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Abstract

This paper investigates the relationship be-
tween two complementary perspectives in the
human assessment of sentence complexity and
how they are modeled in a neural language
model (NLM). The first perspective takes into
account multiple online behavioral metrics ob-
tained from eye-tracking recordings. The sec-
ond one concerns the offline perception of
complexity measured by explicit human judg-
ments. Using a broad spectrum of linguistic
features modeling lexical, morpho-syntactic,
and syntactic properties of sentences, we per-
form a comprehensive analysis of linguistic
phenomena associated with the two complex-
ity viewpoints and report similarities and dif-
ferences. We then show the effectiveness of
linguistic features when explicitly leveraged
by a regression model for predicting sentence
complexity and compare its results with the
ones obtained by a fine-tuned neural language
model. We finally probe the NLM’s linguistic
competence before and after fine-tuning, high-
lighting how linguistic information encoded
in representations changes when the model
learns to predict complexity.

1 Introduction

From a human perspective, linguistic complexity
concerns difficulties encountered by a language
user during sentence comprehension. The source
of such difficulties is commonly investigated us-
ing either offline measures or online behavioral
metrics. In the offline framework, complexity rat-
ings can be elicited either by assessing errors in
comprehension tests or collecting explicit com-
plexity judgments from readers. Instead, in the
online paradigm, cognitive signals are collected
mainly through specialized machinery (e.g., MRI
scanners, eye-tracking systems) during natural or
task-oriented reading. Among the wide range of
online complexity metrics, gaze data are widely re-
garded as reliable proxies of processing difficulties,

reflecting both low and high-level complexity fea-
tures of the input (Rayner, 1998; Hahn and Keller,
2016). Eye-tracking measures have recently con-
tributed to significant improvements across many
popular NLP applications (Hollenstein et al., 2019a,
2020) and in particular on tasks related to linguis-
tic complexity such as automatic readability as-
sessment (ARA) (Ambati et al., 2016; Singh et al.,
2016; González-Garduño and Søgaard, 2018), ob-
taining meaningful results for sentence-level classi-
fication in easy and hard-to-read categories (Vajjala
and Lučić, 2018; Evaldo Leal et al., 2020; Mart-
inc et al., 2021). However, readability levels are
conceptually very different from cognitive process-
ing metrics since ARA corpora are usually built in
an automated fashion from parallel documents at
different readability levels, without explicit eval-
uations of complexity by target readers (Vajjala
and Lučić, 2019). A different approach to com-
plexity assessment that directly accounts for the
perspective of readers is presented in the corpus by
Brunato et al. (2018), where sentences are individ-
ually labeled with the perception of complexity of
annotators, which may better reflect the underlying
cognitive processing required by readers to parse
the sentence. This consideration is supported by
recent results highlighting the unpredictability of
outliers in perceived complexity annotations, es-
pecially for sentences having complex syntactic
structures (Sarti, 2020).

Given the relation between complexity judg-
ments elicited from annotators and online cogni-
tive processing metrics, we investigate whether the
connection between the two perspectives can be
highlighted empirically in human annotations and
language model representations. We begin by lever-
aging linguistic features associated with a variety
of sentence-level structural phenomena and analyz-
ing their correlation with offline and online com-
plexity metrics. We then evaluate the performance
of models using either complexity-related explicit
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features or contextualized word embeddings, fo-
cusing mainly on the neural language model AL-
BERT (Lan et al., 2020). In this context, we show
how both explicit features and learned representa-
tions obtain comparable results when predicting
complexity scores. Finally, we focus on studying
how complexity-related properties are encoded in
the representations of ALBERT. This perspective
goes in the direction of exploiting human process-
ing data to address the interpretability issues of un-
supervised language representations (Hollenstein
et al., 2019b; Gauthier and Levy, 2019; Abnar et al.,
2019). To this end, we rely on the probing task ap-
proach, a recently introduced technique within the
area of NLMs interpretability consisting of training
diagnostic classifiers to probe the presence of en-
coded linguistic properties inside contextual repre-
sentations (Conneau et al., 2018; Zhang and Bow-
man, 2018). We observe that fine-tuning on on-
line and offline complexity produces a consequent
increase in probing performances for complexity-
related features during our probing experiments.
This investigation has the specific purpose of study-
ing whether and how learning a new task affects
the linguistic properties encoded in pretrained rep-
resentations. In fact, while pre-trained models have
been widely studied using probing methods, the
effect of fine-tuning on encoded information was
seldom investigated. For example, Merchant et al.
(2020) found that fine-tuning does not impact heav-
ily the linguistic information implicitly learned by
the model, especially when considering a super-
vised probe closely related to a downstream task.
Miaschi et al. (2020) further demonstrated a posi-
tive correlation between the model’s ability to solve
a downstream task on a specific input sentence and
the related linguistic knowledge encoded in a lan-
guage model. Nonetheless, to our knowledge, no
previous work has taken into account sentence com-
plexity assessment as a fine-tuning task for NLMs.
Our results suggest that the model’s competencies
during training are interpretable from a linguistic
perspective and are possibly related to its predictive
capabilities for complexity assessment.

Contributions To our best knowledge, this is the
first work displaying the connection between online
and offline complexity metrics and studying how
they are represented by a neural language model.
We a) provide a comprehensive analysis of linguis-
tic phenomena correlated with eye-tracking data
and human perception of complexity, addressing

Metric Level Description Label

Offline
(Perceptual)

Perceived complexity annota-
tion on a 1-to-7 Likert scale.

PC

Online (Early) Duration of the first reading
pass in milliseconds.

FPD

Online
(Late)

Total fixation count FXC

Total duration of all fixations in
milliseconds

TFD

Online
(Contextual)

Duration of outbound regres-
sive saccades in milliseconds

TRD

Table 1: Sentence-level complexity metrics. We refer
to the entire set of gaze metrics as ET (eye-tracking).

Perc. Complexity Eye-tracking

domain news articles literature

aggregation avg. annotators words sum +
avg. participants

filtering IAA + duplicates min length

# sentences 1115 4041
# words 21723 52131
avg. sent. length 19.48 12.90
avg. word length 4.95 4.60

Table 2: Descriptive statistics of the two sentence-level
corpora after the preprocessing procedure.

similarities and differences from a linguistically-
motivated perspective across metrics and at dif-
ferent levels of granularity; b) compare the per-
formance of models using both explicit features
and unsupervised contextual representations when
predicting online and offline sentence complexity;
and c) show the natural emergence of complexity-
related linguistic phenomena in the representations
of language models trained on complexity metrics.1

2 Data and Preprocessing

Our study leverages two corpora, each capturing
different aspects of linguistic complexity:

Eye-tracking For online complexity metrics,
we used the monolingual English portion of
GECO (Cop et al., 2017), an eye-tracking cor-
pus based on the novel “The Mysterious Case at
Styles” by Agatha Christie. The corpus consists of
5,386 sentences annotated at word-level with eye-
movement records of 14 English native speakers.
We select four online metrics spanning multiple

1Code and data available at https://github.com/
gsarti/interpreting-complexity

https://github.com/gsarti/interpreting-complexity
https://github.com/gsarti/interpreting-complexity
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Annotation Level Linguistic Feature Description Label

Raw Text Sentence length (tokens), word length (characters) n_tokens, char_per_tok
Words and lemmas type/token ratio ttr_form, ttr_lemma

POS Tagging
Distribution of UD and language-specific POS tags upos_dist_*, xpos_dist_*
Lexical density lexical_density
Inflectional morphology of auxiliaries (mood, tense) aux_mood_*, aux_tense_*

Dependency Parsing

Syntactic tree depth parse_depth
Average and maximum length of dependency links avg_links_len, max_links_len
Number and average length of prepositional chains n_prep_chains, prep_chain_len
Relative ordering of main elements subj_pre, subj_post, obj_pre, obj_post
Distribution of dependency relations dep_dist_*
Distribution of verbal heads vb_head_per_sent
Distribution of principal and subordinate clauses princ_prop_dist, sub_prop_dist
Average length of subordination chains sub_chain_len
Relative ordering of subordinate clauses sub_post, sub_pre

Table 3: Description of sentence-level linguistic features employed in our study.

phases of cognitive processing, which are widely
considered relevant proxies for linguistic process-
ing in the brain (Demberg and Keller, 2008; Va-
sishth et al., 2013). We sum-aggregate those at
sentence-level and average their values across par-
ticipants to obtain the four online metrics presented
in Table 1. As a final step to make the corpus
more suitable for linguistic complexity analysis,
we remove all utterances with fewer than 5 words.
This design choice is adopted to ensure consistency
with the perceived complexity corpus by Brunato
et al. (2018).

Perceived Complexity For the offline evaluation
of sentence complexity, we used the English por-
tion of the corpus by Brunato et al. (2018). The cor-
pus contains 1,200 sentences taken from the Wall
Street Journal section of the Penn Treebank (Mc-
Donald et al., 2013) with uniformly-distributed
lengths ranging between 10 and 35 tokens. Each
sentence is associated with 20 ratings of perceived-
complexity on a 1-to-7 point scale. Ratings were
assigned by English native speakers on the Crowd-
Flower platform. To reduce the noise produced by
the annotation procedure, we removed duplicates
and sentences for which less than half of the an-
notators agreed on a score in the range µn ± σn,
where µn and σn are respectively the average and
standard deviation of all annotators’ judgments for
sentence n. Again, we average scores across anno-
tators to obtain a single metric for each sentence.

Table 2 presents an overview of the two corpora
after preprocessing. The resulting eye-tracking
(ET) corpus contains roughly four times more sen-
tences than the perceived complexity (PC) one,

with shorter words and sentences on average.

3 Analysis of Linguistic Phenomena

As a first step to investigate the connection between
the two complexity paradigms, we evaluate the cor-
relation of online and offline complexity labels with
linguistic phenomena modeling a number of prop-
erties of sentence structure. To this end, we rely
on the Profiling-UD tool (Brunato et al., 2020) to
annotate each sentence in our corpora and extract
from it ∼100 features representing their linguistic
structure according to the Universal Dependencies
formalism (Nivre et al., 2016). These features cap-
ture a comprehensive set of phenomena, from ba-
sic information (e.g. sentence and word length) to
more complex aspects of sentence structure (e.g.
parse tree depth, verb arity), including properties
related to sentence complexity at different levels of
description. A summary of most relevant features
in our analysis is presented in Table 3.

Figure 1 reports correlation scores for features
showing a strong connection (|ρ| > 0.3) with at
least one of the evaluated metrics. Features are
ranked using their Spearman’s correlation with
complexity metrics, and scores are leveraged to
highlight the relation between linguistic phenom-
ena and complexity paradigms. We observe that
features showing a significant correlation with eye-
tracking metrics are twice as many as those corre-
lating with PC scores and generally tend to have
higher coefficients, except for total regression dura-
tion (TRD). Nevertheless, the most correlated fea-
tures are the same across all metrics. As expected,
sentence length (n_tokens) and other related fea-
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Figure 1: Ranking of the most correlated linguistic fea-
tures for selected metrics. All Spearman’s correlation
coefficients have p < 0.001.

tures capturing aspects of structural complexity
occupy the top positions in the ranking. Among
those, we also find the length of dependency links
(max_links_len, avg_links_len) and the depth of
the whole parse tree or selected sub-trees, i.e. nom-
inal chains headed by a preposition (parse_depth,
n_prep_chains). Similarly, the distribution of sub-
ordinate clauses (sub_prop_dist, sub_post) is posi-
tively correlated with all metrics but with stronger
effect for eye-tracking ones, especially in presence
of longer embedded chains (sub_chain_len). In-
terestingly, the presence of numbers (upos_NUM,
dep_nummod) affects only the explicit perception
of complexity while it is never strongly correlated
with all eye-tracking metrics. This finding is ex-
pected since numbers are very short tokens and,
like other functional POS, were never found to be
strongly correlated with online reading in our re-
sults. Conversely, numerical information has been
identified as a factor hampering sentence readabil-
ity and understanding (Rello et al., 2013).

Unsurprisingly, sentence length is the most cor-
related predictor for all complexity metrics. Since
many linguistic features highlighted in our analysis
are strongly related to sentence length, we tested
whether they maintain a relevant influence when
this parameter is controlled. To this end, Spear-
man’s correlation was computed between features
and complexity tasks, but this time considering
bins of sentences having approximately the same
length. Specifically, we split each corpus into 6
bins of sentences with 10, 15, 20, 25, 30 and 35
tokens respectively, with a range of ±1 tokens per
bin to select a reasonable number of sentences for
our analysis.

Figure 2 reports the new rankings of the most
correlated linguistic features within each bin across
complexity metrics (|ρ| > 0.2). Again, we observe
that features showing a significant correlation with
complexity scores are fewer for PC bins than for
eye-tracking ones. This fact depends on controlling
for sentence length but also on the small size of
bins for the whole dataset. As in the coarse-grained
analysis, TRD is the eye-tracking metric less cor-
related to linguistic features, while the other three
(FXC, FPD, TFD) show a homogeneous behav-
ior across bins. For the latters, vocabulary-related
features (token-type ratio, average word length, lex-
ical density) are always ranked on top (and with
a positive correlation) in all bins, especially when
considering shorter sentences (i.e. from 10 to 20
tokens). For PC, this is true only for some of them
(i.e. word length and lexical density). At the same
time, features encoding numerical information are
still highly correlated with the explicit perception
of complexity in almost all bins. Interestingly, fea-
tures modeling subordination phenomena extracted
from fixed-length sentences exhibit a reverse trend
than when extracted from the whole corpus, i.e.
they are negatively correlated with judgments. If,
on the one hand, we expect an increase in the pres-
ence of subordination for longer sentences (pos-
sibly making sentences more convoluted), on the
other hand, when length is controlled, our findings
suggest that subordinate structures are not necessar-
ily perceived as a symptom of sentence complex-
ity. Our analysis also highlights that PC’s relevant
features are significantly different from those cor-
related to online eye-tracking metrics when con-
trolling for sentence length. This aspect wasn’t
evident from the previous coarse-grained analysis.
We note that, despite controlling sentence length,



52

Figure 2: Rankings of the most correlated linguistic features for metrics within length-binned subsets of the two
corpora. Coefficients ≥ 0.2 or ≤ -0.2 are highlighted, and have p < 0.001. (Bins from 10 to 35 have sizes of 173,
163, 164, 151, 165, and 147 sentences for PC and 899, 568, 341, 215, 131, and 63 sentences for gaze metrics.)

gaze measures are still significantly connected to
length-related phenomena. This can be possibly
due to the ±1 margin applied for sentence selec-
tion and the high sensitivity of behavioral metrics
to small changes in the input.

4 Predicting Online and Offline
Linguistic Complexity

Given the high correlations reported above, we pro-
ceed to quantify the importance of explicit linguis-
tic features from a modeling standpoint. Table 4
presents the RMSE and R2 scores of predictions
made by baselines and models for the selected com-

plexity metrics. Performances are tested with a 5-
fold cross-validation regression with fixed random
seed on each metric. Our baselines use average
metric scores of all training sentences (Average)
and average scores of sentences binned by their
length in # of tokens (Length-binned average) as
predictions. The two linear SVM models leverage
explicit linguistic features, using respectively only
n_tokens (SVM length) and the whole set of ∼100
features (SVM feats). Besides those, we also test
the performances of a state-of-the-art Transformer
neural language model relying entirely on contex-
tual word embeddings. We selected ALBERT as a



53

PC FXC FPD TFD TRD

RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

Average .87 .00 6.17 .06 1078 .06 1297 .06 540 .03
Length-binned average .53 .62 2.36 .86 374 .89 532 .85 403 .45

SVM length .54 .62 2.19 .88 343 .90 494 .86 405 .45
SVM feats .44 .74 1.77 .92 287 .93 435 .89 400 .46

ALBERT .44 .75 1.98 .91 302 .93 435 .90 382 .49

Table 4: Average Root-Mean-Square Error andR2 for complexity predictions of two average baselines, two SVMs
relying on explicit features and a pretrained language model with contextualized word embeddings using 5-fold
cross-validation. ALBERT learns eye-tracking metrics in a multitask setting over parallel annotations.

lightweight yet effective alternative to BERT (De-
vlin et al., 2019) for obtaining contextual word
representations, using its last-layer [CLS] sentence
embedding as input for a linear regressor during
fine-tuning and testing. We selected the last layer
representations, despite having strong evidence on
the importance of intermediate representation in
encoding language properties, because we aim to
investigate how final layers encode complexity-
related competences. Given the availability of par-
allel eye-tracking annotations, we train ALBERT
using multitask learning with hard parameter shar-
ing (Caruana, 1997) on gaze metrics.2

From results in Table 4 we note that: i) the
length-binned average baseline is very effective
in predicting complexity scores and gaze metrics,
which is unsurprising given the extreme correla-
tion between length and complexity metrics pre-
sented in Figure 1; ii) the SVM feats model shows
considerable improvements if compared to the
length-only SVM model for all complexity met-
rics, highlighting how length alone accounts for
much but not for the entirety of variance in com-
plexity scores; and iii) ALBERT performs on-par
with the SVM feats model on all complexity met-
rics despite the small dimension of the fine-tuning
corpora and the absence of explicit linguistic in-
formation. A possible interpretation of ALBERT’s
strong performances is that the model implicitly
develops competencies related to phenomena en-
coded by linguistic features while training on on-
line and offline complexity prediction. We explore
this perspective in Section 5.

As a final step in the study of feature-based
models, we inspect the importance accorded by
the SVM feats model to features highlighted in

2Additional information on parameters and chosen training
approach is presented in Appendix A.

previous sections. Table 5 presents coefficient
ranks produced by SVM feats for all sentences
and for the 10±1 length bin, which was selected
as the broadest subset. Despite evident similar-
ities with the previous correlation analysis, we
encounter some differences that are possibly at-
tributable to the model’s inability in modeling non-
linear relations. In particular, the SVM model
still finds sentence length and related structural
features highly relevant for all complexity met-
rics. However, especially for PC, lexical features
also appear in the top positions (e.g. lexical den-
sity, ttr_lemma, char_per_tok), as well as specific
features related to verbal predicate information
(e.g. xpos_dist_VBZ,_VBN). This holds both for
all sentences, and when considering single length-
binned subsets. While in the correlation analysis
eye-tracking metrics were almost indistinguishable,
those behave quite differently when considering
how linguistic features are used for inference by
the linear SVM model. In particular, the fixation
count metric (FXC) consistently behaves in a differ-
ent way if compared to other gaze measures, even
when controlling for length.

5 Probing Linguistic Phenomena in
ALBERT Representations

As shown in Table 4, ALBERT performances on
the PC and eye-tracking corpora are comparable
to those obtained using a linear SVM with explicit
linguistic features. To investigate if ALBERT en-
codes the linguistic knowledge that we identified
as strongly correlated with online and perceived
sentence complexity during training and prediction,
we adopt the probing task testing paradigm. The
aim of this analysis is two-fold: i) probing the pres-
ence of complexity-related information encoded by
ALBERT representations during the pre-training
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All Sentences Bin 10±1

PC FXC FPD TFD TRD PC FXC FPD TFD TRD

n_tokens 1 1 1 1 1 -36 5 1 1 2
char_per_tok 2 2 12 10 16 3 1 3 3 19
xpos_dist_VBN 5 -37 76 77 75 28 9 26 21 42
avg_links_len 6 -6 7 7 7 11 -8 -23 -30 -46
n_prep_chains 7 3 10 9 8 -44 16 50 41 48
dep_dist_compound 9 7 58 61 49 13 12 60 51 47
vb_head_per_sent 10 4 4 6 3 2 -9 31 36 -33
max_links_len 56 5 2 2 2 -32 -30 36 30 -39
parse_depth 34 -36 3 3 4 -17 -1 22 24 12
sub_post 28 -33 8 8 9 -28 -40 33 34 48
dep_dist_conj 17 31 11 13 10 37 -37 46 56 -48
upos_dist_NUM 15 39 70 72 72 4 / / / /
ttr_form -42 28 77 74 -26 17 2 3 2 1
prep_chain_len 53 12 16 16 14 -48 -23 43 39 42
sub_chain_len 24 -14 19 19 32 -30 -43 56 55 35
dep_dist_nsubj 11 -16 -8 -8 -9 -2 31 -18 -19 -29
upos_dist_PRON -16 -13 -7 -6 -8 -44 -21 -5 -8 -38
dep_dist_punct -21 -3 -4 -4 -4 -20 -3 -2 -2 -2
dep_dist_nmod -20 -2 55 50 50 -9 3 28 17 15
xpos_dist_. -11 15 -1 -1 -1 -6 43 -24 -30 32
xpos_dist_VBZ -9 20 82 -33 -30 24 14 20 40 -47
dep_dist_aux -8 17 -30 -29 77 32 27 39 31 45
dep_dist_case -7 -34 25 22 34 8 -6 62 44 -21
ttr_lemma -4 21 -22 -28 -11 -4 -45 4 4 9
dep_dist_det -3 52 42 40 21 -27 -36 17 14 5
sub_prop_dist -2 29 6 5 5 26 28 63 59 21
lexical_density -1 -1 26 25 20 -37 -5 5 6 10

Table 5: Rankings based on the coefficients assigned by SVM feats for all metrics. Top ten positive and negative
features are marked with orange and cyan respectively. “/” marks features present in less than 5% of sentences.

process, especially in relation to analyzed features;
and ii) verifying whether, and in which respect, this
competence is affected by a fine-tuning on com-
plexity assessment tasks.

To conduct the probing experiments, we aggre-
gate three UD English treebanks representative of
different genres, namely: EWT, GUM and Par-
TUT by Silveira et al. (2014); Zeldes (2017);
Sanguinetti and Bosco (2015), respectively. We
thus obtain a corpus of 18,079 sentences and use
the Profiling-UD tool to extract n sentence-level
linguistic features Z = z1, . . . , zn from gold lin-
guistic annotations. We then generate representa-
tions A(x) of all sentences in the corpus using the
last-layer [CLS] embedding of a pretrained AL-
BERT base model without additional fine-tuning,
and train n single-layer perceptron regressors gi :
A(x)→ zi that learn to map representations A(x)
to each linguistic feature zi. We finally evaluate
the error and R2 scores of each gi as a proxy to
the quality of representations A(x) for encoding
their respective linguistic feature zi. We repeat

the same evaluation for ALBERTs fine-tuned re-
spectively on perceived complexity (PC) and on all
eye-tracking labels with multitask learning (ET),
averaging scores with 5-fold cross-validation. Re-
sults are shown on the left side of Table 6.

As we can see, ALBERT’s last-layer sentence
representations have relatively low knowledge of
complexity-related probes, but the performance on
them highly increases after fine-tuning. Specif-
ically, a noticeable improvement is obtained on
features that were already better encoded in base
pretrained representation, i.e. sentence length and
related features, suggesting that fine-tuning possi-
bly accentuates only properties already well-known
by the model, regardless of the target task. To ver-
ify that this isn’t the case, we repeat the same ex-
periments on ALBERT models fine-tuned on the
smallest length-binned subset (i.e. 10±1 tokens)
presented in previous sections. The right side of
Table 6 presents these results. We know from our
length-binned analysis of Figure 2 that PC scores
are mostly uncorrelated with length phenomena,
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Base PC ET PC Bin 10±1 ET Bin 10±1

RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

n_tokens 8.19 .26 4.66 .76 2.87 .91 8.66 .18 6.71 .51
parse_depth 1.47 .18 1.18 .48 1.04 .60 1.50 .16 1.22 .43
vb_head_per_sent 1.38 .15 1.26 .30 1.14 .42 1.44 .09 1.30 .25
xpos_dist_. .05 .13 .04 .41 .04 .42 .04 .18 .04 .38
avg_links_len .58 .12 .53 .29 .52 .31 .59 .10 .56 .20
max_links_len 5.20 .12 4.08 .46 3.75 .54 5.24 .11 4.73 .28
n_prep_chains .74 .11 .67 .26 .66 .29 .72 .14 .69 .21
sub_prop_dist .35 .09 .33 .13 .31 .22 .34 .05 .32 .15
upos_dist_PRON .08 .09 .08 .14 .08 .07 .07 .23 .08 .15
upos_dist_NUM .05 .08 .05 .06 .05 .02 .05 .16 .05 .06
dep_dist_nsubj .06 .08 .06 .10 .06 .05 .05 .17 .06 .11
char_per_tok .89 .07 .87 .12 .90 .05 .82 .22 .86 .14
prep_chain_len .60 .07 .57 .17 .56 .19 .59 .12 .56 .18
sub_chain_len .70 .07 .67 .15 .62 .26 .71 .04 .66 .16
dep_dist_punct .07 .06 .07 .06 .07 .14 .07 .06 .07 .14
dep_dist_nmod .05 .06 .05 .07 .05 .06 .05 .09 .05 .09
sub_post .44 .05 .46 .12 .44 .18 .47 .05 .45 .14
dep_dist_case .07 .05 .06 .06 .07 .08 .07 .07 .07 .10
lexical_density .14 .05 .13 .03 .13 .03 .13 .13 .13 .13
dep_dist_compound .06 .04 .06 .05 .06 .03 .06 .10 .06 .07
dep_dist_conj .04 .03 .04 .04 .04 .04 .05 .02 .04 .03
ttr_form .08 .03 .08 .05 .08 .05 .08 .05 .08 .05
dep_dist_det .06 .03 .06 .02 .06 .04 .06 .03 .06 .03
dep_dist_aux .04 .02 .04 .01 .04 .01 .04 .06 .04 .04
xpos_dist_VBN .03 .01 .03 .00 .03 .00 .03 .01 .03 .00
xpos_dist_VBZ .04 .01 .04 .01 .04 .02 .04 .02 .04 .02
ttr_lemma .09 .01 .09 .06 .09 .06 .09 .04 .09 .03

Table 6: RMSE and R2 scores for diagnostic regressors trained on ALBERT representations, respectively, without
fine-tuning (Base), with PC and eye-tracking (ET) fine-tuning on all data (left) and on the 10 ± 1 length-binned
subset (right). Bold values highlight relevant increases in R2 from Base.

while ET scores remain significantly affected de-
spite our controlling of sequence size. This also
holds for length-binned probing task results, where
the PC model seems to neglect length-related prop-
erties in favor of other ones, which were the same
highlighted in our fine-grained correlation analy-
sis (e.g. word length, numbers, explicit subjects).
The ET-trained model confirms the same behav-
ior, retaining strong but lower performances for
length-related features. We note that, for all met-
rics, features that were highly relevant only for the
SVM predictions, such as those encoding verbal
inflectional morphology or vocabulary-related ones
(Table 5), are not affected by the fine-tuning pro-
cess. Despite obtaining the same accuracy of a
SVM, the neural language model seem to address
the task more similarly to humans when accounting
for correlation scores (Figure 2). A more extensive
analysis of the relation between human behavior
and predictions by different models is deemed in-
teresting for future work.

To conclude, although higher probing tasks per-
formances after fine-tuning on complexity met-
rics should not be interpreted as direct proof that
the neural language model is exploiting newly-
acquired morpho-syntactic and syntactic informa-
tion, they suggest an importance shift in NLM rep-
resentation, triggered by fine-tuning, that produces
an encoding of linguistic properties able to better
model the human assessment of complexity.

6 Conclusion

This paper investigated the connection between
eye-tracking metrics and the explicit perception of
sentence complexity from an experimental stand-
point. We performed an in-depth correlation analy-
sis between complexity scores and sentence-level
properties at different granularity levels, highlight-
ing how all metrics are strongly connected to sen-
tence length and related properties, but also re-
vealing different behaviors when controlling for
length. We then evaluated models using explicit
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linguistic features and unsupervised word embed-
dings to predict complexity, showing comparable
performances across metrics. We finally tested the
encoding of linguistic properties in the contextual
representations of a neural language model, not-
ing the natural emergence of task-related linguistic
properties within the model’s representations after
the training process. We thus conjecture that a re-
lation subsists between the linguistic knowledge
acquired by the model during the training proce-
dure and its downstream performances on tasks
for which the morphosyntactic and syntactic struc-
tures play a relevant role. For the future, we would
like to test comprehensively the effectiveness of
tasks inspired by the human language learning as
intermediate steps to train more robust and parsi-
monious neural language models.

7 Broader Impact and Ethical
Perspectives

The findings described in this work are mostly
intended to evaluate recent efforts in the compu-
tational modeling of linguistic complexity. This
said, some of the models and procedures described
can be clearly beneficial to society. For exam-
ple, using models trained to predict reading pat-
terns may be used in educational settings to iden-
tify difficult passages that can be simplified, im-
proving reading comprehension for students in a
fully-personalizable way. However, it is essen-
tial to recognize the potentially malicious usage
of such systems. The integration of eye-tracking
systems in mobile devices, paired with predictive
models presented in this work, could be used to
build harmful surveillance systems and advertise-
ment platforms using gaze predictions for extreme
behavioral manipulation. In terms of research im-
pact, the experiments presented in this work may
provide useful insights into the behavior of neural
language models for researchers working in the
fields of interpretability in NLP and computational
psycholinguistics.
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Model & Tokenizer Parameters

heads dimension 1-Layer Dense
max seq. length 128
embed. dropout 0.1
seed 42

lowercasing 7

tokenization SentencePiece
vocab. size 30000

Training Parameters

PC ET Probes

fine-tuning standard multitask multitask
freeze LM w 7 7 3

weighted loss - 3 7

CV folds 5 5 5
early stopping 3 3 7

training epochs 15 15 5
patience 5 5 -
evaluation steps 20 40 -
batch size 32 32 32
learning rate 1e-5 1e-5 1e-5

Table 7: Model, tokenizer and training parameters used
for fine-tuning ALBERT on complexity metrics.

A Parametrization and Fine-tuning
Details for ALBERT

We leverage the pretrained albert-base-v2 check-
point available in the HuggingFace’s Trans-
former framework (Wolf et al., 2020) and use
adapted scripts and classes from the FARM frame-
work (Deepset, 2019) to perform multitask learn-
ing on eye-tracking metrics. Table 7 presents the
parameters used to define models and training pro-
cedures for experiments in Sections 4 and 5.

During training we compute MSE loss scores
for task-specific heads for the four eye-tracking
metrics (`FXC , `FPD, `TFD, `TRD) and perform
a weighted sum to obtain the overall loss score `ET

to be optimized by the model:

`ET = `FXC + `FPD + `TFD + (`TRD × 0.2)

The use of `TRD was shown to have a positive im-
pact on the overall predictive capabilities of the
model only when weighted to prevent it from dom-
inating the `ET sum.

Probing tasks on linguistic features are per-
formed by freezing the language model weights
and training 1-layer heads as probing regressors
over the last-layer [CLS] token for each feature. In
this setting no loss weighting is applied, and the
regressors are trained for 5 epochs without early
stopping on the aggregated UD dataset.

B Examples of Sentences from
Complexity Corpora

Table 8 presents examples of sentences randomly
selected from the two corpora leveraged in this
study. We highlight how eye-tracking scores show
a very consistent relation with sentence length,
while PC scores are much more variable. This fact
suggests that the offline nature of PC judgments
makes them less related to surface properties and
more connected to syntax and semantics.

C Models’ Performances on
Length-binned Sentences

Similarly to the approach adopted in Section 3, we
test the performances of models on length-binned
data to verify if performances on length-controlled
sequences are consistent with those achieved on the
whole corpora. RMSE scores averaged with 5-fold
cross validation over the length-binned sentences
subsets are presented in Figure 3. We note that
ALBERT outperforms the SVM with linguistic fea-
tures on nearly all lengths and metrics, showing the
largest gains on intermediate bins for PC and gaze
durations (FPD, TFD, TRD). Interestingly, overall
performances of models follow a length-dependent
increasing trend for eye-tracking metrics, but not
for PC. We believe this behavior can be explained
in terms of the high sensibility to length previously
highlighted for online metrics, as well as the vari-
ability in bin dimensions (especially for the last bin
containing only 63 sentences). We finally observe
that the SVM model based on explicit linguistic
features (SVM feats) performs poorly on larger
bins for all tasks, sometimes being even worse than
the bin-average baseline. While we found this be-
havior surprising given the positive influence of
features highlighted in Table 4, we believe this is
mostly due to the small dimension of longer bins,
which negatively impacts the generalization capa-
bilities of the regressor. The relatively better scores
achieved by ALBERT in those, instead, support the
effectiveness of information stored in pretrained
language representations when a limited number of
examples is available.
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Length bin Sentence PC Score

Bin 10±1 It hasn’t made merger overtures to the board. 2.15
Bin 15±1 For most of the past 30 years, the marriage was one of convenience. 1.45
Bin 20±1 Shanghai Investment & Trust Co., known as Sitco, is the city’s main financier for trading business. 3.35
Bin 25±1 For fiscal 1988, Ashland had net of $224 million, or $4.01 a share, on revenue of $7.8 billion. 4.55
Bin 30±1 C. Olivetti & Co., claiming it has won the race in Europe to introduce computers based on a

powerful new microprocessor chip, unveiled its CP486 computer yesterday.
4.25

Bin 35±1 The White House said he plans to hold a series of private White House meetings, mostly with
Senate Democrats, to try to persuade lawmakers to fall in line behind the tax cut.

2.9

Length bin Sentence FPD FXC TFD TRD

Bin 10±1 Evidently there was a likelihood of John Cavendish being acquitted. 1429 7.69 1527 330
Bin 15±1 I come now to the events of the 16th and 17th of that month. 1704 9.71 1979 467
Bin 20±1 Who on earth but Poirot would have thought of a trial for murder as a

restorer of conjugal happiness!
2745 15.38 3178 1003

Bin 25±1 He knew only too well how useless her gallant defiance was, since it was
not the object of the defence to deny this point.

3489 19.77 4181 1012

Bin 30±1 I could have told him from the beginning that this obsession of his over
the coffee was bound to end in a blind alley, but I restrained my tongue.

3638 21.36 4190 1010

Bin 35±1 There was a breathless hush, and every eye was fixed on the famous
London specialist, who was known to be one of the greatest authorities of
the day on the subject of toxicology.

4126 23.14 4814 1631

Table 8: Example of sentences selected from all the length-binned subset for the Perceived Complexity Corpus (top)
and the GECO corpus (bottom). Scores are aggregated following the procedure described in Section 2. Reading
times (FPD, TFD, TRD) are expressed in milliseconds.

Figure 3: Average Root Mean Square Error (RMSE) scores for models in Table 4, performing 5-fold cross-
validation on the same length-binned subsets used for the analysis of Figure 2. Lower scores are better.


