
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Short Papers), pages 979–986

August 1–6, 2021. ©2021 Association for Computational Linguistics

979

Efficient Passage Retrieval with Hashing for Open-domain
Question Answering

Ikuya Yamada†,‡ Akari Asai∗ Hannaneh Hajishirzi∗,§
†Studio Ousia ‡RIKEN ∗University of Washington

§Allen Institute for AI
ikuya@ousia.jp {akari,hannaneh}@cs.washington.edu

Abstract

Most state-of-the-art open-domain question
answering systems use a neural retrieval model
to encode passages into continuous vectors
and extract them from a knowledge source.
However, such retrieval models often require
large memory to run because of the massive
size of their passage index. In this paper, we
introduce Binary Passage Retriever (BPR), a
memory-efficient neural retrieval model that
integrates a learning-to-hash technique into
the state-of-the-art Dense Passage Retriever
(DPR) (Karpukhin et al., 2020) to represent
the passage index using compact binary codes
rather than continuous vectors. BPR is trained
with a multi-task objective over two tasks: ef-
ficient candidate generation based on binary
codes and accurate reranking based on con-
tinuous vectors. Compared with DPR, BPR
substantially reduces the memory cost from
65GB to 2GB without a loss of accuracy on
two standard open-domain question answering
benchmarks: Natural Questions and TriviaQA.
Our code and trained models are available
at https://github.com/studio-ousia/

bpr.

1 Introduction

Open-domain question answering (QA) is the task
of answering arbitrary factoid questions based on a
knowledge source (e.g., Wikipedia). Recent state-
of-the-art QA models are typically based on a two-
stage retriever–reader approach (Chen et al., 2017)
using a retriever that obtains a small number of
relevant passages from a large knowledge source
and a reader that processes these passages to pro-
duce an answer. Most recent successful retrievers
encode questions and passages into a common con-
tinuous embedding space using two independent
encoders (Lee et al., 2019; Karpukhin et al., 2020;
Guu et al., 2020). Relevant passages are retrieved
using a nearest neighbor search on the index con-
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Figure 1: Architecture of BPR, a BERT-based model
generating compact binary codes for questions and pas-
sages. The passages are retrieved in two stages: (1)
efficient candidate generation based on the Hamming
distance using the binary code of the question and (2)
accurate reranking based on the inner product using the
continuous embedding of the question.

taining the passage embeddings with a question
embedding as a query.

These retrievers often outperform classical meth-
ods (e.g., BM25), but they incur a large memory
cost due to the massive size of their passage index,
which must be stored entirely in memory at runtime.
For example, the index of a common knowledge
source (e.g., Wikipedia) requires dozens of giga-
bytes.1 A reduction in the index size is critical
for real-world QA that requires large knowledge
sources such as scientific databases (e.g., PubMed)
and web-scale corpora (e.g., Common Crawl).

In this paper, we introduce Binary Passage Re-
triever (BPR), which learns to hash continuous
vectors into compact binary codes using a multi-
task objective that simultaneously trains the en-
coders and hash functions in an end-to-end man-
ner (see Figure 1). In particular, BPR integrates
our learning-to-hash technique into the state-of-
the-art Dense Passage Retriever (DPR) (Karpukhin
et al., 2020) to drastically reduce the size of the

1The passage index of the off-the-shelf DPR model
(Karpukhin et al., 2020) requires 65GB for indexing the 21M
English Wikipedia passages, which have 13GB storage size.

https://github.com/studio-ousia/bpr
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passage index by storing it as binary codes. BPR
computes binary codes by applying the sign func-
tion to continuous vectors. As the sign function
is not compatible with back-propagation, we ap-
proximate it using the scaled tanh function during
training. To improve search-time efficiency while
maintaining accuracy, BPR is trained to obtain both
binary codes and continuous embeddings for ques-
tions with multi-task learning over two tasks: (1)
candidate generation based on the Hamming dis-
tance using the binary code of the question and
(2) reranking based on the inner product using the
continuous embedding of the question. The former
task aims to detect a small number of candidate
passages efficiently from the entire passages and
the latter aims to rerank the candidate passages
accurately.

We conduct experiments using the Natural Ques-
tions (NQ) (Kwiatkowski et al., 2019) and Triv-
iaQA (TQA) (Joshi et al., 2017) datasets. Com-
pared with DPR, our BPR achieves similar QA
accuracy and competitive retrieval performance
with a substantially reduced memory cost from
65GB to 2GB. Furthermore, using an improved
reader, we achieve results that are competitive with
those of the current state of the art in open-domain
QA. Our code and trained models are available at
https://github.com/studio-ousia/bpr.

2 Related Work

Retrieval for Open-domain QA Many recent
open-domain QA models depend on the retriever to
select relevant passages from a knowledge source.
Early works involved the adoption of sparse rep-
resentations (Chen et al., 2017) for the retriever,
whereas recent works (Lee et al., 2019; Guu et al.,
2020; Karpukhin et al., 2020) have often adopted
dense representations based on neural networks.
Our work is an extension of DPR (Karpukhin et al.,
2020), which has been used in recent state-of-the-
art QA models (Lewis et al., 2020; Izacard and
Grave, 2020). Concurrent with our work, Izac-
ard et al. (2020) attempted to reduce the memory
cost of DPR using post-hoc product quantization
with dimension reduction and filtering of passages.
However, they observed a significant degradation
in the QA accuracy compared with their full model.
We adopt the learning-to-hash method with our
multi-task objective and substantially compress the
index without losing accuracy.

Learning to Hash The objective of hashing is to
reduce the memory and search-time cost of the near-
est neighbor search by representing data points us-
ing compact binary codes. Learning to hash (Wang
et al., 2016, 2018) is a method for learning hash
functions in a data-dependent manner. Recently,
many deep-learning-to-hash methods have been
proposed (Lai et al., 2015; Zhu et al., 2016; Li
et al., 2016; Cao et al., 2017, 2018) to jointly learn
feature representations and hash functions in an
end-to-end manner. We follow Cao et al. (2017) to
implement our hash functions. Similar to our work,
Xu and Li (2020) used the learning-to-hash method
to reduce the computational cost of the answer sen-
tence selection task, the objective of which is to
select an answer sentence from a limited number
of candidates (up to 500 in their experiments). Our
work is different from the aforementioned work
because we focus on efficient and scalable pas-
sage retrieval from a large knowledge source (21M
Wikipedia passages in our experiments) using an ef-
fective multi-task approach. In addition to hashing-
based methods, improving approximate neighbor
search has been actively studied (Jégou et al., 2011;
Malkov and Yashunin, 2020; Guo et al., 2020). We
use Jégou et al. (2011) and Malkov and Yashunin
(2020) as baselines in our experiments.

3 Model

Given a question and large-scale passage collection
such as Wikipedia, a retriever finds relevant pas-
sages that are subsequently processed by a reader.
Our retriever is built on DPR (Karpukhin et al.,
2020), which is a retriever based on BERT (Devlin
et al., 2019). In this section, we first introduce DPR
and then explain our model.

3.1 Dense Passage Retriever (DPR)
DPR uses two independent BERT encoders to en-
code question q and passage p into d-dimensional
continuous embeddings:

eq = BERTq(q), ep = BERTp(p), (1)

where eq ∈ Rd and ep ∈ Rd. We use the uncased
version of BERT-base; therefore, d = 768. The out-
put representation of the [CLS] token is obtained
from the encoder. To create passage p, the passage
title and text are concatenated ([CLS] title [SEP]
passage [SEP]). The relevance score of passage
p, given question q, is computed using the inner
product of the corresponding vectors, 〈eq, ep〉.

https://github.com/studio-ousia/bpr
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Training Let D = {〈qi, p+i , p
−
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be m training instances consisting of a question
qi, a passage that answers the question (positive
passage), p+i , and n passages that are irrelevant for
the question (negative passages), p−i,j . The model is
trained by minimizing the negative log-likelihood
of the positive passage:
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〉) . (2)

Inference DPR creates a passage index by apply-
ing the passage encoder to each passage in the
knowledge source. At runtime, it retrieves the
top-k passages employing maximum inner product
search with the question embedding as a query.

3.2 Model Architecture

Figure 1 shows the architecture of BPR. BPR builds
a passage index by computing a binary code for
each passage in the knowledge source. To compute
the binary codes for questions and passages, we
add a hash layer on top of the question and pas-
sage encoders of DPR. Given embedding e ∈ Rd

computed by an encoder, the hash layer computes
its binary code, h ∈ {−1, 1}d, as

h = sign(e), (3)

where sign(·) is the sign function such that for
i = 1, ..., d, sign(hi) = 1 if hi > 0; otherwise,
sign(hi) = −1. However, the sign function is
incompatible with back-propagation because its
gradient is zero for all non-zero inputs and is ill-
defined at zero. Inspired by Cao et al. (2017), we
address this by approximating the sign function
using the scaled tanh function during the training:

h̃ = tanh(βe), (4)

where β is a scaling parameter. When β increases,
the function gradually becomes non-smooth, and
as β → ∞, it converges to the sign function.
At each training step, we increase β by setting
β =

√
γ · step+ 1, where step is the number of

finished training steps. We set γ = 0.1 and explain
the effects of changing it in Appendix B.

3.3 Two-stage Approach

To reduce the computational cost without losing
accuracy, BPR splits the task into candidate genera-
tion and reranking stages. At the candidate genera-
tion stage, we efficiently obtain the top-l candidate

passages using the Hamming distance between the
binary code of question hq and that of each pas-
sage, hp. We then rerank the l candidate passages
using the inner product between the continuous
embedding of question eq and hp and select the
top-k passages from the reranked candidates. We
perform candidate generation using binary code
hq for search-time efficiency, and reranking using
expressive continuous embedding eq for accuracy.
We set l = 1000 and describe the effects of using
different l values in Appendix C.

3.4 Training
To compute effective representations for both the
candidate generation and reranking stages, we com-
bine the loss functions of the two tasks:

L = Lcand + Lrerank. (5)

Task #1 for Candidate Generation The objec-
tive of this task is to improve candidate generation
using the ranking loss with the approximated hash
code of question h̃q and that of passage h̃p:

Lcand =
∑n

j=1max(0,−(〈h̃qi
, h̃p+i

〉+ 〈h̃qi
, h̃p−i,j

〉) + α). (6)

We setα = 2 and investigate the effects of selecting
different α values and using the cross-entropy loss
instead of the ranking loss in Appendix D. Note that
the retrieval performance based on the Hamming
distance can be optimized using this loss function
because the Hamming distance and inner product
can be used interchangeably for binary codes.2

Task #2 for Reranking We improve the rerank-
ing stage using the following loss function:

Lrerank = − log
exp(〈e

q
i
, h̃

p+
i
〉)

exp(〈e
q
i
, h̃

p+
i
〉)+

∑n
j=1 exp(〈eq

i
, h̃

p−
i,j
〉)

. (7)

This function is equivalent to Ldpr, with the excep-
tion that h̃p is used instead of ep.

3.5 Algorithms for Candidate Generation
To perform candidate generation, we test two stan-
dard algorithms: (1) linear scan based on efficient
Hamming distance computation,3 and (2) hash ta-
ble lookup implemented by building a hash table
that maps each binary code to the corresponding
passages and querying it multiple times by increas-
ing the Hamming radius until we obtain l passages.

2Given two binary codes, hi and hj , there exists a relation-
ship between their Hamming distance, distH(·, ·), and inner
product, 〈·, ·〉: distH(hi,hj) =

1
2
(const− 〈hi,hj〉).

3The Hamming distance can be computed more efficiently
than the inner product using the POPCNT CPU instruction.
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Model Top 1 Top 20 Top 100 QA Acc. (EM) Index
size

Query
timeNQ TQA NQ TQA NQ TQA NQ TQA

DPR 46.0 53.5 78.4 79.4 85.4 85.0 41.5 56.8 64.6GB 456.9ms
DPR + HNSW 45.7 53.2 78.8 78.8 85.2 84.2 41.2 56.6 151.0GB 1.8ms

DPR + Simple LSH 21.5 28.4 63.9 65.2 77.2 76.9 35.8 48.1 2.0GB 28.8ms
DPR + PQ 32.5 42.8 72.2 73.2 81.2 80.4 38.4 52.0 2.0GB 44.0ms

BPR (linear scan; l = 1000) 41.1 49.7 77.9 77.9 85.7 84.5 41.6 56.8 2.0GB 85.3ms
BPR (hash table lookup; l = 1000) " " " " " " " " 2.2GB 38.1ms

Table 1: Top k recall and exact match (EM) QA accuracy on test sets with the index size and query time of BPR
and baselines. All models use the same reader based on BERT-base to evaluate the QA accuracy.

Model Top 1 Top 20 Top 100 Query
timeNQ TQA NQ TQA NQ TQA

BPR (l = 1000) 41.1 49.7 77.9 77.9 85.7 84.5 38.1ms
BPR w/o reranking 38.0 46.1 76.5 75.9 84.9 83.4 37.9ms
BPR w/o candidate generation 41.1 49.7 77.9 77.9 85.7 84.5 457.8ms

Table 2: Results of our ablation study. Hash table lookup is used to implement candidate generation.

4 Experiments

Datasets We conduct experiments using the NQ
and TQA datasets and English Wikipedia as the
knowledge source. We use the following pre-
processed data available on the DPR website:4

Wikipedia corpus containing 21M passages and the
training/validation datasets for the retriever contain-
ing multiple positive, random negative, and hard
negative passages for each question.

Baselines We compare our BPR with DPR with
linear scan and DPR with Hierarchical Naviga-
ble Small World (HSNW) graphs (Malkov and
Yashunin, 2020) – which builds a multi-layer struc-
ture consisting of a hierarchical set of proximity
graphs, following Karpukhin et al. (2020) – for
our primary baselines. We also apply two popular
post-hoc quantization algorithms to the DPR pas-
sage index: simple locality sensitive hashing (LSH)
(Neyshabur and Srebro, 2015) and product quan-
tization (PQ) (Jégou et al., 2011). We configure
these algorithms such that their passage representa-
tions have the same size as that of BPR: the number
of bits per passage of the LSH is set as 768, and
the number of centroids and the code size of the
PQ are configured as 96 and 8 bits, respectively.

Experimental settings Our experimental setup
follows Karpukhin et al. (2020). We evaluate our
model based on its top-k recall (the percentage of
positive passages in the top-k passages), retrieval

4https://github.com/facebookresearch/
DPR

efficiency (the index size and query time), and exact
match (EM) QA accuracy measured by combining
our model with a reader. We use the same BERT-
based reader as that used by DPR. Our model is
trained using the same method as DPR. We conduct
experiments on servers with two Intel Xeon E5-
2698 v4 CPUs and eight Nvidia V100 GPUs. The
passage index are built using Faiss (Johnson et al.,
2019). Further details are provided in Appendix A.

4.1 Results

Main results Table 1 presents the top-k recall
(for k ∈ {1, 20, 100}), EM QA accuracy, index
size, and query time achieved by BPR and base-
lines on the NQ and TQA test sets. BPR achieves
similar or even better performance than DPR in
both retrieval with k ≥ 20 and EM accuracy with
a substantially reduced index size from 65GB to
2GB. We observe that BPR performs worse than
DPR for k = 1, but usually the recall in small k is
less important because the reader usually produces
an answer based on k ≥ 20 passages. BPR signifi-
cantly outperforms all quantization baselines. The
query time of BPR is substantially shorter than that
of DPR. Hash table lookup is faster than linear scan
but requires slightly more storage. DPR+HNSW
is faster than BPR; however, it requires 151GB of
storage.

Ablations Table 2 shows the results of our ab-
lation study. Disabling the reranking clearly de-
grades performance, demonstrating the effective-
ness of our two-stage approach. Disabling the can-

https://github.com/facebookresearch/DPR
https://github.com/facebookresearch/DPR
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Model Pretrained model #params NQ TQA

RAG (Lewis et al., 2020) BART-large 406M 44.5 56.1
FiD (base) (Izacard and Grave, 2020) T5-base 220M 48.2 65.0
FiD (large) (Izacard and Grave, 2020) T5-large 770M 51.4 67.6

BPR (l = 1000) BERT-base 110M 41.6 56.8
BPR (l = 1000) ELECTRA-large 335M 49.0 65.6

Table 3: Exact match QA accuracy of BPR and state of the art models. BPR achieves performance close to FiD
(large) with almost half of the parameters.

didate generation (treating all passages as candi-
dates) results in the same performance as using only
top-1000 candidates, but significantly increases the
query time due to the expensive inner product com-
putation over all passage embeddings.

Comparison with State of the Art Table 3
presents the EM QA accuracy of BPR combined
with state-of-the-art reader models. Here, we also
report the results of our model using an improved
reader based on ELECTRA-large (Clark et al.,
2020) instead of BERT-base. Our improved model
outperforms all models except the large model
of Fusion-in-Decoder (FiD), which contains more
than twice as many parameters as our model.

5 Conclusion

We introduce BPR, which is an extension of DPR,
based on a learning-to-hash technique and a novel
two-stage approach. It reduces the computational
cost of open-domain QA without a loss in accuracy.
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Appendix for “Efficient Passage Retrieval
with Hashing for Open-domain Question
Answering”

A Details of Experimental Setup

A.1 Knowledge Source

As the knowledge source, we use the prepro-
cessed Wikipedia corpus consisting of 21,015,324
Wikipedia passages available on the website of
Karpukhin et al. (2020). The corpus is based
on the December 20, 2018 version of the En-
glish Wikipedia and created by filtering out semi-
structured data (i.e., tables, infoboxes, lists, and
disambiguation pages) and splitting the remain-
ing Wikipedia articles into multiple, disjointed text
blocks of 100 words each.

A.2 Question Answering Datasets

We conduct experiments using the NQ and TQA
datasets with the training, development, and test
sets as in Lee et al. (2019); Karpukhin et al. (2020).
A brief description of these datasets is provided as
follows:
• NQ is a QA dataset for which questions are ob-

tained from Google queries and answers com-
prise the spans of English Wikipedia articles.

• TQA consists of trivia questions and their an-
swers retrieved from the Web.
We use the preprocessed datasets available on

the website of Karpukhin et al. (2020).5 The num-
bers of questions contained in these datasets are
listed in Table 4. For each question, the dataset
contains three types of passages: (1) positive pas-
sages selected based on gold-standard human anno-
tations or distant supervision, (2) random negative
passages selected randomly from all the passages,
and (3) hard negative passages selected based on
the BM25 scores between the question and all the
passages.

A.3 Details of BPR

Our training configuration follows that of
Karpukhin et al. (2020). In particular, for each
question, we use one positive and one hard negative
passage and create a mini-batch comprising 128
questions. We use the method of inbatch-negatives,
wherein each positive passage in a mini-batch is
treated as the negative passage of each question

5https://github.com/facebookresearch/
DPR

Dataset Train Validation Test

NQ 58,880 8,757 3,610
TQA 60,413 8,837 11,313

Table 4: Number of questions in the preprocessed
dataset used in our experiments.

Name Value

Batch size 128
Maximum question length 256
Maximum passage length 256
Maximum training epochs 40
Peak learning rate 2e-5
Learning rate decay linear
Warmup ratio 0.06
Dropout 0.1
Weight decay 0.0
Adam β1 0.9
Adam β2 0.999
Adam ε 1e-6

Table 5: Hyperparameters used to train BPR.

in the mini-batch if it does not correspond to the
question. Our model contains 220 million parame-
ters, and is trained for up to 40 epochs using Adam.
Regarding the hyperparameter search, we select
the learning rate from the search range {1e-5, 2e-
5, 3e-5, 5e-5} based on the top-100 recall on the
validation set of the NQ dataset. Therefore, the
number of hyperparameter search trials is 4. The
detailed hyperparameters are listed in Table 5.

A.4 Details of Reader

For each passage in the top-k passages retrieved by
the retriever, the reader assigns a relevance score
to the passage and selects the best answer span in
the passage. The final answer is the selected span
from the passage with the highest relevance score.

Let Pi ∈ Rq×d (1 ≤ i ≤ k) be a BERT output
representation for the i-th passage, where q is the
maximum token length of the passage, and d is
the dimension size of the output representation.
The probabilities of a passage being selected and a
token being the start or end positions of an answer
is computed as

Pscore(i) = softmax
(
P̂>wscore

)
i
, (8)

Pstart,i(s) = softmax
(
Piwstart

)
s
, (9)

Pend,i(t) = softmax
(
Piwend

)
t
, (10)

where P̂ = [P
[CLS]
1 , . . . ,P

[CLS]
k ] ∈ Rd×k,

wscore ∈ Rd, wstart ∈ Rd, and wend ∈ Rd.

https://github.com/facebookresearch/DPR
https://github.com/facebookresearch/DPR
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Name BERT-base ELECTRA-large

Batch size 32 32
Maximum token length 350 350
Maximum training epochs 20 20
Negative passage size 23 17
Peak learning rate 2e-5 1e-5
Learning rate decay linear linear
Warmup ratio 0.06 0.06
Dropout 0.1 0.1
Weight decay 0.0 0.0
Adam β1 0.9 0.9
Adam β2 0.999 0.999
Adam ε 1e-6 1e-6

Table 6: Hyperparameters used to train the reader based
on BERT-base and that based on ELECTRA-large.

Configuration Top 1 Top 20 Top 100

γ = 0.025 39.4 76.7 83.8
γ = 0.05 39.5 76.5 84.0
γ = 0.1 39.8 76.7 84.1
γ = 0.2 39.6 76.3 83.9

Table 7: Top-1, top-20, and top-100 recall of our model
with γ ∈ {0.025, 0.05, 0.1, 0.2} on the validation set of
the NQ dataset.

The passage selection score of the i-th passage
is given as Pscore(i), and the score of the s-th
to t-th tokens from the i-th passage is given as
Pstart,i(s)× Pend,i(t).

During the training, we sample one positive and
multiple negative passages from the passages re-
turned by the retriever. The model is trained to
maximize the log-likelihood of the correct answer
span in the positive passage, combined with the log-
likelihood of the positive passage being selected.
We use the BERT-base or ELECTRA-large as our
pretrained model. Regarding the hyperparameter
search, we select the learning rate from {1e-5, 2e-5,
3e-5, 5e-5} based on its EM accuracy on the valida-
tion set of the NQ dataset. Therefore, the number
of hyperparameter search trials is 4. Detailed hy-
perparameters are listed in Table 6.

B Effects of Scaling Parameter

To investigate how the scaling parameter, γ, af-
fects the performance, we test the performance
of our model using various γ values, where γ ∈
{0.025, 0.05, 0.1, 0.2}. The retrieval performance
on the validation set of the NQ dataset is shown in
Table 7. Overall, the scaling parameter has a minor
impact on the performance. We select γ = 0.1
because of its enhanced performance.

#candidates Top 1 Top 20 Top 100
NQ TQA NQ TQA NQ TQA

l = 200 41.1 49.7 77.9 77.9 85.4 84.0
l = 500 41.1 49.7 77.9 77.9 85.6 84.4
l = 1000 41.1 49.7 77.9 77.9 85.7 84.5
l = 2000 41.1 49.7 77.9 77.9 85.7 84.5

Table 8: Top-1, top-20, and top-100 recall of our model
with l ∈ {200, 500, 1000} on test sets.

Configuration Top 1 Top 20 Top 100

Cross entropy loss 28.6 67.8 79.8

Ranking loss α = 0.0 39.8 76.4 84.0
Ranking loss α = 1.0 40.0 76.5 84.0
Ranking loss α = 2.0 39.8 76.7 84.1
Ranking loss α = 4.0 40.3 76.7 84.0

Table 9: Top-1, top-20, and top-100 recall of our model
with the various settings of the loss function Lcand eval-
uated on the validation set of the NQ dataset.

C Effects of Number of Candidate
Passages

We report the performance of our model with the
varied number of candidate passages l in Table 8.
Overall, BPR achieves similar performance in all
settings. Increasing the number of candidate pas-
sages slightly improves the top-100 performance
until it reaches l = 1000.

D Effects of Loss of Task #1 with Various
Settings

We investigate the effects of using various settings
of the loss function Lcand in Eq.(6). Instead of us-
ing the ranking loss, we test the performance with
the cross-entropy loss, similar to Eq.(2), and h̃q

and h̃p are used instead of eq and ep, respectively.
Furthermore, we also test how the parameter α af-
fects the performance. As shown in Table 9, the
cross-entropy loss clearly performs worse than the
ranking loss. Furthermore, a change in the parame-
ter α has a minor impact on the performance. Here,
we select the ranking loss with α = 2.0 because
of its enhanced performance on the top-20 and top-
100 performance.


