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Abstract

By supporting multi-modal retrieval training
and evaluation, image captioning datasets have
spurred remarkable progress on representation
learning. Unfortunately, datasets have lim-
ited cross-modal associations: images are not
paired with other images, captions are only
paired with other captions of the same im-
age, there are no negative associations and
there are missing positive cross-modal asso-
ciations. This undermines research into how
inter-modality learning impacts intra-modality
tasks. We address this gap with Crisscrossed
Captions (CxC), an extension of the MS-
COCO dataset with human semantic similar-
ity judgments for 267,095 intra- and inter-
modality pairs. We report baseline results on
CxC for strong existing unimodal and multi-
modal models. We also evaluate a multitask
dual encoder trained on both image-caption
and caption-caption pairs that crucially demon-
strates CxC’s value for measuring the influ-
ence of intra- and inter-modality learning.

1 Introduction

Phrases such as blue, chair, and garden path have
strong visual components, yet computational word
representations are usually created with text-only
corpora. Encouragingly, some recent work that de-
rives representations using visual contexts shows
improvements for both word similarity ranking and
image-text retrieval (Kiros et al., 2018), and query-
based training of image models demonstrates lan-
guage’s power to improve image representations
(Juan et al., 2020). Learning representations for
both vision and language jointly should be even
more effective—indeed, much progress has been
made on such cross-modal learning using image
captioning data (Karpathy and Li, 2015; Harwath
and Glass, 2017; Faghri et al., 2018; Li et al., 2019).
However, it is not yet clear whether learning repre-
sentations in multimodal contexts improves perfor-

Figure 1: Crisscrossed Captions extends the MS-
COCO evaluation sets by adding semantic similarity
ratings for existing image-caption pairs and co-captions
(solid lines), and it increases annotation density by
adding further ratings for new image-caption, caption-
caption and image-image pairs (dashed lines).

mance within as well as across modalities as there
are no datasets ideally suited for this at present.

Image captioning datasets such as Flickr8k
(Rashtchian et al., 2010), Flickr30k (Young et al.,
2014), Multi30k (Elliott et al., 2016), Microsoft
Common Objects in COntext (MS-COCO) (Lin
et al., 2014), and Conceptual Captions (Sharma
et al., 2018) only capture relationships between im-
ages and textual captions created for them. They
miss many valid relationships between unassoci-
ated images and captions, from captions to other
captions, and from images to other images. We
address this gap with Crisscrossed Captions (CxC,
exemplified in Figure 1), a dataset with graded,
denser annotations for relationships between and
among captions and images in the MS-COCO eval-
uation splits of (Karpathy and Li, 2015) (with 25k
English captions and 5k images each).
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CxC extends MS-COCO’s existing image-
caption pairs with continuous (0-5) semantic sim-
ilarity ratings for those pairs and new pairs. The
rating criteria extend those used for Semantic Tex-
tual Similarity (Agirre et al., 2012). Intramodal
pairs are selected for annotation via an indirect
sampling scheme biased to gain a broad distribu-
tion of similarities. In all, CxC contains human
ratings for 267,095 pairs (derived from 1,335,475
independent judgments), a massive extension in
scale and detail to the 50k original binary pairings.

MS-COCO incompletely supports three retrieval
tasks: image-text, text-image and text-text. CxC
enhances all of these with new positive pairs, and
it also supports a new image-image retrieval task.
With its graded similarity judgements, CxC also
supports correlation measures comparing model
and human rankings. Retrieval metrics focus
on positive pairs, but CxC’s correlation scores
additionally account for low-scoring items (non
matches). Supporting these evaluations on a com-
mon set of images and captions makes them more
valuable for understanding inter-modal learning—
compared to disjoint sets of caption-image, caption-
caption, and image-image associations. Also, mul-
timodal representations such as CLIP (Radford
et al.) are useful for downstream tasks such as
Visual Question Answering (Goyal et al., 2017),
Vision and Language Navigation (Majumdar et al.,
2020), Referring Expressions (Yu et al., 2018) and
Visual Commonsense Reasoning (Zellers et al.,
2019), and we hope the additional relationships
and evaluations provided by CxC will help develop
even better representations for tasks that span these
modalities.

To establish baselines for CxC, we provide re-
sults for existing unimodal models for text (Bag-
of-Words, USE (Cer et al., 2018)) and images
(InceptionV3 (Szegedy et al., 2016), ResNet-152
(He et al., 2016), SimCLRv2 (Chen et al., 2020b)
as well as for two cross-modal retrieval models
VSE++ (Faghri et al., 2018) and VSRN (Li et al.,
2019).

We furthermore demonstrate CxC’s utility by
evaluating a dual encoder that combines a bidi-
rectional loss for image-text retrieval with a loss
for text-text retrieval. The text encoder is com-
posed of transformer layers over pre-trained BERT
word representations and the image encoder is a
pre-trained EfficientNet (B4) (Tan and Le, 2019a).
This model delivers the strongest overall perfor-

mance across all four retrieval tasks and correlation
with human scores for text-text, image-image and
image-text similarity. Compared to the same dual
encoder trained only with image-text pairs, this
model realizes small gains for image-text tasks and
large gains for text-text task but with some degrada-
tion for image-image tasks. This indicates that the
model trades capacity to encode images for better
text encoding—an insight that would not be easily
assessed without CxC’s image-image annotations.

Our main contributions are the following:
• We describe a method for sampling items to

get a broad distribution of similarities.
• We annotate the semantic similarity of

267,095 pairs. These enhance existing re-
trieval tasks and support a new image-image
retrieval task. They also support correlation
measures; these assess models’ judgments of
both positive and negative associations.

• We establish baseline scores for existing mod-
els and a multitask dual encoder on all tasks
and demonstrate that CxC allows model per-
formance to be assessed more holistically.

• With its new positive pairs, CxC improves
the recall@k measures common in image-text
and text-image retrieval. This shows a 1-3%
increase in recall@k over several models.

• We release CxC’s annotations at https://

github.com/google-research-datasets/

Crisscrossed-Captions, along with code
to merge CxC with existing MS-COCO data.

2 Dataset Collection

Existing resources already support learning joint
representations of images and text. However, we
need better evaluation resources, so we extend the
MS-COCO evaluation splits with graded similarity
associations within and across modalities. MS-
COCO has five captions for each image, split by
(Karpathy and Li, 2015) into 410k training, 25k
development, and 25k test captions (82k/5k/5k for
images). An ideal extension would rate every pair,
but this is infeasible1 and most pairs are dissimilar
anyway. To obtain new pairs with high expected
similarity, we introduce a biased sampling scheme.

The data is collected in two phases. First, we de-
fine an indirect sampling scheme that uses model-
based similarities from the co-modality items to

1A split with 5k images and 25k captions has ≈12.5M
image-image, ≈312M caption-caption and ≈125M image-
caption pairs, so annotating all items in the validation and test
splits with 5 replications would require ≈4.5B judgments.

https://github.com/google-research-datasets/Crisscrossed-Captions
https://github.com/google-research-datasets/Crisscrossed-Captions
https://github.com/google-research-datasets/Crisscrossed-Captions
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Caption 1: A tennis player
swinging a racket at a ball.

Caption 2: A man
playing tennis with a
crowd watching.

Caption 3: A living room
with some black furniture
and a colorful rug.

Caption 4: A dog
laying on a leather sofa in
a living room.

Figure 2: Top: Captions of the same image are often
not paraphrases. Bottom: Such co-captions often fo-
cus on different aspects and can diverge substantially.

select intramodality pairs. We use these items and
their human ratings to select intermodality pairs
for annotation. We also annotate all existing in-
termodal pairs and a large sample of co-captions
(captions associated with the same image). See the
appendix for details about the annotation interface
and instructions, composition of the dataset and
illustrative examples.

Intramodality Two images of a man and a dog
can be described differently, while two similar sen-
tences about a man and a dog can describe dissim-
ilar images. In Figure 2, caption 1 gives a visual
description while caption 2 gives a broader event
description. Divergences also occur when caption
creators perceive a scene differently: caption 3 de-
scribes the room and caption 4 focuses on the dog
and sofa. This semantic gap between images and
their captions creates an opportunity to sample in-
tramodal pairs with varying similarities. Our key
idea is to use model-based similarities of images
for biased sampling of caption pairs, and vice versa,
and use existing image-caption pairs as pivots be-
tween modalities. This selects image pairs that are
different in appearance but similar in what they
depict based on their descriptions, and vice versa.

Denote the known images and captions as V
(v1...vn) and C (c1...cn) (the latter representing co-
caption groups of five captions each). Each item
is encoded with an off-the-shelf unimodal model.
Cosine similarity between items defines two sym-
metric matrices: SC (pairwise caption similarities)
and SV (pairwise image similarities). The diago-
nals are set to zero to not sample identical items.

We encode images with Graph-RISE (486) and

construct SI , the image-based similarity for pairs
of co-caption groups. We encode captions with Uni-
versal Sentence Encoder (USE) (Cer et al., 2018)
and average bag of words (BoW) based on GloVe
embeddings (Pennington et al., 2014). Co-caption
representations are averaged to create a single rep-
resentation. From these, we construct SC , the
caption-based similarity for images pairs. USE
and BoW embeddings produce two SC matrices,
but we gloss over this detail below.

We use SC to select image pairs and SI for cap-
tion pairs. Because of the cross-modal semantic
gap, diversity and size of the underlying data, these
pairs exhibit a wide range of similarity. Selecting
the five most similar items (according to model-
based SV and SC) thus produces good represen-
tation of varying amounts of similarity as judged
by people. Because SV covers co-caption groups,
one caption is randomly chosen from each group
to produce a caption pair for rating.

Caption-caption and image-image candidates are
referred to asC2C and I2I , respectively. I2I pairs
are selected with the above other-modality method.
For C2C pairs, we sample half the pairs using the
other-modality method and half from within co-
captions. The latter introduces (mostly) positive
associations between caption pairs describing the
same image. This gives a balanced set of caption
pairs describing same and different images.

Pairs in C2C and I2I are scored by in-house
raters using a continuous scale between 0 and 5. We
adopt the widely used Semantic Textual Similarity
(STS) (Cer et al., 2017) for text pairs and extend
it to images to define Semantic Image Similarity
(SIS). To recognize that this is a graded (rather than
discrete) judgment, we encouraged raters to select
scores like 1.3 and obtain the final score for a pair
as the average of five individual ratings.

Intermodality We select caption-image candi-
dates C2I based on human ratings for I2I and
C2C pairs. We mainly seek new positive matches
like those identified by annotators in Ilharco et al.
(2019). For each I2I pair (ij , ik), a C2I pair
(ck, ij) is generated, where ck is a MS-COCO cap-
tion for ik. We generate pairs from C2C similarly.
Half of the C2I pairs are selected based on C2C
ranks and the other half by I2I ranks (skipping
pairs already selected from C2C). Finally, all MS-
COCO pairs (25k in validation and 25k in test) are
selected to obtain caption-image similarity ratings
for the known items.
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Caption 1 Caption 2 STS BoW USE
A man standing on a tennis court holding a racquet. A man standing on a tennis court holding a tennis racquet. 5.0 0.98 0.99
A man riding a skateboard off the side of a ramp. A man riding up the side of a skateboard ramp. 4.2 0.99 0.94
A yellow tray topped with a cup of coffee and a donut. A white plate topped with donuts sitting on a stove top. 3.1 0.94 0.39
A bird sitting on top of a park bench. An empty park bench sitting in front of trees. 2.2 0.90 0.69
An old car sitting on top of a lush green field. A couple of motorcycles parked next to each other. 1.3 0.85 0.21
A man sanding next to an orange frisbee. A couple of swans swimming in a pond next to two people. 0.2 0.84 0.11

Table 1: A comparison of CxC STS annotation scores and cosine similarity scores using GloVe BoW embeddings
and Universal Sentence Encoder (USE) for five example MS-COCO caption pairs.

Figure 3: Distribution of ratings for the CxC validation set. Intramodal Sampling refers to examples selected using
other-modality selection, Same Example refers to original MS-COCO pairs, and All covers all examples for a task.

Figure 4: Distribution of counts of positive pairs (score
≥ 3) of annotations for each task (validation split).

We extend STS to define Semantic Image-Text
Similarity (SITS). Raters provide a continuous
score from 0 to 5 using an interface similar to that
for STS and SIS. Each C2I pair receives five rat-
ings; the average is used as the final SITS score.

3 Crisscrossed Captions Dataset

Using our selection and annotation methodology,
we obtained ratings for 267,095 caption-caption,
image-image, and caption-image pairs (1,335,475
total judgments). Figure 3 shows rating distribu-
tions for each task (validation split). It also shows
the distributions of ratings for STS and SIS pairs
included from other-modality selection and from
original MS-COCO pairs. The test set distribu-
tions are similar. Figure 4 gives the distribution
of counts of positive examples in each task (vali-
dation split), where a score ≥ 3 (for STS, SITS)
and a score ≥ 2.5 (for SIS) is considered positive.

These positive examples are used for intermodal
and intramodal retrieval evaluation.

STS. The majority of caption pairs selected us-
ing image similarity are negative (ratings in [0,
3)), which is expected given the divergences noted
in Figure 2. Nevertheless, the approach produces
20,587 positive pairs. Table 1 shows pairs with
their STS annotation scores and cosine similarity
with BoW and USE embeddings. There is broad
agreement, but the annotated similarity is not fully
captured by either BoW or USE. USE provides a
broader range, but scores the third pair lower than
the fourth. BoW scores are bunched within a high
similarity band2 that aligns well with these five
examples. Overall, there is a weak positive corre-
lation between BoW and STS scores, as shown in
Figure 5, which plots average BoW cosine similar-
ity versus STS for 1000 randomly sampled pairs.

Figure 6 shows a pair of captions (and corre-
sponding images) selected by the other-modality
strategy with higher STS compared to their respec-
tive co-captions. For co-caption pairs, STS scores
are more positive but many are still negative (Fig-
ure 3, left). Thus, combining both approaches leads
to a more representative distribution overall. The
large number of negative pairs from co-captions
underscores the problem with assuming captions
of the same image are paraphrases.

SIS. All image pairs I2I are selected using the
other-modality strategy. This plus the stringent cri-

2BoW scores fall mostly in the range .8 to 1.0 over all
possible pairs; STS scores fall mostly in 1 (.2) to 4 (.8).
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Figure 5: Plot BoW cosine similarity and STS scores
for a sample of caption pairs, with the line of best fit.

Figure 6: An example of other-modality caption pairs
(horizontal pair) with higher STS compared to their re-
spective co-captions (vertical pairs). Each caption is
placed under its corresponding image.

teria for SIS rating of 5 means very few examples
are rated above 4. Nevertheless, there are many
pairs with SIS ≥ 3, indicating there are many im-
ages depicting similar scenes and events.

SITS. As shown in Figure 4, there are many
more pairs with 4-5 SITS ratings, compared to STS
and SIS. This is by design, as the C2I pairs are
selected based on decreasing STS/SIS scores. This
captures more positive intermodality associations
and augments the existing validation and test splits.
Since these pairs are missing from the existing data,
they are among the examples that inappropriately
penalize a model that identifies them correctly in
image-caption retrieval. The SITS ratings collected
for known pairs also support new correlation based
evaluations, as discussed in the next section.

4 Evaluation Tasks and Metrics

CxC supports intermodal retrieval like MS-COCO
but with denser annotations between image-caption
pairs. It also enables intramodal retrieval and se-
mantic similarity correlation evaluations, which
were not possible before.

Karpathy and Li (2015) first used MS-COCO for
image-to-caption and caption-to-image retrieval.
We extend the existing associations with positive
CxC pairs, and also add new caption-to-caption and
image-to-image retrieval tasks using positive STS
and SIS pairs (a total of four retrieval tasks). To the
best of our best knowledge, CxC is the first dataset
to support image-to-image retrieval over captioned
images. Following Karpathy and Li (2015), we
evaluate using Recall@K (R@K), computed as the
fraction of times a correct item was found among
the top K results, and median rank (med. r) of the
closest ground truth result in the list.

Semantic similarity tasks such as Semantic Tex-
tual Similarity (Cer et al., 2017) and Visual Se-
mantic Textual Similarity(vSTS) (de Lacalle et al.,
2020) require a model to produce a continuous
similarity score given two inputs. Typically, the
models are evaluated based on the Pearson’s r of
their scores with the human judgments over a set of
input pairs. This is valid when training data is avail-
able to calibrate model scores to the human ratings.
With CxC, we do not have such training data, so
we instead use Spearman’s r to assess whether a
model ranks pairs similarly to human raters.

It would be tempting to simply measure Spear-
man’s r over all pairs, but this would be flawed
because CxC’s dense annotation means that the
scores between many pairs are themselves corre-
lated. To mitigate this, we use a sampled bootstrap
correlation instead. For each correlation estimate,
we sample half of the queries (to increase diversity
across samples) and for each selected query, we
choose one of the items for which CxC supplies a
paired rating. We compute Spearman’s r between
the CxC scores and the model scores for the se-
lected pairs. The final correlation is the average
over 1000 of these bootstrap samples.

vSTS (de Lacalle et al., 2020) contains 2677
pairs of MS-COCO captions and corresponding
images. As noted above, vSTS is related dataset
for multimodal semantic similarity. We considered
mixing CxC and vSTS; however, this was infeasi-
ble because CxC uses the widely adopted Karpathy
splits, while items in vSTS’s training, dev and test
splits are spread among the Karpathy splits. We
could not just make a separate cut of CxC because
vSTS pairs can cross splits, e.g. an image-caption
item in Karpathy training and another in Karpathy
test. Given the small size of vSTS, we focused our
efforts on CxC evaluations.
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5 Evaluated Models

In order to establish baselines for CxC, we bench-
mark pretrained models for images and text. Note
that these are off-the-shelf models that have not
been trained on MS-COCO. We also evaluate cross-
modal retrieval models that are trained on MS-
COCO. Here, we focus on models that support
efficient retrieval (e.g. dual encoders). We expect
models with extensive cross-modal interactions,
such as ViLBERT (Lu et al., 2019) and LXMERT
(Tan and Bansal, 2019), will show strong perfor-
mance on CxC tasks, either as standalone models
that (inefficiently) score all possible item pairs or
as rerankers for outputs of retrieval models.

To the best of our knowledge, there is no prior
work that explores joint learning or evaluation on
intra- and inter-modality retrieval tasks. Ngiam
et al. (2011) and Collell Talleda and Moens (2016)
show evidence that inter-modality learning helps
improve intra-modality performance, but do not
explore multitask learning. Lu et al. (2020) explore
multitask learning but only focus on intermodal
representation learning for intermodal downstream
tasks. To illustrate how CxC allows us to mea-
sure how intermodal representation learning can
improve both intra- and inter-modal performance,
we train a dual encoder model on bidirectional
image-text and text-text in-batch retrieval losses.

5.1 Pretrained Model Baselines

Text-only Models First, we use a bag-of-words
(BoW) approach using averaged GloVe embed-
dings (Pennington et al., 2014) for each token in
a caption as the caption representation. Second,
the Universal Sentence Encoder (USE) (Cer et al.,
2018) is a sentence level representation model that
has shown strong performance on the related STS
benchmark. We use the multilingual transformer
version from TensorFlow Hub (Yang et al., 2020).3

Image-only Models InceptionV3, ResNet-152,
and SimCLRv2 are deep convolutional models
(Szegedy et al., 2016; He et al., 2016; Chen et al.,
2020a,b) trained on the ImageNet dataset. We ex-
tract 2048-dimensional image-level representations
on a central crop containing 87.5% of the original
image area. We access them via TensorFlow Hub.4

3universal-sentence-encoder-multilingual-large/1
4imagenet/inception v3/feature vector/4, ima-

genet/resnet v1 152/feature vector/4 and gs://simclr-
checkpoints/simclrv2/finetuned 100pct/r50 1x sk0/hub/
respectively

Intermodal Models VSE++ (Faghri et al., 2018)
is a dual encoder (see Sec. 5.2) trained to learn a
joint space of aligned images and captions. The
state-of-the-art VSRN model (Li et al., 2019) is
another dual encoder that uses additional train-
ing annotations to predict and use bounding boxes
for more fine-grained and coherent image analysis,
while using only a simple text encoder trained from
scratch.5

5.2 Dual Encoder Baselines

We also consider several neural baseline models,
all of which are dual encoders (Gillick et al., 2018;
Yang et al., 2019) that encode both inputs sepa-
rately. Dual encoder models have been proven as
an effective approach to learn strong semantic rep-
resentations (Cer et al., 2018; Chen et al., 2020a,b).
They are often trained using an in-batch sampled
softmax loss, as this has been observed to converge
quickly and perform well on retrieval tasks (Gillick
et al., 2018; Yang et al., 2019). We employ the
bidirectional in-batch sampled softmax loss (eq. 1):

L = − 1

K

K∑
i=1

S(li, ri)− log

K∑
j=1 j 6=i

eS(li, rj)


− 1

K

K∑
i=1

S(ri, li)− log

K∑
j=1 j 6=i

eS(ri, lj)

 (1)

where S(x, y) is the dot product of embeddings
of examples x and y. This loss encourages the
score of a correct pair S(li, ri) to be higher than
scores of non-matching input pairs from the batch
S(li, rj). Unlike full cross-attention models, this
architecture enables large-scale retrieval through
approximate nearest neighbor search.

We train dual encoders for caption-image and
caption-caption tasks, as well as a multitask model
that combines both tasks. We use EfficientNet-B4
(Tan and Le, 2019b) (pre-trained on ImageNet) as
our image encoder; it yields a 1792-dimensional
representation. The text encoder employs a frozen6

BERT-Base model (Devlin et al., 2019) followed
by three transformer layers. The additional trans-
former layers have 8 attention heads, hidden di-
mension of 3072, and–like BERT-base–output 768-
dimensional token-level features. We use the fea-

5Models available at https://github.comfartashfvsepp
(checkpoint ”runs/coco vse++/model best.pth.tar”) and
https://github.com/KunpengLi1994/VSRN (checkpoint
”pretrain model/coco/model coco 1.pth.tar”).

6Freezing BERT makes performance slightly worse, but
makes training much faster.
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Image→ Text Text→ Image
Annotations Model R@1 R@5 R@10 med r R@1 R@5 R@10 med r

MS-COCO

VSE++ 41.3 71.1 81.2 2 30.3 59.4 72.4 4
VSRN-github 50.3 79.6 87.9 1 37.9 68.5 79.4 2
VSRN-paper 53.0 81.1 89.4 - 40.5 70.6 81.1 -
DEI2T 52.0 80.3 89.5 1 37.9 67.6 78.8 2
DET2T+I2T 54.1 81.8 89.9 1 39.7 70.0 80.9 2

CxC

VSE++ 43.1 74.3 84.2 2 32.5 62.7 75.4 3
VSRN-github 52.4 81.9 90.0 1 40.1 71.1 81.5 2
DEI2T 53.9 82.7 91.2 1 39.8 70.2 80.9 2
DET2T+I2T 55.9 84.2 91.8 1 41.7 72.3 83.0 2

Table 2: Image↔ Text retrieval results on the MS-COCO 5k test set and CxC’s extended pairs for the same.

Model Text→ Text
R@1 R@5 R@10 med r

BoW 21.2 38.2 47.4 13
USEmling-large 31.2 51.5 61.3 5
VSE++ 38.7 62.3 72.2 3
VSRN-github 41.0 64.8 74.5 2
DET2T 41.7 64.4 73.4 2
DEI2T 26.0 47.1 57.5 7
DET2T+I2T 42.4 64.9 74.0 2

Table 3: Text ↔ Text retrieval performance on MS-
COCO 5k test set using CxC annotations.

tures at the 0th token position of the final layer
as the caption representation. BERT parameters
are initialized from the public BERT checkpoint.7

The additional, trainable transformer layers are ran-
domly initialized.

We construct three dual encoder models from
these base encoders. (1) A Text-Text model (DET2T)
uses a shared text encoder for both sides. (2) An
Image-Text model (DEI2T) uses the aforementioned
text and image encoders, and includes a layer above
the text encoder to project its 768 dimensions to
1792 (to match the image encoder output). (3) A
Multitask model (DET2T+I2T) is trained on a com-
bination of tasks (Chidambaram et al., 2019). It
shares DEI2T’s architecture and is trained in the
same way; however, its loss is a weighted sum of
image-text (i2t, t2i) and text-text (t2t) losses:

L = Li2t + Lt2i + c ∗ Lt2t (2)

Here c is a scalar controlling the weights of losses
from each task. This model has one text encoder,
shared between all retrieval tasks. For hyperparam-
eter tuning and training setup, see the appendix.

6 Results

Intermodal Retrieval Table 2 summarizes inter-
modal retrieval performance on both the original

7bert en uncased L-12 H-768 A-12/2

Model Image→ Image
R@1 R@5 R@10 med r

InceptionV3 4.1 13.3 19.1 96
ResNet-152 11.8 35.5 49.5 11
SimCLRv2 24.5 54.9 68.1 4
VSE++ 36.4 70.4 81.3 2
VSRN-github 44.2 76.7 86.2 2
DEI2T 38.3 74.1 85.0 2
DET2T+I2T 38.5 73.6 84.9 2

Table 4: Image↔ Image retrieval performance on MS-
COCO 5k test set using CxC annotations.

MS-COCO annotations and CxC. We report perfor-
mance of two versions of VSRN (Li et al., 2019)–
one using the checkpoint on the author’s Github
(VSRN-github, which allows us to perform CxC
evaluations) and the other from the original pa-
per (VSRN-paper, which has higher MS-COCO
scores). Comparing each model on MS-COCO
and CxC, the new positive items added by CxC
show improved retrieval performance as they iden-
tify missing positives that are incorrectly penalized
when using only original pairs (as noted in Ilharco
et al. (2019) for Flickr8k). Multitask training in
DET2T+I2T provides a boost over using only inter-
modal pairs for training (i.e. DEI2T). It performs
similarly with VSRN-paper—it seems likely that
VSRN’s greater investment on the image analy-
sis (with representations based on extracted object
bounding boxes) is matched by DET2T+I2T’s greater
investment in the text encoder.

Figure 7 shows three examples of images re-
trieved for caption queries. The CxC annotations
capture missing examples in the first two cases, and
the last two show there are still more positive pairs
that remain unassociated in CxC. Figure 8 shows
the same for captions retrieved from image queries,
again showing that many examples are captured in
CxC that are missing in MS-COCO.

Intramodal Retrieval Tables 3 and 4 give in-
tramodal retrieval results enabled by CxC’s STS
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Model STS SIS SITS
avg ± std avg ± std avg ± std

BoW 55.1±0.6 – –
USEmling-large 71.4±0.4 – –
Inception V3 – 19.6±1.9 –
ResNet-152 – 59.2±1.3 –
SimCLRv2 – 74.3±0.9 –
VSE++ 74.4±0.4 73.3±0.9 55.2±1.5
VSRN-github 73.0±0.4 70.1±1.0 60.4±1.3
DET2T 72.9±0.4 – –
DEI2T 50.9±0.6 81.3±0.7 61.6±1.4
DET2T+I2T 74.2±0.4 74.5±0.9 61.9±1.3

Table 5: Spearman’s R Bootstrap Correlation (×100)
on MS-COCO 5k test set using CxC annotations.

Caption Ranked Images with CxC Score

A person
performs a stunt
jump on a
motorcycle.

5.0 4.95 * 4.45

A bear is holding
on to a rock by
some water.

N/A 4.83 * 4.29

An old street
looking sign
made of wood.

5.0 4.98 * N/A

Figure 7: Text→Image retrieval examples (MS-COCO
val set), with CxC SITS score provided when avail-
able. Images are ranked from left to right, based on
DET2T+I2T scores. MS-COCO annotations only con-
sider images marked by * to be correct retrieval results.

Image (CxC score) Ranked Captions

(4.48) Home plate at a professional baseball game, batter not quite ready.
(4.46) three players on the base ball diamond, all headed for a base.
(4.15) Baseball team mates and another player on the diamond.
(4.98) A batter, catcher and umpire in a baseball game.
(4.95) A batter, catcher and umpire in a baseball game.

(4.92) A dog wearing a striped elf hat sits in the snow.
(5.0) A dog is wearing an elf hat in the snow.
(5.0) A dog wearing an elf hat sits in the snow.
(4.25) Brown and white dog in Christmas hat standing in the snow.
(4.98) A dog that is wearing a christmas hat on its head.

(4.75) A plate of food with peppers, onions and meats.
(5.0) A pot of vegetables is cooking on a stove.
(4.61) Chicken cordon blue and fries with a garnish.
(4.9) A pot with some food in it on a stove.
(4.52) some kind of noodle and vegetable dish being made on the
stove.

Figure 8: Image→Text retrieval results (MS-COCO val
set), ranked top to bottom using DET2T+I2T scores. MS-
COCO annotations only consider the bold captions to
be correct results.

and SIS ratings respectively. USEmling-large is a
strong baseline for Text→Text, but all the cross-
modal models beat USEmling-large by a wide mar-
gin, likely due to learning on in-domain captions.
InceptionV3 and ResNet-152 prove surprisingly
weak for Image→Image, but SimCLRv2 proves to
be a strong unimodal baseline for this task. The
cross-modal models nevertheless beat SimCLRv2
by a wide margin, even though none were trained
on image-image retrieval directly. In terms of
joint intra- and inter-modal learning, the multitask
DET2T+I2T model provides strong, balanced perfor-
mance: it is close to DET2T for Text→Text and
DEI2T for Image→Image and far outperforms the
latter for Text→Text. The strong performance is
especially notable considering that both DEI2T and
DET2T+I2T have the same model capacity.

Semantic Similarity Table 5 shows Spearman’s
R bootstrapped correlation for all models with re-
spect to CxC’s STS, SIS and SITS scores. Overall,
VSE++, VSRN-github and DET2T+I2T perform bet-
ter than unimodal baselines, but interesting further
patterns emerge. Despite being much worse for
retrieval, VSE++ actually beats VSRN-github on
STS and SIS; however, its low SITS score indicates
it fails to bridge the two modalities as well. The cor-
relation scores also show that DEI2T is too focused
on images: it has the highest SIS (81.3), but has
worse STS (50.9) than even BoW (55.1). Adding
the text-text loss to DEI2T training, i.e. DET2T+I2T,
produces much more balanced overall performance.
On SIS, SimCLRv2 is stronger than all cross-modal
models, except DEI2T. SITS scores appear to rank
all models similarly to retrieval (Table 2).

The fact that DET2T+I2T is better than both DET2T
and unimodal baselines for STS and Text→Text re-
trieval is encouraging, and it demonstrates the value
of having a single set of annotations covering the
relatedness of a common set of images and cap-
tions. We expect that a multitask model which also
uses image-image training pairs could demonstrate
gains across all tasks—measurements made pos-
sible by the CxC annotations (especially the new
image-image associations).

7 Conclusion

The CxC dataset provides a much more complete
set of relationships between and among images and
captions than the raw MS-COCO image-caption
pairs. We demonstrate that a dual encoder that
learns from both image-caption pairs and caption-
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caption pairs (DET2T+I2T) exhibits strong, balanced
performance across four retrieval tasks and three
correlation measures. There is much remaining
headroom for future models for all these tasks.

CxC’s annotations themselves validate the strong
semantic alignment between images and their orig-
inal captions—these have an average similarity of
4.85. However, we also find that co-captions (cap-
tions for the same image) have an average score of
just 3.0. This calls into question the use of such
pairs in training and evaluating paraphrase genera-
tion models (Gupta et al., 2018) and reinforces the
need for images as context for human evaluation in
paraphrasing (Wang et al., 2019).
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CxC Annotations - Collection and Analysis

We present additional details of the human anno-
tation process. To annotate the CxC dataset, in
house annotators were employed: 170 (74 men, 96
women) for STS, 61 (28 men, 33 women) for SIS
and 113 (46 men, 67 women) for SITS. All were
aged between 20-35 years. The annotators were
paid hourly wages that are competitive for their
locale. They have standard rights as contractors.
They were fluent English speakers.

We define separate annotation interfaces for each
of Semantic Textual Similarity (STS), Semantic Im-
age Similarity (SIS) and Semantic Image Text Sim-
ilarity (SITS) tasks. We define a similarity scale
ranging from 0 to 5 for all three tasks, following
Cer et al. (2017).

We conducted a few pilot annotation rounds with
the annotators to evaluate the effectiveness of the
annotation instructions and the annotation interface.
We learned that allowing the annotators to rate on
a continuous 0-5 scale instead of a discrete one
like STS resulted in higher correlation between the
individual ratings. As a result, we decided to use
the continuous ratings in the task but still keep the
similarity definition for each discrete value in the
annotation instructions. The final annotation inter-
faces are illustrated in Figures 4 for STS, 5 for SIS
and 6 for SITS. Task-specific high-level instruc-
tions are displayed at the top in an expandable text
box followed by a pair of examples. At the bottom
there is a sliding bar with 0-5 score instructions
along the scale. Since the SITS instructions are
longer, they are shown when the annotator hovers
over the corresponding score to improve readability
for this task.

Each annotator is required to evaluate the dis-
played example based on the instructions and score
them. The sliding scale makes it intuitive for the
annotators to rate an example 2.87 if they feel the
semantic similarity of the pair lies between score
descriptions of 2 and 3, leaning towards 3. Finally,
the annotator response is recorded when they click
the submit button at the bottom of the page. The
absolute score is deliberately not displayed so as
not to distract the workers towards trying to get a
clean integer value like 3.0 instead of 2.94 or 2.97.

The annotators were able to get a better grasp
of the task through the pilot annotations and got
quicker at scoring the pairs. They took an average
of 37, 17 and 17 seconds per example for STS,
SIS and SITS tasks respectively for the final round

Split
Task

STS SIS SITS Total (per split)

Validation 44,009 42,767 44,722 131,498
Test 44,045 46,719 44,833 135,597
Total (per task) 88,054 89,486 89,555 267,095

Table 1: Number of annotations per task and split.

Image Pairs - SIS annotations Image Text Pairs - SITS annotations.

5 A man poses with
a surfboard on a
beach.

4 A couple of birds
that are walking on
some sand.

3 A man is riding
a surfboard at the
beach.

2 Three people stand
on an empty beach
watching a bird in
the sky.

1 A man in a hat
rides an elephant in
a river.

0 Long road with a
sign titled Jackson
River Rd and East
Main St.

Figure 1: Examples for each annotation score (0-5) of
SIS (left) and SITS (right) tasks.

of annotations. Table 2 describes the instructions
shared with the annotation workers for each task.
The side-by-side comparison shows how each rat-
ing on the SIS and SITS scales compares to the STS
benchmark. Figure 1 shows a set of SIS and SITS
examples for the 0-5 rating scale shared along with
the instructions. Table 1 contains the breakdown of
the number of annotations per task per split.

Figure 2 shows a distribution of the standard
deviation of raw annotations for each item per task.
For STS, there is larger overall deviation compared
to the other two tasks–it seems that pairs of short
captions leave more ambiguity and are open for
broader interpretation than when at least one image
is involved. Note also that SITS is expected to have
lower deviation because of the sampling based on
STS and SIS annotations.
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Figure 2: Standard deviation per item in CxC. Intramodal Sampling refers to examples selected using other-
modality selection, Same Example refers to original MS-COCO pairs, and All covers all examples for a task.

Training Setup

Figure 3 shows the basic architecture of the dual
encoder models from Section 5.2, which establish
strong baselines on all the retrieval and correla-
tion tasks. The image encoder and text encoder
are both pre-trained in all experiments. Follow-
ing Ilharco et al. (2019), we pretrain our dual en-
coders on the Conceptual Captions dataset (Sharma
et al., 2018) with image-to-caption and caption-to-
image losses. Conceptual Captions contains 3.3
million pairs of images and captions—far larger
than MS-COCO. Pre-training uses the Adam opti-
mizer (β1 = 0.9, β2 = 0.999) and a learning rate
that starts at 1e-4 and decays by 0.1% every 1000
steps. We stop pre-training after ≈30k steps and
select the checkpoint that maximizes R@10 on a
held-out set. We then fine-tune this checkpoint
on MS-COCO using the same hyper parameters,
except for a smaller learning rate of 5e-6.

Our models are trained on 32-core slices of
Cloud TPU V3 pods, with a per-replica batch size
ofK = 64 during both pre-training and fine-tuning.
Because in-batch sampled softmax loss is known
to perform best when computed over a large num-
ber of negative samples (Gillick et al., 2018), our
training setup pools image and caption encodings
from all replicas before computing the loss. That
is, each replica computes l and r for its local mini-
batch and broadcasts them to all others to be used
as negative samples. Training with N cores thus al-
lows the loss to be computed over the global batch
of N ·K examples and (N ·K)2 pairs (in our case
2048 examples and 20482 example pairs).

Ablation Experiments

Our model architecture and training setup differ
from prior work in key ways. In particular, best
known results for VSE++ and VSRN are from mod-
els that were trained with much smaller batch sizes,

Left
Encoder

Dot Product

𝒙

Right
Encoder

 𝒚

Figure 3: Dual Encoder with inputs x and y, encoded
by the left and right encoders, respectively. Similarity
is computed as the dot product of the encodings.

did not undergo Conceptual Captions pre-training,
and had different image encoder architectures. To
evaluate the effect of these factors, we trained vari-
ants of our DEI2T model (here, the baseline training
recipe) with the following one-off ablations:

• The small batch size ablation reduces the train-
ing batch size to 128 examples, to match that
of VSE++ and VSRN in (Faghri et al., 2018)
and (Li et al., 2019), respectively.

• No pretraining skips dual encoder pretraining
on Conceptual Captions.

• ResNet-152 uses the same recipe as baseline,
but replaces the EfficientNet-B4 image en-
coder with ResNet-152, which was used in
VSE++. Notably, EfficientNet-B4 has fewer
parameters than ResNet-152, but achieves
higher classification accuracy on ImageNet.

Table 3 summarizes the performance of the ab-
lated models. Reducing the batch size causes a
small but consistent reduction in recalls across all
tasks. Removing Conceptual Captions pretraining
leads to larger regressions on all tasks – except
on Text-Text retrieval, where results are curiously
better than the baseline. Likewise, models using
ResNet-152 image encoders perform worst overall,
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Score Semantic Textual Similarity
(STS)

Semantic Image Similarity (SIS) Semantic Image-Text Similarity (SITS)

5 The texts are completely
equivalent as they mean the
same thing.

The scenes are near duplicates, possibly
being viewed from a different perspective.

The image and sentence are perfectly
matched. The sentence is an almost per-
fect description for the image.

4 The texts are mostly
equivalent but some
unimportant details differ.

The two scenes are mostly equivalent,
but some unimportant details differ such
as involving different but the same or
highly similar types of participants, ac-
tions, objects and background.

The image and sentence are mostly
matched, but some unimportant details
differ such as involving different but the
same or highly similar types of partici-
pants, actions, objects and background.
The text can partially describe the image.

3 The texts are roughly
equivalent but some impor-
tant information differs or is
missing.

The two scenes are roughly equivalent,
but some important details are different or
missing such as involving a notable differ-
ence in the types of participants, actions,
objects or background.

The image and sentence are roughly
matched, but some important details are
different or missing such as involving a no-
table difference in the types of participants,
actions, objects or background. The image
cannot be described using the text.

2 The texts are not equiva-
lent but share some details.

The two scenes are not equivalent, but
share some details in terms of the types
of participants, actions, objects or back-
ground.

The image and sentence are not
matched, but share some details in one or
more of the types of participants, actions,
objects or background.

1 The texts are not equiva-
lent but are on the same
topic.

The two scenes are not equivalent, but
are loosely thematically related.

The image and sentence are not
matched, but are loosely thematically
related.

0 The texts are on different
topics.

The two scenes are completely dissimi-
lar.

The image and sentence are completely
unmatched.

Table 2: Intramodality annotation criteria for Semantic Image Similarity (SIS) and Intermodality annotation crite-
ria for Semantic Image-Text Similarity (SITS) with comparison to equivalent Semantic Textual Similarity (STS)
annotations (Agirre et al., 2012).

but also perform (slightly) better than the baseline
on Text-Text retrieval.

Overall, we conclude that pretraining and choice
of image encoder architecture have large effects on
model performance; large-batch training is benefi-
cial, but has a smaller impact. Finally, the asym-
metric shifts in task performance suggest models
make implicit trade-offs based on the relative diffi-
culty of each task – here, apparently, a function of
encoder strength and quantity of training data. Un-
derstanding these dynamics, and building models
that perform well across all tasks, requires future
study. Crisscrossed Captions enables such work by
giving a more complete picture of model quality
on both intra- and inter-modal tasks.
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Image→ Text Text→ Image Text→ Text Image→ Image
Annotations Model R@1 R@10 R@1 R@10 R@1 R@10 R@1 R@10

MS-COCO

DEI2T (baseline) 52.0 89.5 37.9 78.8 25.9 57.2 – –
DEI2T (small batch size) 49.6 88.2 35.7 78.0 25.3 57.6 – –
DEI2T (no pretraining) 45.0 86.0 31.2 74.7 34.5 67.2 – –
DEI2T (ResNet-152) 43.5 83.0 28.9 71.4 28.2 60.2 – –

CxC

DEI2T (baseline) 53.9 91.2 39.8 80.9 26.0 57.5 38.3 85.0
DEI2T (small batch size) 51.8 90.1 37.7 80.3 25.4 57.9 38.0 84.3
DEI2T (no pretraining) 47.0 88.1 33.2 77.6 34.6 67.6 37.0 84.0
DEI2T (ResNet-152) 45.2 85.1 30.8 74.4 28.3 60.5 29.7 76.5

Table 3: Ablation analysis for DEI2T, retrieval results on MS-COCO 5k test set and CxC. (Note that MS-COCO
does not support Image→ Image retrieval evaluation at all.)

Figure 4: STS Annotation Interface
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Figure 5: SIS Annotation Interface

Figure 6: SITS Annotation Interface


