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Abstract

In 2021, we organized the second iteration of
a shared task dedicated to the underlying units
used in discourse parsing across formalisms:
the DISRPT Shared Task (Discourse Relation
Parsing and Treebanking). Adding to the 2019
tasks on Elementary Discourse Unit Segmen-
tation and Connective Detection, this itera-
tion of the Shared Task included for the first
time a track on discourse relation classifica-
tion across three formalisms: RST, SDRT, and
PDTB. In this paper we review the data in-
cluded in the Shared Task, which covers nearly
3 million manually annotated tokens from 16
datasets in 11 languages, survey and compare
submitted systems and report on system per-
formance on each task for both annotated and
plain-tokenized versions of the data.

1 Introduction

Building on rapid progress in NLP for discourse
parsing in the past decade (e.g. Iruskieta et al. 2013,
Zhou et al. 2014, Afantenos et al. 2012, Braud et al.
2017, Wang and Lan 2015, Li et al. 2016, Perret
et al. 2016), the past two years since the DISRPT
2019 Shared Task (Zeldes et al., 2019) have seen
unprecedented performance on benchmark datasets
for discourse parsing (e.g. Guz and Carenini 2020;
Liu et al. 2020; Kurfali 2020; Zhang et al. 2021b).
Following the 2019 Shared Task, our focus in 2021
remained on the most established frameworks for
discourse relation treebanking: Rhetorical Struc-
ture Theory (Mann and Thompson, 1988), the Penn
Discourse Treebank’s framework (Prasad et al.,
2014), and Segmented Discourse Representation
Theory (Asher, 1993).

With the progress achieved on discourse segmen-
tation and connective detection since 2019, this
year we decided to extend the competition to a new

∗Discourse Relation Parsing and Treebanking (DISRPT
2021) was held in conjunction with CODI at EMNLP 2021
in the Dominican Republic and Online (https://sites.
google.com/georgetown.edu/disrpt2021).

task: discourse relation classification across frame-
works. Although work on relation classification is
not new, work has generally been separated into
several somewhat independent strands of work: re-
lation classification with explicit connectives (see
Kido and Aizawa 2016; Nie et al. 2019), implicit
relation classification (Wang and Lan, 2016; Kim
et al., 2020), and full discourse constituent (Guz
and Carenini, 2020; Zhang et al., 2021b) or depen-
dency parsing (Morey et al., 2018). We believe
that these strands of research can come together
and benefit from data across frameworks, but only
if we are able to formulate a common denomina-
tor which poses the problem of discourse relation
recognition in similar terms, independently of the
underlying theoretical assumptions.

In addition to the new relation classification
task, we also updated and expanded the two tasks
from 2019 and added a new surprise dataset (and
language) which became available in the interim:
the Persian RST Corpus (Shahmohammadi et al.,
2021).1 While it remains impossible to place some
data openly online due to licensing constraints, all
annotations, as well as text for open access datasets,
is available from the Shared Task repository,2 as
well as scripts for reconstructing the underlying
text for proprietary datasets.

In the next section, we will describe the tasks
for this year, starting with the new task of Relation
Classification across Frameworks, followed by the
existing tasks, followed by Section 3, which pro-
vides an overview of the shared task data. Section
4 briefly discusses our effort addressing the ethical
and transparency issues related to NLP shared task,
inspired by Escartín et al. (2021). Section 5 then
describes the Shared Task system submissions and
results, followed by a discussion and conclusion.

1https://github.com/hadiveisi/
PersianRST

2https://github.com/disrpt/
sharedtask2021

https://sites.google.com/georgetown.edu/disrpt2021
https://sites.google.com/georgetown.edu/disrpt2021
https://github.com/hadiveisi/PersianRST
https://github.com/hadiveisi/PersianRST
https://github.com/disrpt/sharedtask2021
https://github.com/disrpt/sharedtask2021
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2 Tasks

2.1 Relation Classification across
Frameworks

A major challenge to the goal of enabling rela-
tion classification across frameworks is formed by
the structural differences between theories: while
RST conceptualizes discourse in the form of sin-
gle rooted, usually projective and hierarchical con-
stituent trees, SDRT assumes an also hierarchical
but less constrained graph structure (including mul-
tiple relations between units), while PDTB-style
corpora assume no overarching macro-structure,
with relations applying between independent, pos-
sibly overlapping spans of text, which need not
cover an entire document. Despite these differ-
ences, all frameworks postulate directed, labeled
discourse relations, and often come to similar and
highly correlated insights (cf. Demberg et al. 2019).

In order to represent data across frameworks
on an equal footing, we opted to initially convert
discourse relation information from RST, PDTB,
and SDRT datasets into a set of discourse unit pairs
for which a discourse relation (either explicit or
implicit) is known to apply. Because only PDTB-
style data marks connectives, we chose to integrate
these into the argument span within which they
were syntactically integrated and restrict the spans
involved in the relation to exactly two: unit1 and
unit2 in text order. However, since PDTB-style
data does order argument spans based on relations
regardless of text order (to represent cause and
effect, etc.), and since SDRT and RST relations
are also directed, we retained the direction of the
relation in a dedicated field, indicating whether it
was a left-to-right relation (1>2) or right-to-left
(1<2).

Additionally, since we wanted to give systems a
chance to use as much context as desired, we explic-
itly included the sentences containing each unit in
shared task data, as well as giving stand-off running
token IDs for both units and their sentences, which
are linked to the numbered tokens from the existing
segmentation and connective detection tasks. The
resulting format, found in the task’s .rels files,
is shown in Table 1.

The table shows an entry from the English GUM
corpus (Zeldes, 2017), part of an interview with
a biologist studying ants, in which use of a lot
of (ant) colonies is brought as evidence (pointing
right-to-left, hence dir is 1<2) that the results of
a study are very reliable. The unit_txt fields

give the space separated tokens in the head unit
of each block of discourse units involved in the
relation. The first unit ‘The results are very reli-
able’ is annotated as discontinuous in the source
corpus, as indicated by the reserved token ‘<*>’,
which stands in for the missing words ‘we got’,
which can be seen in the full sentence containing
this unit, under unit1_sent. The second unit
is also part of a longer, complex block of units,
including a coordinated second piece of evidence
(the experiment was blind), and a further nested
discourse unit (‘wherever possible’), both of which
have similar entries for their respective discourse
relations elsewhere in the .rels data.

As this example shows, context can help to
identify relations: in fact, without the containing
sentences, we would not know that these are ant
colonies, which makes the setting ‘experimental
study’ easier to recognize. Since we did not want to
restrict systems to just head units, and conceivably
wanted to allow systems to use the entire document
if desired, the token offset fields (unit1_toks,
s2_toks, etc.) were given and indicated the po-
sition of the relation in the larger text, represented
in sequence in the .tok and .conllu files from
the EDU Segmentation and Connective Detection
tasks.

For datasets with large numbers of relations
and/or very rare relations, we used established col-
lapsing procedures to reduce the number of target
relations and ensure that dev and test sets only in-
cluded relations attested in the training data. In
such cases, the original labels are available in the
orig_label column, and target labels for the
shared task are available in the final label col-
umn.

2.2 EDU Segmentation and Connective
Detection

As in the 2019 Shared Task, EDUs and connectives
were represented in each corpus in two formats, cor-
responding to two scenarios: Treebanked data (now
named *.conllu, previously named .conll
in 2019), which included an (ideally gold) depen-
dency parse, including gold sentence splits and
POS tags, and unannotated, plain tokens (*.tok).
As in 2019, for datasets that had Universal POS
tags and/or UD dependencies, including these was
preferred, though we followed the CoNLL-U for-
mat’s convention of allowing two POS tag fields
(UPOS for universal tags, XPOS for language spe-
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field value
doc GUM_interview_ants
unit1_toks 954-955,958-961
unit2_toks 962-967
unit1_txt The results <*> are very reliable .
unit2_txt We had a lot of colonies
s1_toks 954-961
s2_toks 962-982
unit1_sent The results we got are very reliable .
unit2_sent We had a lot of colonies containing a lot of ants , and wherever possible we conducted the experiment blind .
dir 1<2
orig_label evidence
label evidence

Table 1: An Example of Columns in the Tabular *.rels Data Format for the Relation Classification Task.

Figure 1: Segmentation Format: treebanked (*.conllu, top) and plain (*.tok, bottom)

cific tags), a morphology field with unlimited mor-
phological annotations, and a secondary depen-
dency field for enhanced dependencies where avail-
able. The tenth column (MISC in CoNLL-U) was
used for gold standard labels and additional an-
notations (e.g. SpaceAfter to indicate whites-
pace in underlying data), which all followed the
CoNLL-U key=value format: BeginSeg=Yes
for EDU segmentation and BI tags for connectives,
Seg=B-Conn and Seg=I-Conn, versus “_" for
unannotated tokens. The second scenario included
no annotations except for tokenization and the same
document boundary annotations found in the tree-
banked files. No sentence splits were provided in
this scenario. Figure 1 illustrates both formats.

Evaluation scripts were provided for both seg-
mentation and connective detection, with positive
class, span-based F-score being the target. As in
2019, for connective detection the evaluation tar-
gets only exact matches, meaning that precision
and recall are calculated out of the total connective
spans (not tokens) available in the gold data, with-
out partial credit or fuzzy matching. As a result,
systems identifying the span in (1) below are given
one precision error and one recall error, since the
prediction misses the gold span and invents one not
present in gold data.

(1) Gold: In/B-Conn order/I-Conn to/_
Pred: In/B-Conn order/I-Conn to/I-Conn

3 Shared Task Data

The DISRPT 2021 Shared Task data comprises
16 datasets in 11 languages, 13 of which target
elementary discourse unit segmentation, and 3 ded-
icated to explicit connective annotation, and all 16
being included in the relation classification task.
Table 2 gives an overview of the datasets. Of the
16 datasets, training data for 15 were released in
their updated 2021 version approximately 3 months
before the shared task deadline, while the final one,
RST annotations from the Persian RST Corpus,
was released as a ‘surprise’ dataset/language to-
gether with all test sets just one month before the
announced deadline. For five of the datasets, li-
censing constraints prevented online publication of
the entire underlying texts (e.g. Wall Street Jour-
nal material), meaning that the public repository
contains only annotations for those corpora, with
tokens replaced by underscores. Of these datasets,
four contain no text at all (English PDTB and RST-
DT, Chinese CDTB, and Turkish TDB), and one
(English GUM) contains data for 11/12 genres, but
requires download of the text for the 12th genre,
Reddit forum discussions.
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corpus language framework sentences tokens documents units segStyle relations relTypes discontinuous
deu.rst.pcc German RST 2,193 33,222 176 3,040 EDU 2,164 26 No
eng.rst.gum English RST 8,292 152,856 168 19,268 EDU 13,897 23 Yes
eng.rst.rstdt English RST 8,318 205,829 385 21,789 EDU 16,002 17 Yes
eng.sdrt.stac English SDRT 11,087 52,354 45 12,588 EDU 9,580 16 No
eus.rst.ert Basque RST 2,380 45,780 164 4,202 EDU 2,533 29 Yes
fas.rst.prstc Persian RST 2,179 66,926 150 5,855 EDU 4,100 17 Yes
fra.sdrt.annodis French SDRT 1,507 32,699 86 3,429 EDU 2,185 18 Yes
nld.rst.nldt Dutch RST 1,651 24,898 80 2,343 EDU 1,608 32 No
por.rst.cstn Portuguese RST 2,221 63,332 140 5,537 EDU 4,148 32 Yes
rus.rst.rrt Russian RST 23,044 473,005 332 41,542 EDU 28,868 22 Yes
spa.rst.rststb Spanish RST 2,089 58,717 267 3,351 EDU 2,240 28 Yes
spa.rst.sctb Spanish RST 516 16,515 50 744 EDU 439 24 Yes
zho.rst.sctb Mandarin RST 580 15,496 50 744 EDU 439 26 Yes

corpus language framework sentences tokens documents units segStyle relations relTypes discontinuous
eng.pdtb.pdtb English PDTB 48,630 1,156,658 2,162 26,048 Conn 43,920 23 Yes
tur.pdtb.tdb Turkish PDTB 31,197 496,358 197 8,748 Conn 2,451 23 Yes
zho.pdtb.cdtb Mandarin PDTB 2,891 73,314 164 1,660 Conn 3,657 9 Yes

Table 2: Datasets in the DISRPT 2021 Shared Task.

A script included in the shared task repository
was provided in order to reconstruct the data, which
requires users to have access to the original LDC
releases of the underlying corpora in the case of
PDTB, RST-DT, and CDTB or the original Turkish
texts available from Middle East Technical Univer-
sity (METU) by request. Missing data for GUM
is downloadable directly by running the script and
consenting to non-commercial use conditions.

The short names for every dataset begin with
an ISO 639-3 three letter code for the language, a
framework designation (RST/SDRT/PDTB) and an
acronym for the corpus. The names correspond to
the following included corpora:

− deu.rst.pcc - Potsdam Commentary Corpus
(Stede and Neumann, 2014).

− eng.pdtb.pdtb - Penn Discourse Treebank
(Prasad et al., 2014).

− eng.rst.gum - Georgetown University Multi-
layer corpus (Zeldes, 2017).

− eng.rst.rstdt - RST Discourse Treebank
(Carlson et al., 2001).

− eng.sdrt.stac - Strategic Conversations cor-
pus (Asher et al., 2016).

− eus.rst.ert - Basque RST Treebank (Iruski-
eta et al., 2013).

− fas.rst.prstc - Persian RST Corpus (Shah-
mohammadi et al., 2021).

− fra.sdrt.annodis - ANNOtation DIScur-
sive (Afantenos et al., 2012).

− nld.rst.nldt - Dutch Discourse Treebank
(Redeker et al., 2012).

− por.rst.cstn - Cross-document Structure
Theory News Corpus (Cardoso et al., 2011).

− rus.rst.rrt - Russian RST Treebank
(Toldova et al., 2017).

− spa.rst.rststb - RST Spanish Treebank
(da Cunha et al., 2011).

− spa.rst.sctb - RST Spanish-Chinese Tree-
bank (Spanish) (Cao et al., 2018).

− tur.pdtb.tdb - Turkish Discourse Bank
(Zeyrek and Webber, 2008; Zeyrek and Kur-
falı, 2017).

− zho.pdtb.cdtb - Chinese Discourse Tree-
bank (Zhou et al., 2014).

− zho.rst.sctb - RST Spanish-Chinese Tree-
bank (Chinese) (Cao et al., 2018).

As Table 2 shows, these datasets range from
small (under 15,000 tokens for the smallest cor-
pus, zho.rst.sctb), to the larger RST corpora (over
200,000 tokens for RST-DT and the Russian RST
Treebank), to the largest PDTB-style datasets (al-
most half a million tokens for Turkish, and over a
million for the English PDTB). The variability in
sizes, languages, frameworks, and corpus-specific
annotation guidelines were expected to challenge
systems, but also promote architectures which can
be extended to more languages in the future, and
ideally stay robust for low resource settings.

4 Ethical Considerations and
Transparency in DISRPT 2021

In the interest of transparency and with inspiration
from Escartín et al. (2021), we made efforts to ad-
dress several ethical and transparency matters in
the DISPRT 2021 Shared Task. We created a FAQ
page3 on our main website that laid out informa-
tion about the Shared Task, participation, equity,
and the evaluation criteria etc., which are briefly
summarized below.

3https://sites.google.com/georgetown.
edu/disrpt2021/faq

https://sites.google.com/georgetown.edu/disrpt2021/faq
https://sites.google.com/georgetown.edu/disrpt2021/faq
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Participation & Organization Generally speak-
ing, we allowed anyone to participate, including
the organizers. However, in the interest of trans-
parency and fairness, results from teams which
overlap some of the organizers or annotators of
any of the included datasets are denoted as such.
Though as Escartín et al. (2021) pointed out, there
is an understanding that organisers have privileged
access to test sets, we pledge that the test data is
under strict quarantine until its release and strictly
follow this practice. All systems were always re-
run and reproduced by evaluators who do not over-
lap the submission team, and all datasets’ original
publications had already been made independently
of the Shared Task. There are always scenarios
where there is overlap between the Shared Task
organizers, dataset creators, and participants, and
excluding organizer teams may discourage people
from organizing future shared tasks, while unfairly
penalizing students of organizers who are likely to
form the next generation of researchers in the field.

Evaluation & Reproducibility We published
the evaluation scripts in the Shared Task GitHub
repository4 at the beginning of the Shared Task
for participants to use. We also announced at the
beginning of the Shared Task how the overall sys-
tem rankings in each category will be determined,
which is described on the main website. For teams
that submitted multiple systems, the best scoring
system by macro-averaged F-score on all datasets
was selected to represent the team. Moreover, be-
cause we believe that code openness and repro-
ducibility are very crucial components in NLP
practice, we state up front that all systems must
include code to retrain the system from scratch, so
that evaluators can test aspects of systems’ perfor-
mance and reproduce reported scores, as well as
a detailed README file explaining how to train
the system. Systems which cannot be run in the
evaluation phase are not be accepted. All submit-
ted systems followed these guidelines, and we were
able to retrain and reproduce reported scores falling
within the range of multiple random training runs.

Data Access & Resources We are aware that not
all teams may have LDC subscriptions. Thus, in the
interest of promoting equity regardless of access
and funding status, we evaluated submitted systems
on the closed LDC datasets for the participants who

4https://github.com/disrpt/
sharedtask2021/tree/main/utils

do not have access to LDC data. We reported scores
obtained during the evaluation phase to authors
so that they can add them to their papers for the
camera-ready version. In addition, resources about
each dataset (e.g. papers, annotation manuals etc.)
are provided in the README file in each data
directory for participants who would like to know
more about the corpora used in the shared task.

Negative Results We believe that negative re-
sults can bring the field forward, especially when
they are accompanied by insightful analysis about
why a certain approach does not work. Thus, we
encourage such submissions, and their acceptance
is subject to the contribution that their analyses
can provide to the field. In response to one of the
Escartín et al. (2021)’s shared task checklist ques-
tions, we allow participants to opt to exclude or
anonymize their results in the overall ranking to
avoid withdrawal or fear of negative results, though
no submission opted for this possibility.

Identification of Annotation Errors We are
aware that current machine learning models are
capable of catching annotation errors in the origi-
nal datasets. Thus, we encouraged participants to
report such errors to us if they identify any in their
error analysis study so that we could pass them
along to the original authors of the corpora. In
addition, during the data preprocessing stage, we
identified and recorded several annotation errors in
several corpora. We reported some of these to the
original authors earlier this year as they needed to
be corrected in order for such annotation instances
to be included in the Shared Task. We intend to
compile the rest of the annotation errors after the
workshop and report them to corpus creators ac-
cordingly.

5 Results

For EDU segmentation and connective detection,
we report precision, recall, and F1 scores for sys-
tems in the two tasks, each consisting of two sce-
narios: EDU segmentation and connective detec-
tion, with treebanked and plain tokenized data; for
relation classification the accuracy score is used.
The overall system rankings in each category are
determined by the macro-average score across tree-
banks, where each treebank score is decided by the
micro-averaged metric.

Five systems were submitted to the shared task,
four of which attempted the EDU segmentation

https://github.com/disrpt/sharedtask2021/tree/main/utils
https://github.com/disrpt/sharedtask2021/tree/main/utils
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corpus TMVM DiscoDisco* disCut* SegFormers mean
(treebanked) P R F1 P R F1 P R F1 P R F1
deu.rst.pcc 94.57 88.78 91.58 97.07 94.15 95.58 98.91 92.52 95.61 93.71 96.26 94.97 94.44
eng.rst.gum 94.16 79.86 86.42 93.9 94.43 94.15 93.27 93.65 93.46 91.47 95.67 93.52 91.89
eng.rst.rstdt 87.18 65.52 74.81 96.39 96.89 96.64 96.16 95.99 96.08 96.15 98.04 97.09 91.16
eng.sdrt.stac 98.73 85.52 91.65 96.25 93.63 94.91 97.41 92.37 94.82 96.73 95.67 96.20 94.40
eus.rst.ert 87.23 66.49 75.46 93.42 87.73 90.46 90.04 83.11 86.44 87.23 88.65 87.94 85.08
fas.rst.prstc 88.28 74.18 80.62 92.79 93.10 92.94 93.54 90.75 92.12 90.53 94.18 92.32 89.50
fra.sdrt.annodis 82.13 49.84 62.03 89.43 90.65 90.02 87.26 88.67 87.96 86.76 88.03 87.39 81.85
nld.rst.nldt 95.38 85.50 90.17 97.50 94.50 95.97 94.15 95.27 94.71 98.16 94.67 96.39 94.31
por.rst.cstn 96.76 68.30 80.08 93.18 95.56 94.35 90.31 94.44 92.33 92.60 94.12 93.35 90.03
rus.rst.rrt 86.00 64.08 73.44 85.57 86.89 86.21 88.19 81.10 84.50 84.93 85.18 85.06 82.30
spa.rst.rststb 88.73 82.17 85.33 92.53 91.96 92.22 92.04 93.04 92.54 89.12 94.35 91.66 90.44
spa.rst.sctb 79.34 57.14 66.44 83.44 81.55 82.48 85.39 90.48 87.86 92.31 78.57 84.89 80.42
zho.rst.sctb 79.43 66.67 72.49 90.30 77.38 83.34 92.48 73.21 81.73 79.89 82.74 81.29 79.71
mean 89.07 71.85 79.27 92.44 90.65 91.48 92.24 89.58 90.78 90.74 91.24 90.93 88.12

Table 3: EDU Segmentation Results on Treebanked Data. Disclosure: Systems marked with * were submitted by
teams containing organizers and annotators of shared task datasets (see Section 4).

corpus TMVM DiscoDisco* disCut* SegFormers mean
(plain) P R F1 P R F1 P R F1 P R F1
deu.rst.pcc 91.34 86.05 88.62 95.15 92.86 93.94 94.67 96.60 95.63 96.81 92.86 94.79 93.25
eng.rst.gum 91.86 64.04 75.46 92.65 92.59 92.61 92.76 89.54 91.13 90.38 94.01 92.16 87.84
eng.rst.rstdt 93.37 69.61 79.76 96.80 95.92 96.35 93.39 94.50 93.94 94.31 96.16 95.23 91.32
eng.sdrt.stac 83.30 58.37 68.64 91.77 92.06 91.91 85.30 87.01 86.14 88.38 87.01 87.69 83.60
eus.rst.ert 84.49 64.05 72.87 92.70 88.38 90.47 91.45 83.78 87.45 86.47 90.68 88.52 84.83
fas.rst.prstc 86.77 64.63 74.08 92.95 92.78 92.86 93.59 89.40 91.45 94.20 89.70 91.90 87.57
fra.sdrt.annodis 86.33 52.10 64.98 87.95 83.79 85.78 89.90 86.41 88.12 89.67 87.06 88.34 81.81
nld.rst.nldt 91.48 82.54 86.78 96.97 92.54 94.69 94.35 93.79 94.07 96.07 94.08 95.07 92.65
por.rst.cstn 94.34 65.36 77.22 93.21 95.03 94.11 93.36 91.83 92.59 92.60 94.12 93.35 89.32
rus.rst.rrt 84.02 61.29 70.88 87.31 84.24 85.74 83.60 84.01 83.80 84.32 84.15 84.23 81.16
spa.rst.rststb 88.86 74.57 81.09 93.30 90.30 91.76 92.19 89.78 90.97 90.95 89.57 90.25 88.52
spa.rst.sctb 80.65 59.52 68.49 83.97 77.98 80.86 78.65 89.88 83.89 79.78 86.90 83.19 79.11
zho.rst.sctb 83.33 59.52 69.44 84.04 70.00 76.21 68.11 75.00 71.39 65.52 79.17 71.70 72.19
mean 87.70 66.28 75.25 91.44 88.34 89.79 88.56 88.58 88.51 88.42 89.65 88.96 85.63

Table 4: EDU Segmentation Results on Plain Tokenized Data.

corpus TMVM DiscoDisco* disCut* SegFormers mean
(treebanked) P R F1 P R F1 P R F1 P R F1
eng.pdtb.pdtb 85.98 65.54 74.38 92.93 91.15 92.02 93.32 88.67 90.94 89.73 92.61 91.15 87.12
tur.pdtb.tdb 80.00 24.14 37.10 93.71 94.53 94.11 90.55 86.93 88.70 90.42 91.17 90.79 77.68
zho.pdtb.cdtb 30.00 0.96 1.86 89.19 85.95 87.52 84.43 66.03 74.10 85.05 87.50 86.26 62.44
mean 65.33 30.21 37.78 91.94 90.54 91.22 89.43 80.54 84.58 88.40 90.43 89.40 75.75

(plain) P R F1 P R F1 P R F1 P R F1 mean
eng.pdtb.pdtb 81.06 34.37 48.27 94.29 90.92 92.56 88.84 92.09 90.43 90.37 91.97 91.16 80.61
tur.pdtb.tdb 73.13 28.86 41.38 91.98 95.22 93.56 90.12 88.10 89.10 89.36 91.05 90.20 78.56
zho.pdtb.cdtb 53.33 5.13 9.36 90.27 86.54 88.35 77.40 72.44 74.83 85.25 83.33 84.28 64.21
mean 69.17 22.79 33.00 92.18 90.89 91.49 85.45 84.21 84.79 88.33 88.78 88.55 74.46

Table 5: Connective Detection Results.

task and the connective detection task; two sys-
tems tackled the relation classification task. For
teams that submitted multiple systems, we selected
the system that achieved the best macro-averaged
F-score across datasets as the representative sub-
mission. For teams that were not able to obtain
all the licensed data, we evaluated submitted sys-
tems on the closed LDC datasets for those team
and reported the scores to the authors.

EDU Segmentation The main results for EDU
segmentation on the test sets are given in Table 3 for

treebanked data, and in Table 4 for plain tokenized
data. The results indicate improvements across the
board for datasets that were represented in the 2019
Shared Task, including new state of the art scores
on the benchmark English RST dataset RST-DT
(97.09 using gold parses and sentence splits from
the system SegFormers, and 96.35 for segmenta-
tion from plain text, without sentence boundary
information, by the system DisCoDisCo). Improve-
ments are also seen on small datasets, such as Chi-
nese RST, now scoring 83.34 and 76.21 for tree-
banked / plain text data respectively (both by Dis-
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CoDisco), compared to 81.67 and 73.13 in 2019.
The discrepancy between the scores in the two

scenarios indicates that gold treebanked data still
provides a substantial benefit to EDU segmentation.
This may most obviously be the case due to the in-
clusion of gold sentence splits in the datasets that
provide them, which usually coincide with EDU
boundaries, though slightly higher scores from ap-
proaches using other gold features were also ob-
served (see Section 6 for system analysis).

Connective Detection The main reuslts for con-
nective detection on the test sets are given in Table
5 for both treebanked data and plain tokenized data.
As with EDU segmentation, the results show sub-
stantial improvements on all datasets compared to
2019, with means climbing from the low 80s to
the low 90s. The most notable improvement is
on Chinese connective detection, which rises from
high 70s to scores around 90, and Turkish, from
low 80s to low 90s. The rise in scores for several
Transformer-based system scenarios suggests that
this may be at least in part a result of improve-
ments in language models for languages other than
English.

Relation Classification The main results for the
relation classification task are given in Table 6.
Since the relation classification task is new, it is dif-
ficult to evaluate the quality of the scores obtained
in the results. For some datasets, such as PDTB,
existing scores have been previously reported on
the same underlying data, but generally in differ-
ent settings, where implicit and explicit relations
were scored separately. To make matters worse,
most previous work on PDTB uses the older ver-
sion 2 (Prasad et al., 2008), making scores again
completely non-comparable. Previous scores on
PDTB-V2 (level 2 relations, the same hierarchi-
cal level used for the Shared Task) with explicitly
specified connectives have reached scores above
90 for a while (Kido and Aizawa, 2016); more
recently, results on PDTB-V3 implicit relation clas-
sification have reached an accuracy of 64.83 (Kim
et al., 2020). By comparison, we see a best score
of 74.44 (DisCoDisCo) on all PDTB-V3 relations
(including implicit and explicit), but the task is both
easier and harder, since in both cases no connective
is specified (for uniformity with other formalisms),
but the relation direction is specified in the data
(since the Shared Task targets a scenario of label-
ing unlabeled dependency structures).

corpus DiscRel DisCoDisCo* mean
deu.rst.pcc 35.38 39.23 37.31
eng.pdtb.pdtb 50.02 74.44 62.23
eng.rst.gum 47.06 66.76 56.91
eng.rst.rstdt 55.41 67.10 61.26
eng.sdrt.stac 54.11 65.03 59.57
eus.rst.ert 44.25 60.62 52.44
fas.rst.prstc 58.95 52.53 55.74
fra.sdrt.annodis 45.76 46.40 46.08
nld.rst.nldt 45.40 55.21 50.31
por.rst.cstn 48.53 64.34 56.44
rus.rst.rrt 61.34 66.44 63.89
spa.rst.rststb 45.07 54.23 49.65
spa.rst.sctb 69.18 66.04 67.61
tur.pdtb.tdb 48.10 60.09 54.10
zho.pdtb.cdtb 88.65 86.49 87.57
zho.rst.sctb 70.44 64.15 67.30
mean 54.23 61.82 58.02

Table 6: Relation Classification Results.

Results on EDU datasets are equally difficult
to compare to previous work due to the focus on
full discourse parsing for frameworks like RST,
whereas the relation classification task has focused
solely on labeling gold graph structures. However,
we are encouraged to see best scores above 67
for benchmark datasets such as RST-DT, which
beat state-of-the-art discourse dependency parsers’
labeled attachment scores (LAS), currently 51.8
(Zhang et al., 2021a); while it is understandable
that LAS will always be lower due to the need to
predict both attachment and labeling correctly, the
Shared Task results indicate that progress on unla-
beled attachment (currently 70.2 on RST-DT, ibid.)
can lead to substantial gains in labeled accuracy
when combined with the approaches tested in this
Shared Task.

6 Analysis of Systems

EDU Segmentation and Connective Detection
All four systems tackling the segmentation tasks
addressed both EDU Segmentation and Connec-
tive Detection with a unified architecture, with the
partial exception of DisCoDisCo, which varied in
using a CRF layer for Connective Detection (in
order to model B- and I- label sequence probabil-
ities), but not for EDU Segmentation, where a CRF
layer was found to be harmful.

Of the four systems, the three highest scor-
ing ones relied on a Transformer-based neural se-
quence labeling approach backed by large, pre-
trained language models, while the fourth system,
TMVM, focused on grammatical features extracted
from gold and predicted trees in order to capture
clause boundaries across languages. TMVM’s sub-
mission is also unique in reporting scores when
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training on each individual dataset and predict-
ing on other datasets using those features, many
of which are general across languages. Of the
datasets cross-tested by TMVM, training on a dif-
ferent dataset was beneficial for one English case
(training on GUM and testing on RST-DT, leading
to a 5 point gain from 75 to 80), and the two small
Spanish and Chinese datasets (a 3 point gain from
66 to 69 for Spanish when training on the larger
Spanish RST STB, and a more modest but surpris-
ing 2 point gain from 72 to 74 when training on
Basque and testing on Chinese, see Dönicke 2021).
The latter two cases are probably owing to the small
size of the target corpora. The disCut paper takes
a related approach and trains on multiple corpora
from the same language or language family, but
does not obtain superior results (see Ezzabady et al.
2021), possibly because the single-corpus training
results are already so strong.

Among the Transformer-based systems, al-
though DisCoDisCo performs best overall, other
systems score highest on particular datasets in dif-
ferent scenarios, with SegFormers attaining a new
SOTA score on RST-DT from gold trees (97.09)
next to DisCoDisCo’s new SOTA score on the same
data without gold trees (96.35 in the plain text sce-
nario), and disCut showing impressively strong
performance on German (95.61 from gold trees,
and an even better 95.63 in the plain text scenario).
Overall best scores for EDU Segmentation in the
top 3 systems are within a point of each other, but
the consistent slight lead of DisCoDisCo may be
due to the fact that it was the only segmentation sys-
tem using per-language transformers and making
use of grammatical features, which in the plain text
scenario were induced using a SOTA Transformer-
based parser and sentence splitter as well.

For Connective Detection, DisCoDisCo’s lead
becomes slightly larger, about 3 points above Seg-
Formers and almost 7 points above disCut, perhaps
due to a combination of features (which give a mi-
nor boost of just a few points across datasets in their
paper, see Gessler et al. 2021), the use of a CRF
layer and the combination of both contextualized
and static word embeddings as well as character
embeddings, which provided a variety of views on
the data and allowed for both fine tuning and fixed
generalization in the test set. Choice of language
models is also an important factor, and here again
disCut and SegFormers rely on multilingual LMs,
while DisCoDisCo uses individual per-language

models, which may also be a reason for higher
scores on Chinese and especially Turkish, which
may be less well-represented by multilingual LMs.

Finally we note that in the plain text scenario,
all systems except for DisCoDisCo used non-
contextualized tools for sentence splitting and/or
automatic parsing (SegFormers: CoreNLP; disCut:
stanza; TMVM: SpaCy); DisCoDisCo used the
tranformer-based sentence splitter from the AMAL-
GUM corpus (Gessler et al., 2020) and DiaParser
(Attardi et al., 2021), both with language-specific
transformers, with the result that plain text numbers
are very close to gold numbers for DisCoDisCo
(and in fact insignificantly better for plain Con-
nective Detection: 91.49 on average vs. 91.22 for
gold treebanked data). This echoes results from the
2019 task (see Yu et al. 2019) which showed the
crucial importance of high quality preprocessing in
general, and sentence splitting in particular.

Relation Classification Although both systems
tackling the Relation Classification task use word
embeddings, their approaches are rather different:
while the best system, DisCoDisCo, relies on a
similar approach to their segmentation task en-
try, which encodes each sequence using a trans-
former, the DiscRel system uses whole sentence
embeddings from the Sentence-Transformers li-
brary (SBERT, Reimers and Gurevych 2020) to
compute Euclidean distance between discourse
units, as part of a two-level feature-based Random
Forest classifier. Both systems also use the pro-
vided discourse relation direction, which is meant
to approach the case of labelling an unlabelled dis-
course dependency graph.

In terms of encoding features, DisCoDisCo uses
a sentence pair classifier architecture feeding the
underlying transformer embeddings in the form of
the BERT classification ([CLS]) token embeddings,
while injecting categorical features at two levels:
using pseudo tokens, encoded as usual by the trans-
former, which indicate the relations direction; and
using an inserted pseudo token next to the CLS to-
ken, which encodes all sequence-level categorical
features, such as genre, gold speaker information
and more (see Gessler et al. 2021). These features
are then read and trained on by the transformer
block alongside the word embeddings.

The DiscRel system takes a two level approach
to relation classification, using two stacked one-
versus-rest Random Forest classifiers, which first
attempt to distinguish the coarse class of discourse
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relation (for example collapsing relations such as
EVALUATION, INTERPRETATION, JUSTIFY), and
then sub-classify the coarse classes into the final tar-
get labels using the second classifier (see Varachk-
ina and Pannach 2021). For large datasets, the first
classifier is trained on the train set, while the sec-
ond is trained using the development data, but for
smaller datasets, training data is duplicated along
with the development set for the second classifier.

DiscRel’s approach performs substantially better
for both Chinese datasets, the small Spanish dataset,
and Farsi. A commonality in this set is its inclusion
of the smallest datasets (the parallel zho.rst.sctb
and spa.rst.sctb), which is perhaps unsurprising
given the robustness of tree-based classifiers on
small data. However, the gains on the Farsi data,
which is not very small, are also substantial, and
the system scores over 2 points better than Dis-
CoDisCo on CDTB, suggesting either that SBERT
has better embeddings for these languages, or in
the case of CDTB, possibly that the small number
of target relations (only 9, the smallest relation set)
benefits from the stacked classifier approach.

For the remaining 12 datasets, DisCoDisCo
scores highest, in many cases by a wide margin of
over 10 points above DiscRel (including all English
corpora, with +14 on PDTB, +18 on GUM and +12
on RST-DT, and +11 on STAC), leading to a final
mean gain of over +7 points. Feature ablations in
the DisCoDisCo paper suggest that categorical fea-
tures confer a minor boost in scores, especially for
datasets rich in gold metadata and annotations, but
that the primary driver of accuracy is the use of con-
textualized word embeddings. We also note that,
as with segmentation, DisCoDisCo uses language-
specific LMs for each dataset, and not always the
same LMs as for segmentation, while DiscRel uses
one of two multilingual SBERT models for all
datasets. For choice of LMs, DisCoDisCo’s pa-
per indicates that transformers pretrained with the
Next Sentence Prediction task (NSP) are particu-
larly suited to relation classification, i.e. models
such as BERT (Devlin et al., 2019), but not the
RoBERTa family of models (Liu et al., 2019).

The gaps between the systems given the repro-
duction and multiple run averages suggest that the
two approaches capture some orthogonal informa-
tion, indicating that incorporating insights from
both systems may be worth pursuing: sentence
embeddings and Euclidean distance could be incor-
porated in a neural system, and the features used by

DisCoDisCo could be used in a two stage approach
such as the one taken by DiscRel.

7 Conclusion

We conducted the second DISRPT shared task for
Discourse Relation Parsing and Treebanking across
frameworks, resulting in a number of new state of
the art scores on benchmark datasets, as well as the
publication of a new multilingual benchmark for
discourse parsing sub-tasks. With the introduction
of the new classification task in 2021, the DISRPT
data now covers discourse unit segmentation, con-
nective detection, and relation classification for unit
pairs in 16 datasets, coming from 11 languages and
containing approx. 3,000,000 tokens.

With the exception of the distinction between
Connective Detection and EDU Segmentation
datasets, we were able to bring all datasets to a
common denominator by relying on a dependency
representation of the underlying discourse annota-
tions. Especially in the case of Relation Classifi-
cation, this means that we can potentially harness
the Shared Task data for training and evaluation
of discourse relation information using multiple
datasets for the same language (where available),
and learn from multiple frameworks at the same
time. Publishing uniformly evaluated results us-
ing a single scorer, input format, and feature set,
with a stable reference gold parse for each dataset,
we hope to facilitate the conversation and collabo-
ration between researchers coming from different
frameworks, such as RST, SDRT, and PDTB.

We are optimistic that the future for computa-
tional work on discourse relations is bright, with
scores on Segmentation and Connective Detection
now looking much higher than in previous years
(finally around the low 90s), and Relation Clas-
sification slowly catching up, but still offering a
substantial challenge with scores in the low 60s.
With some luck, we may soon see automatic dis-
course analysis methods become close to, or even
as reliable, as morphosyntactic tagging and parsing
have become in recent years. In order to realize
that goal, we are certain that we will need new
datasets covering previously unexplored languages
and genres, as well as in depth analysis of the kinds
of discourse relations we should recognize and the
challenges in inducing them automatically and reli-
ably across all types of text.
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