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Abstract

Automatic extraction of product attribute-
value pairs from unstructured text like prod-
uct descriptions is an important problem for e-
commerce companies. The attribute schema
typically varies from one category of products
(which will be referred as vertical) to another.
This leads to extreme annotation efforts for
training of supervised deep sequence labeling
models such as LSTM-CRF, and consequently
not enough labeled data for some vertical-
attribute pairs. In this work, we propose a tech-
nique for alleviating this problem by using an-
notated data from related verticals in a multi-
task learning framework. Our approach re-
lies on availability of similar attributes (labels)
in another related vertical. Our model jointly
learns the similarity between attributes of the
two verticals along with the model parameters
for the sequence tagging model. The main ad-
vantage of our approach is that it does not need
any prior annotation of attribute similarity.
Our system has been tested with datasets of
size more than 10000 from a large e-commerce
company in India. We perform detailed ex-
periments to show that our method indeed in-
creases the macro-F1 scores for attribute value
extraction in general, and for labels with low
training data in particular. We also report top
labels from other verticals that contribute to-
wards learning of particular labels.

1 Introduction

Online e-commerce marketplaces (e.g., Flipkart)
operate by efficiently matching customer queries
and browsing habits to appropriate seller inven-
tory. Inventory is stored in a catalog which
consists of images, structured attributes (key-
value pairs) and unstructured textual description
as shown in figure 1. Products of same kind (e.g.,
digital camera) are thus described using a unique
set of attributes (e.g., zoom, resolution) – helping

Figure 1: A snapshot of structured attributes and
product description - underlined words wherein is
important, additional information not provided by
seller in attributes.

faceted navigation, merchandizing, search ranking
and comparative summary.

Onboarding products in a catalog requires pop-
ulating the structured as well as unstructured parts.
The time a seller has to spend on a product ad-
dition request is proportional to the quantum of
information that he/she has to provide. On the
other hand, correctness and completeness of cata-
log results in better product discovery, leading to a
trade-off with its onboarding time. A good amount
of attributes information is present in product de-
scription as well. This motivates us to extract the
information from unstructured text instead of ex-
plicitly asking sellers for attributes. Additional
information in description (e.g., precise features,
relation between products) as shown in figure 1
helps to enrich the catalog as well. The extracted
attributes can be used to check consistency be-
tween unstructured and structured data provided
by seller and thus quality control of addition re-
quest.
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We design supervised deep learning techniques
for the problem of attribute value extraction. Fig-
ure 2, shows a typical input sentence and the cor-
responding B, I, O tags. The task of our model
is to predict the tags given an input sentence. This
problem is related supervised sequence labelling
problem (Zheng et al., 2018; Lample et al., 2016).
However, this technique needs a lot of training
data points (sentence - label pairs) to perform ef-
fectively, which in turn requires massive annota-
tion efforts on the part of e-commerce companies -
reduction of which is an ongoing challenge; Open-
Tag (Zheng et al., 2018) uses active learning to an-
notate only most informative examples.

E-commerce companies however have the prod-
ucts categorized as different verticals, e.g. dress,
jeans, etc. Each of these verticals have a different
set of attributes, and hence needs to annotated us-
ing different models. A lot of the attributes among
these verticals are common, or related though.
Hence, it should be possible to borrow information
from annotations given in different verticals, to
improve the prediction performance of a given ver-
tical. The only challenge is that correspondences
between similar labels of different verticals is not
available readily.

Our main contribution here is thus to develop
a multi-task learning (MTL) model (Ruder, 2017)
which can simultaneously learn attribute extrac-
tion and attribute-attribute similarity for multiple
verticals (here we report with only two verticals
at a time). We do so by using a soft coupling
loss function across pairs of similar (context,label)
combinations between the two tasks, where simi-
larity is learned using attention mechanism. The
naive version of such an objective will be pro-
hibitively large to optimize. We propose to use a
cosine similarity based shortlist, which makes the
solution feasible.

We validate our method using a large corpus
(more than 10000 product descriptions, across 6
verticals) collected from the e-commerce com-
pany - Flipkart. Extensive experimentation shows
that our method improves performance of predic-
tion on almost all the verticals, and especially
shows upto 50% improvement for many labels
which have low number of training examples. This
is especially interesting since we find that num-
ber of instances with an attribute is highly skewed
across the attributes. Detailed analysis also con-
firms that the attention mechanism indeed discov-

Figure 2: Sample tagged data from Jean Vertical.

ers similar attributes from other verticals to bor-
rrow information from.

2 Related Work

Attribute extraction: Various tokens (e.g., Ap-
ple) in an offer title are classified into attribute
names (e.g., brand) relevant to the product (e.g.,
smartphone) (Joshi et al., 2015). For recognizing
attributes (e.g., product family) in a short text seg-
ment, missing KB entries are leveraged through
word embeddings learned on an unlabeled corpus
(Kozareva et al., 2016). (Joshi et al., 2015) in-
vestigates whether distributed word vectors benefit
NER in the e-commerce domain where entities are
item properties (e.g., brand name, color, material,
clothing size). (Xu et al., 2019) regards each at-
tribute as a query and adopts only one global set
of BIO tags for any attribute to reduce the bur-
den of attribute tag or model explosion. Open-
Tag (Zheng et al., 2018) uses active learning along
with a deep tagging model to update a product
catalog with missing values for many attributes
of interest from seller-provided title/description.
To create the initial labeled data set, (Rezk et al.,
2019) proposes bootstraping of seed data by ex-
tracting new values from unstructured text in a
domain/language-independent fashion. Through
category conditional self-attention and multi-task
learning, a knowledge extraction model Attribute
prediction and value extraction tasks are jointly
modelled (Zhu et al., 2020) from multiple aspects
towards interactions between attributes and values.
Contrastive entity linkage (Embar et al., 2020)
helps identify grocery product attribute pairs that
share same value (e.g., brand, manufacturer, prod-
uct line) and differ from each other (e.g., pack-
age size, color). Retailers do not always provide
clean data as textual descriptions in product cat-
alog (e.g., non-distinctive names (cotton, black t-
shirt), blurred distinction (Amazon is a product/vs.
brand), homonyms (Apple)). (Alonso et al., 2019)
discovers such attribute relationships towards a
brand-product knowledge graph from diverse in-
put data sources.

Multi-task Learning (MTL): Significant theo-
retical interest exists in MTL since it offers excel-
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lent generalization performance in domains where
training data is scarce (Maurer et al., 2016). In
NLP, (Collobert and Weston, 2008) proposed a
unified deep learning architecture for many com-
mon tasks e.g. POS tagging, chunking, etc. (Yang
and Hospedales, 2017) presented a new represen-
tation MTL framework that learns cross-task shar-
ing structure at every layer in a deep network. (Ri-
jula Kar, 2018) proposed a task-sensitive repre-
sentation learning framework that learns mention-
dependent representations for NED, and violates
norm to share parameters in the final layer.

(Wang et al., 2020) treats each attribute as a
question finding the best answer span correspond-
ing to its value in product context - modelled by a
BERT encoder shared across all attributes for scal-
ability. A distilled masked language model im-
proving generalizability is then integrated with the
encoder into a unified MTL framework. (Kara-
manolakis et al., 2020) applies to thousands of
product categories organized in a hierarchical tax-
onomy. However, existing methods do not au-
tomatically discover attribute-attribute similarity
from data, without taking attribute hierarchy as in-
put.

3 Methods

In this section, we describe a novel multi-task
approach to improving the accuracy of a super-
vised attribute value extraction system. We start
with the attribute-value extraction system, based
on deep bidirectional LSTM model, described in
OpenTag (Zheng et al., 2018). Our main idea
here is to leverage the information contained in in-
stances of related tasks, e.g. in our case related
domains / verticals of products. The key challenge
in our case is that the set of labels across verti-
cals need not be same, or even aligned. For ex-
ample, the label PROCESSOR TYPE is a valid la-
bel for LAPTOP vertical but does not make sense
for DRESS vertical. On the other hand, the set of
values for the common label BRAND will be very
different for the vertical DRESS compared to the
vertical LAPTOP. Hence, our core challenge here
is to determine the similarities between labels au-
tomatically in the context of each vertical in order
to leverage the information from a related vertical.
The proposed architecture is described in figure 3.

3.1 Problem setup
Each instance of the (single-task) attribute-value
extraction problem comes with an input sen-
tence denoted by a sequence of words w =
{w1, . . . , wn} and a corresponding set of labels
y = {y1, . . . , yn}. The task is to design a su-
pervised ML algorithm which given the input sen-
tence w, predicts the output labels y. Here, the
labels correspond to the attributes, e.g. COLOR,
and words correspond to the predicted values. Fol-
lowing common practice, we use 3 types of labels
(also called tags): B, I, O. Here B and I are
prepended to the label to indicate begining and end
of a multi-word tag, respectively, while O refers to
no tag for the word. For example, the multi-word
color “light green” may be tagged as B COLOR
and I COLOR.

This is an instance of sequence labeling prob-
lem (Lample et al., 2016), and the LSTM-CRF
model proposed by Lample et al. (Lample et al.,
2016) is the a state of the art model for this task.
For each word wi, we obtain the corresponding
word embedding xi using a concatenation of its
glove embedding (Pennington et al., 2014) and
it’s character based embedding. The word embed-
dings of a sentence x = {x1, . . . , xn} is passed
through a Bidirectional LSTM (BiLSTM) layer to
produce the context sensitive word embedding h:

h = BiLSTM(x) (1)

We call this the the embedding layer for our in-
put which is common to both single and multi-task
models. Figure 3(a) describes the architecture in
detail.

For the multi-task attribute-value extraction
problem, the input is a sentence wtjj = 1, . . . , n,
and the output of model is a sequence of labels
ytj , j = 1, . . . , n, where t = 1, . . . , T . In this pa-
per we only consider the setting of T = 2, i.e.
we learn from 2 tasks at a time, due to scalability
reasons. However, in theory our method can be
extended to learning from more than 2 tasks. We
compute the word embeddings x and context de-
pendent word embeddings h in a similar manner
as described above.

3.2 Single-task attribute-value extraction
We use the LSTM-CRF model with character em-
beddings (Lample et al., 2016; Zheng et al., 2018)
as our baseline single task model. For a given in-
put sentence the word embeddings x and the con-
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(a) (b)

Figure 3: (a) Architecture of single task model showing the sentence embedding layers (b) High-level architecture
of the multi-task attribute-value extraction model

text sensitive word embeddings h are computed as
described above. The context sensitive word em-
beddings hi, i = 1, . . . , n is then passed through
a fully connected layer to produce the score s(y)
for every possible label y. This is parameterized
by the matrix W ∈ Rd×k and b ∈ Rk where d is
the dimension of hi and k is the total number of
possible labels. Hence the score vector for every
label is computed as:

si(.|x) =W × hi + b∀i = 1, . . . , n

where n is the length of sentence. We can interpret
the kth component of si, denoted as si(y = k|hi),
as the score of class k for word wi . Now, given a
sequence of words vectors x , a sequence of score
vectors {s1(y|x), . . . , sn(y|x)}, and a sequence of
keys y, a linear-chain CRF defines a global score
C ∈ R as,

C(x,y) =

n∑
i=1

si(yi|x) +
n−1∑
i=1

T (yi, yi+1|x)

Here, s(y|x) is the yth component of the s vector
and T (y, y′) is the transition score from label y to
y′, which is used to capture label dependency.

A softmax over all possible tag sequences yields
a probability for the sequence y. P (y|x) =

eC(x,y)∑
y
′∈Y e

C(x,y
′
)

During training, we maximize

the log-probability of the correct key sequence:
log(P (y|x)) = C(x,y) − log(

∑
y′∈Y e

C(x,y
′
))

Here Y is the set of all possible labellings for se-
quence x. Given a dataset of sequences and labels
D = {(xj ,yj), j = 1, . . . ,m, we can define the
CRF loss as the negative log-likelihood:

LCRF (W, b) =

m∑
j=1

−log(P (yj |xj))

(Lample et al., 2016) describes a method for learn-
ing the model parameters and inferring the parti-
tion function and scores by minimizing the above
objective w.r.t. W and b.

3.3 Multi-task attribute-value extraction

As mentioned above, for multi-task attribute-value
extraction, we have sequence and label combina-
tions (xt,yt) for two tasks, t ∈ {1, 2}. We also
note that we have a common set of embedding lay-
ers (both word representation and BiLSTM) for
the two tasks. However, the feedforward layer
used for scoring the labels are specific to the tasks.
Hence:

sti(.|x) =W t×hi+bt, ∀i = 1, . . . , n ; ∀t = {1, 2}
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The score and loss functions can be
defined analogously to the single task
model as: Ct(x,y) =

∑n
i=1 s

t
i(yi|x) +∑n−1

i=1 T
t(yi, yi+1|x), and log(P t(y|x)) =

Ct(x,y) − log(
∑

y′∈Y e
Ct(x,y

′
)). Given

the multi-task dataset Dt = {(xtj ,ytj), j =
1, . . . ,mt, t = {1, 2}, our loss function can be
written as:

LCRF (W, b) =
2∑
t=1

mt∑
j=1

−log(P t(ytj |xtj))

Hence, only parameters of the embedding lay-
ers get affected by the multi-task paradigm here,
since those are the only shared layers between the
tasks. However, these parameters are indepen-
dent of the labels and are thus relatively robustly
learned by just using a reasonably large corpus
of input sentences. Another mechanism for bor-
rowing information between tasks is through “soft
coupling” (Ruder, 2017) of various scores or pa-
rameters which are not explicitly shared. In the
next section, we devise a soft coupling loss be-
tween instances of the two tasks which achieve
transfer of information at the granularity of labels.

3.4 Coupling loss

The principle we use for coupling of scores
sti(y|x) is: similar labels in similar contexts
should have similar scores. Recall that the dataset
for multi-task attribute value extraction consists of
two sets of instances D1 and D2, for each of the
two tasks. Since we are attempting to compare the
model predictions for the two tasks, the coupling
loss depends on two contexts, one from each task:
(xj ,yj , i) and (xj′ ,yj′ , i

′). Here, j and j′ denotes
indices of instances for the two tasks, and i and
i′ indices within the each sentence instance to the
two tasks. We note that since the are ∼ 1000 in-
stances for each task, and ∼ 10 length sentences
for each instance, the total number of terms for this
loss will be ∼ 108 ((10 × 1000)2). This is pro-
hibitively large for our training purpose, and also
is wasteful, since not all contexts (combination of
instance j and position i) are related to each other.

Hence, as a first step we create a shortlist of
pairs of contexts ((i, j), (i′, j′)) which can bor-
row informations from each other, by threshold-
ing on the cosine similarity between the a windows

around the contexts ui,j and u′i′,j′ :

L = {((i, j), (i′, j′)) |
cosine sim(ui,j , u

′
i′,j′) > thresh}

Here, note that u(i, j) is the word embedding of a
window around the context (i, j).

Context coupling error: Our next challenge is
to design a mechanism to figure out similar con-
texts and similar labels. We use the softmax atten-
tion mechanism to automatically learn the similar
label-context combinations, simultaneously as we
also learn the scoring function. For efficiency of
parameters, we use the Luong attention. Hence
the attention score for context (i, j) from task 1
over context (i′, j′) from task 2 is given by:

A(j, i, j′, i′) =
eα(j,i,j

′,i′)∑
(ĵ ,̂i)∈L(j,i) e

α(j,i,ĵ,̂i)

α(j, i, j′, i′) = u(i, j)T diag(a)u(i′, j′)

Here, a = (a1, ...., ad) are learnable parameters
of same dimension as the word embeddings, and
L(j, i) = {(j′, i′)|((i, j), (i′, j′)) ∈ L}. The
context-coupling error is defined as:

CCE(L,a) =
∑

((j,i),(j′,i′))∈L

A(j, i, j′, i′)×

|(si(yji|xj)− s′j′(y′j′,i′ |xj′)|

We note that this score is selecting the similar con-
texts from second task since it normalizes the at-
tention score over the contexts of the second task.
Symmetrically, we can define the attention score
of context (i′, j′) from task 2 over (i, j) from task
1 as:

A′(j, i, j′, i′) =
eα

′(j,i,j′,i′)∑
(ĵ ,̂i)∈L(j′,i′) e

α(ĵ ,̂i,j′,i′)

α′(j, i, j′, i′) = u(i, j)T diag(a′)u(i′, j′)

Hence the context coupling error in reverse direc-
tion is given by:

CCE′(L,a′) =
∑

((j,i),(j′,i′))∈L

A′(j, i, j′, i′)×

|(si(yji|xj)− s′j′(y′j′,i′ |xj′)|

Label coupling error In addition to the context
coupling error defined above, we also take into ac-
count the explicit similarity between only labels,
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using a character k-gram based embedding of the
labels in the context (i, j) as: vi,j . Hence, the label
coupling error is given as:

LCE((i, j), (i′, j′)) = SoftMax(vi,j · v′i′,j′)×
|(si(yji|xj)− s′j′(y′j′,i′ |xj′)|

LCE′ is defined analogously. The label embed-
dings, vi,j , are learned jointly with the model. The
total coupling error between contexts (i, j) and
(i′, j′) from the two tasks respectively, is the sum
of context coupling error and the label coupling
error:

TCE(L,a,a′,v) =
∑

((i,j),(i′,j′))∈L

[CCE((i, j), (i′, j′)) + CCE′((i, j), (i′, j′))

+ LCE((i, j), (i′, j′)) + LCE′((i, j), (i′, j′))]

We optimize the sum total of all the CRF
losses and total coupling error in order to ob-
tain model parameters. We use stochatic gradient
descent, where minibatches are constructed from
three lists: D1, D2, and L. Samples from the
first two lists are used to calculate the CRF losses,
while samples from L are used to calculate total
coupling error, and the corresponding updates.

4 Experimental Results

In this section, we report results from our proposed
method for multi-task attribute extraction, against
single task attribute extraction. We implemented
our model using tensorflow on a 8-core Centos
machine. We used 300 dimensional pre-trained
Glove vectors. We have also experimented with
other customized word embeddings e.g. fasttext,
but did not achieve significantly better results. For
this work, we use single layer BiLSTM as the em-
bedding layer. The hidden layer size for BiLSTM
layer was set to 700. We have experimented with
other embedding layer architectures, e.g. hidden
layer sizes ranging from 300 to 900, and also two
layer BiLSTMs with hidden layer sizes (500,700).
However, the performance of single layer LSTM
with hidden layer size 700 was found to be similar
or better than others. For training, the batch size
was chosen to be 30 for both the CRF loss batches
and for coupling loss batches sampled from the
shortlist L. ADAM was used as optimizer and we
trained for maximum of 30 epochs. We trained the
model for 30 epochs.

Table 1: Dataset Characterstics.

Vertical # labels # Examples # Exmpl. / label
(Train, Test) (max , min )

Jean 37 2206 , 948 1387,1
Trouser 38 1993, 856 1350, 1
Dress 30 4088, 1753 2241, 1

Mangalsutra 38 363, 157 333, 1
Chain 76 2068, 888 1195, 1

Jewellery 68 4863, 2085 4518, 1

Table 2: Similar Task Pairs for MTL

(Dress, Jean), (Mangalsutra, Jewellary)
(Trouser , Jean), (Chain, Jewellary),
(Mangalsutra, Chain)

Evaluation Metric As reported below, the
datasets for this problem show extreme skew in
terms of occurrence of labels. Hence, we use the
standard metrics of macro precision, macro recall,
and macro F1 score. We also report the micro-
accuracy. While computing the macro-metrics
(precision, recall and F1), we ignore the ’O’ la-
bel. It is clear that macro-F1 score without the ’O’
label, is the most representative metric here, from
an application point of view.

4.1 Datasets
The dataset used here are taken from actual
systems for product delivery used in Flipkart.
We performed our experiments using data (both
product descriptions, and ground truth anno-
tations) from six verticals: Dress, Jean,
Mangalsutra1, Chain, Trouser and
Jewellery available on Flipkart. These verti-
cals are chosen based on three factors (1) GMV
(Gross Merchandise Value), (2) Volume of data
available and (3) Verticals with rich product
descriptions. Number of labels in each vertical
and number of tagged description in train and test
data for each vertical is shown in table 1. The
words in product descriptions for each vertical are
tagged using B,I,O (short for beginning, inside,
and outside) format where the B prefix before a
tag indicates that the token is the beginning of a
tag, and an I prefix before a tag indicates that the
token is inside a tag and An O tag indicates that a
token belongs to no tag.

Table 2 shows the pairs of similar tasks (verti-
cals) which were trained togather for MTL. The
pairs were chosen manually based on probability

1A type of Necklace
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of occurrence similar labels in these tasks. The
results for the each of the verticals is the best
achieved for these pairs of tasks. Note that, while
we have to manually provide a similar pair of
tasks, the similarity between labels is automati-
cally deciphered.

4.2 Performance Comparison

Table 3: Comparison of macro-F1 scores between
single-task and multi-task models for various verticals

Vertical Prec. Recall Acc. F1
Single-task

Dress 91.28 84.85 98.44 87.95
Jean 80.18 74.78 97.49 77.39

Mangalstr. 87.41 83.58 98.27 85.45
Trouser 78.52 71.91 98.83 75.07

Jewellery 71.06 72.13 97.94 71.59
Chain 58.61 49.63 96.59 53.75

Multi-task
Dress 91.14 85.70 98.48 88.23
Jean 84.66 76.41 98.94 80.32

Mangalstr. 90.06 84.71 98.45 87.30
Trouser 78.94 75.32 98.90 77.08

Jewellery 70.94 69.60 97.83 70.26
Chain 64.51 55.90 96.75 59.90

In this section, we illustrate the effectiveness
of our multi-task learning method. Table 3, re-
ports the best performances of single and multi-
task models for all the six verticals studied here.
We can see that except for jewellery, multi-task
model improve performance in terms of F1 score
for all other verticals. For some verticals, e.g.
chain, the improvement is more than 5 percent,
while for other verticals the improvement lies in
the 2 percent range. We note that the improve-
ment depends on two main factors: whether we
can find a close enough vertical to borrow from,
and the number of examples already present in the
current vertical. For example we can see that the
vertical “Jewellery” has about 5000 examples, and
also does not have a very close other vertical to
borrow information from. Hence in it’s case MTL
is not able to improve the performance.

In table 4, we report the fine-grained improve-
ments of top 5 labels for the verticals: Trouser,
Jean, Mangalsutra, and Chain. We note that the
top improvements for these verticals are in the
range of 51%, 46%, 29% and 22% respectively.
We also note that number of examples for these

labels in the training dataset (#ex column) are re-
spectively 6, 15, 6, and 7. Hence this table further
corroborates our claim that MTL improves the per-
formance for labels with lower amount of informa-
tion in the single task training set.

Table 4: Attribute-wise percentage improvement on
various tasks

Attribute #Ex. Task Prec. Recall F1-Sc. %Imp.
Trouser

I occas. 6 single 1.0 0.17 0.29 0.51multi 1.0 0.67 0.8

I suitab. 3 single 1.0 0.33 0.5 0.3multi 1.0 0.67 0.8

B suitab. 6 single 0.4 0.33 0.36 0.1multi 0.43 0.5 0.46

I brand 283 single 0.91 0.88 0.89 0.03multi 0.92 0.92 0.92

B pattern 308 single 0.88 0.9 0.89 0.03multi 0.88 0.95 0.92
Jean

I pattern 15 single 0.33 0.07 0.11 0.46multi 1.0 0.4 0.57

I suitab. 2 single 0.5 0.5 0.5 0.17multi 1.0 0.5 0.67

B suitab. 5 single 0.5 0.4 0.44 0.13multi 1.0 0.4 0.57

I ref. fit 14 single 1.0 0.57 0.73 0.05multi 1.0 0.64 0.78

B pattern 206 single 0.9 0.89 0.89 0.02multi 0.92 0.91 0.91
Mangalsutra

I diamnd 6 single 0.0 0.0 0.0 0.29multi 1.0 0.17 0.29

B diamnd 19 single 0.82 0.47 0.6 0.09multi 0.85 0.58 0.69

B chain 19 single 0.94 0.84 0.89 0.03multi 0.94 0.89 0.92

B brand 112 single 0.97 0.92 0.94 0.03multi 0.97 0.97 0.97

I gemst. 37 single 1.0 0.89 0.94 0.02multi 1.0 0.92 0.96
Chain

I warr. 7 single 0.64 1.0 0.78 0.22multi 1.0 1.0 1.0

I weight 51 single 0.68 0.8 0.74 0.08multi 0.76 0.88 0.82

I width 18 single 0.68 0.83 0.75 0.04multi 0.75 0.83 0.79

B weight 26 single 0.76 0.85 0.8 0.04multi 0.79 0.88 0.84

I color 92 single 0.93 0.59 0.72 0.04multi 0.86 0.67 0.76

4.3 Validation of Attribute Similarity
In this section, we validate the learned attribute-
attribute similarity, by studying the attribute-wise
F1-scores for the similar attribute pairs. Figure 4-
(a) shows the full attention heatmap for all labels
between the pair of tasks: Mangasutra - Chain.
Here the attention is normalised over the attributes
of y-axis (task chain). It is clear from the heatmap
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(a)

Borrower-Chain Lender-Mangalstr.(Att.2)
B base mat. B base mat. (0.86)

I weight I weight (0.28)
B necklace type B gemstone (1.0)

B color B color (0.56)
B gemstone B gemstone (1.0)

I brand B mat. purity (0.79)
B plating B plating (0.9)
B brand B type (0.9)

I base mat. I base mat. (0.83)
B weight B weight (0.67)

(b)

Figure 4: (a) Attention Heatmap between labels of Chain (task 1) and Mangalsutra (task 2). (b) Attribute pairs
with highest attention values, and the corresponding attention score.

that attention mechanism is indeed choosing the
similar labels between the pairs of tasks, irrespec-
tive of whether there is an improvement in accu-
racy for the pair of labels.

In figure 4-(b), we report the topmost pairs
of labels with the highest attention scores, along
with the corresponding increase in accuracy. The
left column borrower labels(Chain) and right col-
umn shows Lender labels(Mangalsutra) which got
the highest average attention weights across all
contexts-pairs in the list L. The value in brack-
ets shows the attention value. The bold entries
appear in top-5 attributes, with highest F1-scores
in table 4. One can also see non-obvious corre-
spondences, e.g. Necklace type from chain
can borrow all the information from Gemstone
from lender vertical Mangalsutra. We can also see
that in most of the cases, the labels from task 1 bor-
row information from corresponding labels of task
2, even though this information was not explicitly
furnished. This observation provides us further
confidence that the attention mechanism used for
discovery of similar labels and similar contexts,
indeed works effectively.

This observation further validates the effective-
ness of our attention model in extracting similar
pairs of labels between two tasks using the cou-
pling loss. We believe this mechanism can be ap-
plied in many more situations to shortlist impor-
tant and similar attributes in other contexts, while
jointly learning a prediction model.

5 Conclusion

In this paper, we study attribute-value extraction
from production description in the e-commerce
domain. Many of the attributes occur in very
few descriptions. Hence the amount of super-
vised training data available for these attributes
is very low, which leads to low prediction perfor-
mance We thus propose a novel multi-task learn-
ing based algorithm which borrows information
from related domains (i.e., category/vertical) in or-
der to improve prediction performance of infre-
quently occurring attributes. We validate the pro-
posed method with extensive experimental eval-
uation on a large dataset of six verticals from a
prominent, e-commerce company. The proposed
technique not only achieves higher accuracy on
verticals with similar labels, but also can be used
for discovering attribute similarities across verti-
cals.
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