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Abstract
Large pre-trained language models have been
shown to encode large amounts of world and
commonsense knowledge in their parameters,
leading to substantial interest in methods for
extracting that knowledge. In past work,
knowledge was extracted by taking manually-
authored queries and gathering paraphrases
for them using a separate pipeline. In this
work, we propose a method for automati-
cally rewriting queries into “BERTese”, a para-
phrase query that is directly optimized towards
better knowledge extraction. To encourage
meaningful rewrites, we add auxiliary loss
functions that encourage the query to corre-
spond to actual language tokens. We empiri-
cally show our approach outperforms compet-
ing baselines, obviating the need for complex
pipelines. Moreover, BERTese provides some
insight into the type of language that helps lan-
guage models perform knowledge extraction.

1 Introduction

Recent work has shown that large pre-trained lan-
guage models (LM), trained with a masked lan-
guage modeling (MLM) objective (Devlin et al.,
2019; Liu et al., 2019; Lan et al., 2019; Sanh et al.,
2019; Conneau et al., 2020), encode substantial
amounts of world knowledge in their parameters.
This has led to ample research on developing meth-
ods for extracting that knowledge (Petroni et al.,
2019, 2020; Jiang et al., 2020; Bouraoui et al.,
2020). The most straightforward approach is to
present the model with a manually-crafted query
such as “Dante was born in [MASK]” and check
if the model predicts “Florence” in the [MASK]
position. However, when this fails, it is difficult to
determine if the knowledge is absent from the LM
or if the model failed to understand the query itself.
For example, the model might return the correct
answer if the query is “Dante was born in the city
of [MASK]”.
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(Identity Pretrained BERT)

Predictor
(Off-The-Shelf Pretrained BERT)

BERT 
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Q: will & grace was originally aired on [MASK].

Nearest Neighbors 

Q: will & grace is originally aired on [MASK].

A: nbc

Figure 1: The BERTese Model. The model takes an
input query, rewrites it, and feeds the output to a pre-
trained BERT model. The untrained components are
marked in green, and the blue component is trained.

Motivated by the above observation, we ask: can
we automatically find the best way to “ask” an LM
about its knowledge? We refer to this challenge as
speaking “BERTese”. In particular, we ask how to
rewrite a knowledge-seeking query into one that
MLMs understand better, where understanding is
manifested by providing a correct answer to the
query.

Prior work (Jiang et al., 2020) tackled this prob-
lem using a 2-step pipeline, where first a small list
of paraphrase templates is collected using external
resources, and then a model learns to extract knowl-
edge by aggregating information from paraphrases
of the input query. In this work, we propose a
more general approach, where the model learns to
rewrite queries, directly driven by the objective of
knowledge-extraction.

Figure 1 provides an overview of our approach.
Our model contains a BERT-based rewriter, which
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takes a query as input, and outputs for each input
position a new token, which is its rewrite. This new
query is fed into a different BERT predictor from
which the answer is extracted. Importantly, the
downstream predictor BERT is a fixed pre-trained
model, and thus the goal is to train the rewriter to
produce queries for which the predictor outputs the
correct answer.

A technical challenge is that outputting discrete
tokens leads to a non-differentiable model, which
we tackle by adding a loss term that encourages
the rewriter’s output to be similar to BERT token
embeddings. Moreover, we must guarantee that the
BERTese query contains the [MASK] token from
which the answer will be read. To achieve this, we
first add an auxiliary loss term that encourages the
model to output precisely one masked token in the
query rewrite. We then add a layer that finds the
token index that most closely resembles [MASK],
and this is where we expect the correct answer to
be completed. Training of this selection process is
done using the straight-through estimator (Hinton,
2012; Bengio et al., 2013).

We evaluate our approach on the LAMA dataset
(Petroni et al., 2019), and show that our model
significantly improves the accuracy of knowledge
extraction. Furthermore, many of the rewrites cor-
respond to consistent changes in query wording
(e.g., changing tense), and thus provide informa-
tion on the types of changes that are useful for
extracting knowledge from BERT. While we exper-
iment on BERT, our method is generic and can be
applied to any MLM.

Taken together, our results demonstrate the
potential of rewriting inputs to language mod-
els for both obtaining better predictions, and
for potentially gaining insights into how knowl-
edge is represented in these models. Our code
can be downloaded from https://github.com/

adihaviv/bertese.

2 Related Work

Choosing the right language for extracting world
knowledge from LMs has attracted much interest
recently. First, Petroni et al. (2019) observed that
MLMs can complete simple queries with correct
factual information. Jiang et al. (2020) and Heinz-
erling and Inui (2020) then showed that in the zero-
shot setting, small variations to such queries can
lead to a drop in fact recall. Orthogonally, another
line of research focused on query reformulation

for standard Question Answering (QA) tasks. Gan
and Ng (2019) demonstrated that even minor query
modifications can lead to a significant decrease in
performance for multiple QA models and tasks.
Buck et al. (2017) showed that it is possible to
train a neural network to reformulate a question
using Reinforcement Learning (RL), optimizing
the accuracy of a black-box QA system. Similarly,
Nogueira and Cho (2017) used RL to create a query
reformulation system that maximizes the recall of
a black-box information retrieval engine.

Jiang et al. (2020) proposed an ensemble method
for query reformulation from LMs, that includes:
(1) mining new queries, (2) using an off-the-shelf
pre-trained translation model to collect additional
paraphrased queries with back-translation, and (3)
using a re-ranker to select one or more of the new
queries. They then feed those queries to BERT to
get the masked token prediction.

In this work, we take the idea of Jiang et al.
(2020) a step forward and train a model in an end-
to-end fashion to generate rephrased queries which
are optimized to maximize knowledge extraction
from the MLM.1

3 The BERTese Model

Recall that our goal is to build a model that takes as
input a query in natural language, and re-writes it
into a query that will be fed as input to an existing
BERT model.

We refer to the above re-writing model as the
rewriter and the existing BERT model as the pre-
dictor. We note that both input and output queries
should include the token [MASK]. For example
the input could be “Obama was born in [MASK]”
and the output “Obama was born in the state of
[MASK]”.

We first describe the behaviour of our model at
inference time (see Figure 1). Given a query, which
is a sequence of tokens, S = (s1, . . . , sn), we map
S into a sequence of vectors Q(S) ∈ Rd×n us-
ing BERT’s embeddings of dimensionality d. This
input is fed into a (BERT-based) stack of trans-
former layers that outputs a new sequence of vec-
tors Q̂(S) ∈ Rd×n.

To obtain vectors that can be used as input to the
predictor, we need to map the vectors in each po-
sition to their nearest neighbor in the set of BERT

1Although knowledge retrieval has been investigated in
autoregressive models as well, similar to Jiang et al. (2020),
in this work we focus on MLMs only, as AR-LM only predict
an answer if the masked token is at the end of the query.

https://github.com/adihaviv/bertese
https://github.com/adihaviv/bertese
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embeddings. Specifically, let BV be the set of
BERT embeddings, and let Q̂i ∈ Rd be the re-
written vector in position i. We map Q̂i ∈ Rd to

argminv∈BV

(∥∥∥v − Q̂i∥∥∥2
2

)
. We next pass the re-

written query into the pre-trained predictor BERT
model, and obtain an answer from the most proba-
ble token in the masked position.

Training this model involves two technical chal-
lenges. First, the nearest-neighbor operation is
non-differentiable. Second, to obtain the prediction
of the [MASK] token, we need to guarantee that
the rewriter generates a [MASK] token, and know
its position (because this is where the ground-truth
answer should be predicted). We overcome these
by adding two auxiliary loss functions. The first
encourages the model to output vectors that are sim-
ilar to BERT embeddings (thus reducing the loss
in the nearest neighbor operation), and the second
encourages the model to output one masked token.

Finally, we apply the straight-through estimator,
which allows us to feed discrete word represen-
tations into the predictor and backpropagate the
signal back to the rewriter. We next provide more
details on the terms in our loss function used to
train the rewriter.

Valid Token Loss: At training time we do not
apply the non-differentiable nearest-neighbor oper-
ation. Thus, we would like the vectors Q̂(S) output
by the rewriter to be as close as possible to valid
BERT embeddings. This loss is the average over
tokens of the distance between a re-written query
token and its nearest neighbor:

f1(S) =
1

|Q̂(S)|

∑
q∈Q̂(S)

min
v∈BV

(
‖v − q‖22

)
. (1)

Single [MASK] Loss: The output of the rewriter
must contain the [MASK] token, so that the pre-
dictor can extract an answer from this token. To
encourage the rewriter to output a [MASK] we add
a loss as follows. We define the following “softmin”
distribution over i ∈ {1, . . . , |Q̂(S)|}:

mi(S) =
e−β‖B[MASK]−Q̂i(S)‖22∑
j e
−β‖B[MASK]−Q̂j(S)‖22

, (2)

where β is a trained parameter. The maximum
value of this distribution will be highest when there
is a single index i that is closest to the embedding
of [MASK] (if there are two maxima, they will

both have equal values). Thus the loss we consider
is:

f2(S) = −max
i
mi(S). (3)

Prediction Loss: The predictor should return the
gold answer y when given Q̂ as input. Without
non-differentiability, we could find the index of the
[MASK] token in Q̂, and use cross-entropy loss
between the output distribution of the predictor
in that index and the gold answer y. To remedy
this, we use a differentiable formulation, combined
with the straight-through estimator (STE) (Bengio
et al., 2013): Let oi be the output distribution at
the ith position of the predictor, and let `(y,p) be
the cross-entropy between the one-hot distribution
corresponding to y and a distribution p. Then, we
use the loss:

fCE(S, y) =
∑
i

mi(S)`(y,oi). (4)

Thus, if m is a one-hot on the index correspond-
ing to [MASK], the loss will be the desired cross-
entropy between the gold answer and the predicted
distribution. We optimize this objective using the
STE. Namely, in the forward pass, we convert m
to a one-hot vector.

Our final training loss is the sum of the above
three loss terms:

L(S, y) = fCE(S, y)+λ1·f1(S)+λ2·f2(S). (5)

The weights λ1, λ2 are tuned using cross-
validation.

To summarize, the main challenge is that the
rewriter output needs to be optimized to predict
the correct label for the [MASK] token (Eq. 4).
However, the [MASK] token needs to appear once
in the rewriter output. In order to enforce the above,
the “Single [MASK] Loss” (Eq. 3) is used. In
addition, in order for the rewriter output to be a
valid sentence, the “Valid Token Loss” (Eq. 1) is
added. This encourages the model to output tokens
that are close to BERT input embeddings. This
is done by minimizing the distance between each
rewriter vector to some vector in the BERT input
embedding dictionary.

Rewriter pre-training We initialize the rewriter
with a BERT-based model, additionally fine-tuned
to output the exact word embeddings it received
as input (i.e., fine-tuned to the identity mapping).
Thus, when training for knowledge extraction, the
rewriter is initialized to output exactly the query it
received as input.



3621

4 Experiments

Experimental setup We conduct our experi-
ments on the LAMA dataset (Petroni et al., 2019;
Jiang et al., 2020), a recently introduced unsu-
pervised knowledge-extraction benchmark for pre-
trained LMs. LAMA is composed of a collection of
cloze-style queries about relational facts with a sin-
gle token answer. As in Jiang et al. (2020), we limit
our main experiment to the T-REx (Elsahar et al.,
2018) subset. The T-REx dataset is constructed out
of 41 relations, each associated with at most 1000
queries, all extracted from Wikidata.

For training our model, we use a separate train-
ing set, created by Jiang et al. (2020), called T-REx-
train. This dataset is constructed from Wikidata and
has no overlap with the original T-REx dataset. We
evaluate our model on the complete T-REx dataset.

Implementation Details Both the rewriter and
the predictor are based on BERTbase with the de-
fault settings from the Huggingface (Wolf et al.,
2020) platform. We optimize BERTese using
AdamW with an initial learning rate of 1e-5. We
train the model on a single 32GB NVIDIA V100
for 5 epochs with a batch size of 64. For the loss
coefficients (see Eq. (5)) we set λ1 = 0.3 and
λ2 = 0.5.

Baselines We compare our method to three base-
lines: (a) BERT - A BERTbase model without
any fine-tuning, as evaluated in Petroni et al.
(2019). (b) LPAQA - The model proposed by
Jiang et al. (2020), based on mining additional
paraphrase queries. We report results on a sin-
gle paraphrase.2 (c) FT-BERT: An end-to-end dif-
ferentiable BERTbase model, explicitly fine-tuned
on T-REx-train to output the correct answer. This
model, like ours, is trained for knowledge extrac-
tion, but does this internally, without exposing an
interpretable intermediate textual rewrite.

Results We use the same evaluation metrics as
Petroni et al. (2019) and report precision at one
(P@1) macro-averaged over relations (we first av-
erage within relations and then across relations).
As shown in Table 1, BERTese outperforms all
three baselines. Compared to the zero-shot set-
ting, where BERT is untrained on any additional
data, we improve performance from 31.1→ 38.3.
Our model also outperforms a BERT model fine-

2It is possible to improve results by aggregating over mul-
tiple rewrites, but our focus is on a single rewrite.

tuned for knowledge extraction on the same data
as our model (36 → 38.3). Last, we outperform
the BERTbase version of LPAQA by more than 4
points.

Table 2 presents example rewrites that are out-
put by our model. It can be seen that rewrites
are usually semantically plausible, and make small
changes that are not meaningful to humans, but
seem to help extract information from BERT, such
as was→ is and a→ the. In some cases, rewrites
can be interpreted, for example, replacing the word
airfield with the more frequent word airport.

Ablation Study In Table 3 we present P@1 re-
sults on the T-REx test set after ablating different
parts of the loss function. We keep the same la-
bel loss, same rewriter pretraining scheme, hyper-
parameters, and inference process. We show that
removing all auxiliary losses hurts performance sig-
nificantly on the T-REx dataset. Next, we evaluate
the impact of removing the “Single [MASK] Loss”,
and report a drop from 38.3 to 37.3. In addition,
when further observing the rewrites the model pro-
duces, we find that those will have in some cases
more than one [MASK] token. Overall, the results
show that having just one of the loss terms sub-
stantially improves the performance (either “Valid
Token Loss” or “Single [MASK] Loss”), but using
both losses further improves accuracy.

Ablation P@1

No auxilary losses 25.3
SML 36.6
VTL 37.5
SML + VTL (BERTese) 38.3

Table 3: Ablation experiments on T-REx. We abbrevi-
ate the ”Single [MASK] token” as SML and the ”Valid
Token Loss” as VTL.

Part Of Speech Analysis To better understand
what types of changes our rewriter performs, Table
4 shows the distribution over part-of-speech-tags re-
placed by the rewriter. We show all part-of-speech
tags for which the frequency is higher than 1%.
More than 70% of the replacements are nouns and
verbs, which carry substantial semantic content.
Interestingly, 15% of the replacements are deter-
miners, which bear little semantic content.
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Corpus BERT FT-BERT LPAQA BERTese

T-REx 31.1 36 34.1 38.3

Table 1: Mean precision at one (P@1) for three baselines and our BERTese model on the T-REx dataset.

Modification Original Masked Query Bertese Masked Query

”!” removed yahoo! tech is owned by [MASK]. yahoo tech is owned by [MASK].
verb patterns working dog is a subclass of [MASK]. work dog is a subclass of [MASK].
was → is will & grace was originally aired on [MASK]. will & grace is originally aired on [MASK].
a → the tom terriss is a [MASK] by profession. tom terriss is the [MASK] by profession.
rephrasing istanbul hezarfen airfield is named after [MASK]. istanbul hezarfen airport is named after [MASK].
token → [SEP] lubka kolessa plays [MASK]. [SEP]ka kolessa plays [MASK].

Table 2: Examples of rewrites from the T-REx test-set, where the original query resulted in a wrong answer, and
the BERTese rewrite resulted in correct one.

POS Tag Frequency

NN 47.6%
VBN 23%
DT 15.3%
JJ 4.4%
CD 3%
NNP 1.7%
NNS 1.3%

Table 4: Part-of-speech analysis of rewrites from the
T-REx test-set.

5 Conclusion

We presented an approach for modifying the input
to a BERT model, such that factual information can
be more accurately extracted. Our approach uses
a trained rewrite model that is optimized to max-
imize the accuracy of its rewrites, when used as
input to BERT. Our rewriting scheme indeed turns
out to produce more accurate results than baselines.
Interestingly, our rewrites are fairly small modifica-
tions, highlighting the fact that BERT models are
not invariant to these edits.

Our approach is not limited to knowledge ex-
traction. It can, in principle, be applied to BERT
in general question answering datasets and even
language modeling. In the former, we can change
the predictor to a multiple-choice QA pretrained
BERT and exclude the single [MASK] token loss.
In the latter, we can for example envision a case
where rewriting a sentence can make it easier to
complete a masked word.

Our empirical setting focuses on the LAMA
dataset, where a single mask token prediction is

required. There are several possible extensions to
multiple masks, and we leave these for future work.
Finally, it will be interesting to test the approach on
other masked language models such as RoBERTa
(Liu et al., 2019) and ERNIE (Zhang et al., 2019),
a MLM that is enhanced with external entity repre-
sentations.
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