17-2091
https://doi.org/10.18653/v1/K18-1022
https://doi.org/10.18653/v1/K18-1022
https://doi.org/10.18653/v1/N18-2105
https://doi.org/10.18653/v1/N18-2105
https://aclanthology.org/I13-1062
https://aclanthology.org/I13-1062
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/N19-1423

1928

deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Corina Florescu and Cornelia Caragea. 2017a. A
position-biased pagerank algorithm for keyphrase
extraction. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 31.

Corina Florescu and Cornelia Caragea. 2017b. Posi-
tionrank: An unsupervised approach to keyphrase
extraction from scholarly documents. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 1105–1115.

Sujatha Das Gollapalli and Cornelia Caragea. 2014.
Extracting keyphrases from research papers using ci-
tation networks. In Twenty-Eighth AAAI Conference
on Artificial Intelligence.

Anette Hulth. 2003. Improved automatic keyword ex-
traction given more linguistic knowledge. In Pro-
ceedings of the 2003 conference on Empirical meth-
ods in natural language processing, pages 216–223.

Su Nam Kim, Olena Medelyan, Min-Yen Kan, and
Timothy Baldwin. 2010. Semeval-2010 task 5: Au-
tomatic keyphrase extraction from scientific articles.
In Proceedings of the 5th International Workshop on
Semantic Evaluation, pages 21–26.

Debanjan Mahata, John Kuriakose, Rajiv Shah, and
Roger Zimmermann. 2018. Key2vec: Automatic
ranked keyphrase extraction from scientific articles
using phrase embeddings. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 2 (Short Pa-
pers), pages 634–639.

Rui Meng, Sanqiang Zhao, Shuguang Han, Daqing
He, Peter Brusilovsky, and Yu Chi. 2017. Deep
keyphrase generation. In Proceedings of the 55th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
582–592.

Rada Mihalcea and Paul Tarau. 2004. Textrank: Bring-
ing order into text. In Proceedings of the 2004 con-
ference on empirical methods in natural language
processing, pages 404–411.

Eirini Papagiannopoulou and Grigorios Tsoumakas.
2018. Local word vectors guiding keyphrase ex-
traction. Information Processing & Management,
54(6):888–902.

Gollam Rabby, Saiful Azad, Mufti Mahmud, Kamal Z
Zamli, and Mohammed Mostafizur Rahman. 2020.
Teket: a tree-based unsupervised keyphrase extrac-
tion technique. Cognitive Computation, pages 1–23.

Stuart Rose, Dave Engel, Nick Cramer, and Wendy
Cowley. 2010. Automatic keyword extraction from
individual documents. Text mining: applications
and theory, 1:1–20.

Arnav Saxena, Mudit Mangal, and Goonjan Jain. 2020.
KeyGames: A game theoretic approach to automatic
keyphrase extraction. In Proceedings of the 28th In-
ternational Conference on Computational Linguis-
tics, pages 2037–2048, Barcelona, Spain (Online).
International Committee on Computational Linguis-
tics.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2016. Bidirectional attention
flow for machine comprehension. arXiv preprint
arXiv:1611.01603.

Yi Sun, Hangping Qiu, Yu Zheng, Zhongwei Wang,
and Chaoran Zhang. 2020. Sifrank: A new base-
line for unsupervised keyphrase extraction based on
pre-trained language model. IEEE Access, 8:10896–
10906.

Zhiqing Sun, Jian Tang, Pan Du, Zhi-Hong Deng, and
Jian-Yun Nie. 2019. Divgraphpointer: A graph
pointer network for extracting diverse keyphrases.
In Proceedings of the 42nd International ACM SI-
GIR Conference on Research and Development in
Information Retrieval, pages 755–764.

Nedelina Teneva and Weiwei Cheng. 2017. Salience
rank: Efficient keyphrase extraction with topic mod-
eling. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 530–535.

Peter D Turney. 2000. Learning algorithms
for keyphrase extraction. Information retrieval,
2(4):303–336.

Xiaojun Wan and Jianguo Xiao. 2008. Single doc-
ument keyphrase extraction using neighborhood
knowledge. In AAAI, volume 8, pages 855–860.

Rui Wang, Wei Liu, and Chris McDonald. 2014.
Corpus-independent generic keyphrase extraction
using word embedding vectors. In Software Engi-
neering Research Conference, volume 39, pages 1–
8.

Ian H Witten, Gordon W Paynter, Eibe Frank, Carl
Gutwin, and Craig G Nevill-Manning. 2005. Kea:
Practical automated keyphrase extraction. In Design
and Usability of Digital Libraries: Case Studies in
the Asia Pacific, pages 129–152. IGI global.

Yoo yeon Sung and Seoung Bum Kim. 2020. Topical
keyphrase extraction with hierarchical semantic net-
works. Decision Support Systems, 128:113163.

Ming Zhu, Aman Ahuja, Wei Wei, and Chandan K
Reddy. 2019. A hierarchical attention retrieval
model for healthcare question answering. In The
World Wide Web Conference, pages 2472–2482.

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.coling-main.184
https://doi.org/10.18653/v1/2020.coling-main.184

