
Denoising Pre-Training and Data Augmentation Strategies for Enhanced
RDF Verbalization with Transformers

Sebastien Montella∗

Orange Labs, Lannion
sebastien.montella@orange.com

Betty Fabre∗
Orange Labs, Lannion

betty.fabre@orange.com

Tanguy Urvoy
Orange Labs, Lannion

tanguy.urvoy@orange.com

Johannes Heinecke
Orange Labs, Lannion

johannes.heinecke@orange.com

Lina Rojas-Barahona
Orange Labs, Lannion

linamaria.rojasbarahona@orange.com

Abstract

The task of verbalization of RDF triples has
known a growth in popularity due to the ris-
ing ubiquity of Knowledge Bases (KBs). The
formalism of RDF triples is a simple and effi-
cient way to store facts at a large scale. How-
ever, its abstract representation makes it diffi-
cult for humans to interpret. For this purpose,
the WebNLG challenge aims at promoting au-
tomated RDF-to-text generation. We propose
to leverage pre-trainings from augmented data
with the Transformer model using a data aug-
mentation strategy. Our experiment results
show a minimum relative increases of 3.73%,
126.05% and 88.16% in BLEU score for seen
categories, unseen entities and unseen cate-
gories respectively over the standard training.

1 Introduction

The purpose of Knowledge Bases is to store un-
structured data into a well-defined and highly struc-
tured representation. A commonly used formal-
ism is the Resource Description Framework (RDF)
where knowledge takes the form of triplets 〈subject;
predicate; object〉. For instance if we take the
triple 〈Alan Bean; birthDate; 1932〉, the subject is
Alan Bean, the predicate/relation/property is birth-
Date and the object is the date 1932. This triple-
based representation allows one to describe com-
plex relations between entities. It is hence fre-
quently used in natural language processing (NLP)
applications such as question answering, summa-
rization, recommendation or search engines.

∗Both authors contributed equally.

Although the RDF format is an efficient method
to store knowledge, triples are hard to interpret by
humans. The automatic translation from sets of
triples into human language is however a difficult
task. Thanks to the WebNLG challenge (Gardent
et al., 2017b), this RDF-to-text task attracts now
many researchers. This challenge aims at generat-
ing a faithful and descriptive textual content from
RDF inputs. Given the triples 〈Alan Bean; birth-
Place; Wheeler, Texas〉 and 〈Alan Bean; birth-
Date; 1932-03-15〉, one possible verbalization is

“Alan Bean was born in Wheeler, Texas on Mar 15,
1932.”. Verbalization of structured data can pro-
vide an unambiguous and simple translation from
abstract representations.

The WebNLG dataset is frequently used as a
benchmark for Information Extraction (IE), Nat-
ural Language Understanding (NLU) or Natural
Language Generation (NLG) tasks. It offers differ-
ent lexicalization for the same set of triples. De-
spite limited in size, the high-quality of both its
textual content and data-to-text mapping signifi-
cantly stimulated both RDF-to-text, i.e. NLG, and
text-to-RDF, i.e. IE and NLU, research directions.
For instance, Iso et al. (2020) and Gao et al. (2020)
have obtained state-of-the-art performances on the
WebNLG RDF-to-text task. On the other hand,
Guo et al. (2020) considered both NLG and IE ob-
jectives within the same learning framework via
cycle training. Furthermore, the exploration of a
new evaluation metric is also investigated on this
WebNLG dataset, confirming its attractiveness for
the research community (Dhingra et al., 2019; Sel-
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lam et al., 2020).
Recently, the field of NLP has been significantly

impacted by large pre-trained language models and
novel learning architectures that improved state-of-
the-art results on several benchmarks (Devlin et al.,
2019; Zhang et al., 2019; Yang et al., 2019; Radford
et al., 2019; Lewis et al., 2020; Clark et al., 2020).
The Transformer model (Vaswani et al., 2017) is in
most cases at the core of these improvements. The
self-attention mechanism of Transformer enables
a better understanding of underlying dependencies
in sentences.

However, the aforementioned techniques have
not yet been tested on the RDF-to-text task. We
therefore propose to combine the Transformer
model with large pre-trainings to generate more
accurate verbalization of the RDF triples. We
chose to make use of external corpora during pre-
training to reach a better generalization. We build
two additional datasets for denoising pre-training
and data augmentation purposes. This is moti-
vated by the fact that participants’ systems at previ-
ous WebNLG challenge suffered from high drops
in performance when evaluated on new entities
and predicates not encountered during the training
phase (Gardent et al., 2017b). Thus, by incorpo-
rating external corpora, we expect our system to
outperform systems solely trained on the WebNLG
dataset. We evaluate our approach using BLEU (Pa-
pineni et al., 2002), METEOR (Banerjee and Lavie,
2005), chrf++ (Popović, 2015) and BLEURT (Sel-
lam et al., 2020). As mentioned in (Post, 2018),
BLEU is a parameterized metric that may exhibit
wild variations. The use of multiple metrics gives
better outlooks on the general performance.

The reminder of this paper is organized as fol-
lows. Section 2 gives an overview of existing meth-
ods to translate RDFs into their corresponding tex-
tual content. After introducing the task and the
WebNLG datasets in Section 3, we introduce our
approaches for the challenge in Section 4. The
different training phases are presented in Section
5. We show our results in Section 6. Finally, we
conclude in Section 7.

2 Related Work

Following the traditional NLG pipeline (Reiter and
Dale, 1997), early works on factual data verbal-
ization mainly focused on the creation of rules or
templates to produce the textual output. Sun and
Mellish (2006, 2007) have shown that most of the

useful information for the generation is brought by
the rich linguistic information of the RDF proper-
ties, i.e. predicates. They have noticed that prop-
erties can be classified into 6 categories based on
their pattern. For instance, some predicates may be
a concatenation of a verb and a noun like hasEmail,
or starting with a verb and finishing with an ad-
jective like hasTimeOpen. They established hand-
crafted rules to construct linguistic forms for each
category. This technique allows a domain indepen-
dent verbalization since relying only on the pat-
tern of predicates. On the contrary, Cimiano et al.
(2013) used domain-dependent ontology lexicon to
proceed to a fine-grained and specific verbalization
of mentioned concepts. Although some methods
tried to automatically learn those templates (Duma
and Klein, 2013), a major disadvantage of such
approaches is the need of handcrafted rules and the
poor generalization power.

The main downside of KB verbalization is the
lack of paired data. In spite of the impressive
success of Deep Learning (DL) methods, few at-
tempts could be made toward RDF-to-text task due
to data scarcity. To address this issue, Gardent
et al. (2017a) came up with a new dataset which
includes RDFs extracted from DBPedia1 with their
corresponding translations in natural language. To
further stimulate the development of KB verbal-
izer, Gardent et al. (2017b) set up the WebNLG
challenge 2017, welcoming new techniques for the
RDF-to-text task. Among the proposed strategies,
DL-based models outperformed rules-based sys-
tems (Gardent et al., 2017b). Neural approaches re-
lied almost on the attention-based encoder-decoder
architecture (Sutskever et al., 2014; Bahdanau et al.,
2015). The encoder-decoder framework showed
promising results, with some limitations on unseen
domains.

Following WebNLG 2017, multiple works were
conducted to cope with the witnessed drawbacks
of participants’ system. Zhu et al. (2019) ar-
gued that Kullback-Leibler (KL) divergence should
be avoided. Minimizing the KL divergence con-
tributes to more diversity in generated samples, at
the cost of quality. As a matter of fact, diversity is
unnecessary for KBs verbalization since it is con-
strained on specific entities and relations. There-
fore, they proposed to optimize the inverse KL
divergence to generate higher-quality textual de-
scription. Another flaw appears in the linearization

1https://wiki.dbpedia.org/
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of input triples. Such transformation gets rid of
the intrinsic structure of the RDFs graph which
may lead to inconsistency or relational mismatch
in predicted sentences. To address this question
and upon the rising popularity of Graph Neural
Networks (GNNs), graph-based solutions were pre-
sented. Trisedya et al. (2018) introduced a GTR-
LSTM triple encoder. The idea is to traverse the
graph in a specific manner such that vertices are bet-
ter ordered to leverage the intra- and inter-triples
relationships.

More recently, Graph Neural Networks (GNNs)
have raised a lot of attention to capture dependen-
cies between nodes of a graph (Zhou et al., 2018).
The message passing scheme offers the ability to
better model relations nodes and their neighbor-
hoods. Well-suited for the generation from struc-
tured data, Marcheggiani and Perez-Beltrachini
(2018) made use of a Graph Convolutional Net-
work (GCN) to explicitly encode the input structure
of the triples instead of a straightforward lineariza-
tion. More precisely, they used an encoder-decoder
architecture composed of a GCN encoder and a
LSTM decoder. They further applied a copy mech-
anism from (See et al., 2017) to copy words from
the input RDF triples. The resulting performances
confirmed the benefit of the graph-based encoder.
Following this conclusion, several papers proposed
graph-based encoder as a solution (Gao et al., 2020;
Zhao et al., 2020; Moussallem et al., 2020).

Meanwhile, in contrast to the conditional text
generation paradigm, Iso et al. (2020) considered
the KB verbalization as a text editing task with
their FACTEDITOR model. Text editing consists in
applying a sequence of transformations on an input
text to produce a particular output. FACTEDITOR, a
simple BiLSTM model, creates a verbalization can-
didate, so-called draft text, from which the edition
process starts. Three actions can be made on a can-
didate word: keeping it, dropping it or generating
a new one.

Recent studies also explore the fusion of both
NLU and NLG into one unified model. The RDF-
to-Text and Text-to-RDF can be seen as the inverse
task from one another. Inspired by the advancement
from computer vision (Zhu et al., 2017), Tseng et al.
(2020) and Guo et al. (2020) provide a cycle train-
ing framework to learn both tasks simultaneously.

Nevertheless, none of the above techniques use
large pre-training neither take advantage of the
Transformer model. We propose in this paper to in-

vestigate the effect of massive pre-training coupled
with the vanilla Transformer for the RDF-to-Text
task.

3 The WebNLG Challenge

In this section we present the WebNLG task and
datasets.

3.1 Task Definition

We call RDF verbalization and RDF lexicalization
the mapping of the RDFs triples to their descriptive
text. It is a variant of the machine translation task
where the input is a list of triples instead of a raw
text. Let T be a set of RDFs triples of size N , with
ti the ith triple, i ∈ [1...N ]. We write each triple ti
as 〈si; pi; oi〉 with si, pi and oi the subject, predi-
cate and object of the ith triple respectively. The
kth verbalization of T is denoted vk. The RDF-to-
text task consists in mapping the set T to one of its
possible lexicalization vk. The generated verbal-
ization should be grammatically and semantically
correct. Regarding the knowledge, it should also
contain the same level of information as the input
triples.

3.2 Datasets

Initially, Gardent et al. (2017a,b) fashioned a cor-
pus filled with triplesets, i.e. sets of RDF triples,
and their possible lexicalizations, both in English.
Each tripletset is related to a particular DBpedia
category (e.g. Astronaut) and can contain up to
7 triples. For this new version of the WebNLG
2020, some changes were carried out to encourage
participation to the competition. First, the unseen
testing categories of the original WebNLG dataset
are now part of the training set. The new extra
category Company is also included reaching now
16 domains for training. Moreover, to go beyond
monolingualism, the second WebNLG challenge
propose a bilingual corpus by inserting Russian
translations for some RDF triples beside English
ones. In our work, we however only focus on En-
glish verbalization. The support of multiple lan-
guages is part of our for future work.

The training set contains 13,211 unique triple-
sets for which different possible lexicalization can
be given. The more triples in a tripleset, the higher
the number of possible lexicalization. Totally, we
can list out 35,426 RDFs-Text pairs. Note that
a corresponding verbalization of a set of RDFs
is not necessary a single sentence. Multiple sen-
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tences may encompass the RDFs information and
co-references may therefore appear. The official
WebNLG testing set is divided into three parts for
fine-grained evaluation: seen categories, unseen
entities, and unseen categories subsets. We give the
evaluation performance on those subsets in Section
6.3.

4 Proposed Approaches

We propose to use a Transformer model with data
augmentation.

4.1 The Transformer Model

The Transformer model introduced by Vaswani
et al. (2017) is an encoder-decoder neural network
architecture that relies on the self-attention mech-
anism. In an encoder-decoder architecture, the
encoder maps the input sequence to a sequence
of continuous representations from which the de-
coder generates an output sequence (Sutskever
et al., 2014). The Transformer model makes use of
stacked layers of multi-head self-attention in both
the encoder and decoder.

Self-attention allows longer dependencies to be
handled than the seq2seq model that relies on re-
current LSTM or GRU cells (Sutskever et al., 2014;
Bahdanau et al., 2015). The self-attention mecha-
nism seems well-suited to handle subject, predicate,
and object dependencies within the RDF itself but
also dependencies between triples.

As highlighted in the original paper (Vaswani
et al., 2017), the individual attention heads from
the multi-head attention layers learn to perform in-
dividually different tasks. In particular, they appear
to learn the syntactic and semantic structure of the
sentences independently. Mareček and Rosa (2019)
has shown that the self-attention layers embed im-
plicitly syntactic parse trees. Similarly, we hope
that our model benefits from our pre-training stage
by incorporating such syntactic information, while
learning intra and inter-triples dependencies in the
fine-tuning stage.

4.2 Data Augmentation

A major shortcoming of the WebNLG dataset re-
mains its size. The lack of diversity impinges on
the generalization of unseen categories. We report
only 747 and 385 distinct subject entities and predi-
cates, respectively. Thus, our intuition is to enlarge
our RDF-to-text mappings to handle multiple re-
lations between different type of entities. To do

so, we proceed in two phases. First, we collect a
large set of sentences from which, in our second
stage, triples will be extracted. We hereinafter give
details for each stage.

4.2.1 Sentence Collection

We make use of Wikipedia that offers a massive and
free amount of data to be leveraged. The WebNLG
dataset was constructed from DBPedia database
which itself relies on Wikipedia. The substantial
advantage of including new Wikipedia content lies
in that new named entities can then be encountered
from much more heterogeneous domains. This
allows for a better generalization and knowledge
integration. As observed in language models (De-
vlin et al., 2019; Radford et al., 2019; Zhang et al.,
2019), knowledge is somehow assimilated by the
model throughout training.

We gathered 13,614 Wikipedia pages containing
about 103 million sentences totally2. To alleviate
the training process, we filter sentences that may
impede generation quality. We discard a sentence
(1) if it does not start with a upper case letter and
does not end with a period, (2) if its length is longer
than 50 or (3) if it contains special characters. After
this first selection, 57 million (unique) sentences
remain. Henceforth, we coin this set of sentences
WS1.

4.2.2 Triple Extraction

Triples extraction is challenging and non-trivial,
demanding a sharp understanding of linguistic
structure. For simplicity (and time-saving), we
take advantage of the Stanford Open Informa-
tion Extraction (Stanford OpenIE) tool3 to extract
triples from WS1 sentences. Stanford OpenIE
package is schema-free. That means no prelim-
inary definition of the possible predicates is re-
quired, as opposed to usual RDFs extractor. The
raw text linking two entities will be retrieved as
the predicate. Unfortunately, the returned triples
may be incomplete, false or alike. For exam-
ple, for the input sentence ”Barack Obama was
born in Hawaii.”, the returned triples by Stan-
ford OpenIE are 〈Barack Obama; was; born〉 and
〈Barack Obama; was born in; Hawaii〉. The first
output triple is spurious besides expressing some-
how the same insight than the second triple. As
a result, a filtering step is crucial to reduce false

2We used the 20200401 Wikipedia dump ∼ 18GB
3https://nlp.stanford.edu/software/openie.html
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triples. We fashion simple rules to limit redun-
dancy by comparing each retrieved triple with each
other. Let ti and tj be two retrieved triples, with
i 6= j. We linearize each triple by concatenating
words from the subject, predicate and object. The
linearized version of ti and tj are named tli and tlj ,
respectively. To detect if tli and tlj are equivalent,
we first verify if either tli ∈ tlj or tlj ∈ tli. We
further compute the Levenshtein distance (Leven-
shtein, 1965) to consider minor variations between
triples. Two triples with an edit distance smaller or
equal to 2 are also believed to be similar. If triples
similarity is confirmed, the longest triple is kept be-
cause sharing the more information with the input
sentence. The higher the lexical coverage, the bet-
ter. Indeed, the risk is to miss essential information
from the sentence. If input triples are considerably
incomplete, the model will suffer from hallucina-
tion, i.e. generating content not present in the given
input.

However, when tli and tlj are too different but se-
mantically identical, more sophisticated conditions
should be exploited. For this purpose, we make use
of BLEU (Papineni et al., 2002). Extracted triples
are derived from the same sentence. Therefore, a n-
gram based metric such as BLEU is a good choice
to check if two triples are alike. We assume triples
to be analogous if their BLEU score is greater than
50. In such case, we keep the triple maximizing its
BLEU score with the reference sentence for better
coverage, as explained previously. The final collec-
tion of remaining triples-sentences pairs is called
ST1.

Nevertheless, the detection of erroneous informa-
tion conveyed by the triples remain hard to operate.
We are aware that mistaken triples jeopardize di-
rectly the performance of our model. That is why
we leverage these augmented data in a pre-training
step, as detailed in Section 5.1.

5 Training

We suggest in our work to thoroughly combine a
pre-training stage before training our Transformer
model on the WebNLG dataset. We describe our
learning design in the following subsections.

5.1 Pre-Training Objectives

From word embeddings to recently massive lan-
guage models, NLP has undoubtedly benefited
from large pre-training. Many downstream tasks
could leverage those models by an effortless fine-

tuning. Recent pre-trained models like BART (Pe-
ters et al., 2019) harness unlabeled data to boost
model performance in a self-supervised setting.
The denoising autoencoder objective from BART
has shown a significant performance gain. A de-
noising objective aims to reconstruct a corrupted
input. When fine-tuned on a text generation task,
BART has confirmed to be highly effective. We
therefore adopt a similar approach using our vo-
luminous Wikipedia sentences, i.e. WS1 dataset.
Peters et al. (2019) use an arbitrary noising func-
tion to permute, delete, and mask words in input.
Our transformations differ from BART in that we
want our corrupted input to contain factual informa-
tion, similarly to what our model will be exposed
to when fine-tuned on our RDF-to-text task. With
this in mind, we choose to keep words with spe-
cific Part-Of-Speech (POS) tags like nouns, verbs,
adjectives and adverbs. Words with other tags are
removed. Modal verbs (e.g. should) and passive
forms are ignored as well. As an example, let
the Wikipedia sentence “In 1860 few of the streets
north of 42nd had been graded.”. After our nois-
ing transformations, we obtain the corrupted input

“1860 few streets north 42nd graded.”. We observe
that remaining words stand for the semantic mass
of the sentence from which we need to lexicalize
and connect entailed concepts and entities properly.

At the difference of RDFs triples, the corrupted
sentences have no inherent structure. In order to
avoid too much divergence between pre-training
and fine-tuning inputs’ representation, we follow
the denoising pre-training with another pre-training
process on a RDF-to-text task. To do so, We use
our constructed ST1 dataset which contains triple-
based inputs, as detailed in Section 4.2. We expect
that these two pre-training steps will improve our
ability to generate faithful and consistent verbaliza-
tion for the WebNLG Challenge.

5.2 Fine-tuning Settings

We coerce our model to use a WebNLG-based vo-
cabulary during pre-training so that the same model
can be straightly fine-tuned without any vocabulary
discrepancy. Technically, we load the last check-
point from pre-trained model and directly start to
fine-tune it by reseting the optimizer and setting
the new data loader to the WebNLG training set.
We also tried without resetting the optimizer and
obtained similar performances.

In addition, we apply a Curriculum Learning
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(CL) approach for faster convergence and better
local minima through the optimization process. CL
was proposed by Bengio et al. (2009), motivated by
the learning process of humans and animals. The
core idea is to gradually increase the complexity
of samples seen during training instead of a ran-
dom selection. In our case, we define complexity
as the number of RDF triples in the input, i.e. N .
The higher the number of triples, the higher the
complexity. We sort the WebNLG pairs such that
easier examples come first and then harder exam-
ples afterwards. Our curriculum approach differs
in that both easier and harder examples are seen
within the same epoch, but in a gradually order. In
(Bengio et al., 2009), more complex samples are
progressively added during training. To witness the
effect of increasing complexity while training, we
fine-tune our pre-trained models with and without
curriculum learning.

6 Experiments

We evaluate our models on the WebNLG Dataset
test set. We compare 8 Transformers models corre-
sponding to 8 different training settings.

6.1 Training and decoding settings

In the following, we present the preprocessing, the
training phase and the decoding pipeline.

Preprocessing For preprocessing, we used the
Moses tokenizer4 and subword segmentation fol-
lowing Sennrich et al. (2016) with the subword-nmt
library5. We left both the input triples and output
text true-cased.

In the context of the WebNLG challenge, we
considered a transduction strategy (Gammerman
et al., 1998). We restricted the vocabulary to the
WebNLG dataset (training, validation and testing
set). This learning scheme aims at performing well
on a specific set, and not necessary to generalize.

The training process remained the same for all
our experiments. Only the data loaded in the
batches during training were changed.

To deal with the RDF triples format, we added to
the vocabulary four special tokens, namely 〈object〉,
〈subject〉, 〈predicate〉 and 〈eot〉 (end of triple), that
we used as separators within and between triples.

4Available on github https://github.com/
moses-smt/mosesdecoder

5Available on github https://github.com/
rsennrich/subword-nmt

In the case of multiple triples, we built the Trans-
former input sequence by concatenating triples one
after the other. We used this input format on both
ST1 and WebNLG.

For the denoising pre-training, we used the WS1
dataset. The transformed sentences (see Section
5.1) were directly fed to the Transformer. The
model thus has to reconstruct the incomplete sen-
tences.

Examples of the preprocessed samples for the
different training settings are reported in Table 1.

Training We used the Transformer implementa-
tion from FAIRSEQ library (Ott et al., 2019)6 with
the transformer base hyper-parameters set from
(Vaswani et al., 2017). We optimized the weights
of our neural networks using an ADAM optimizer
and a label smoothed cross entropy loss.

We made 10 epochs of pre-training and stopped
fine-tuning when the performance with the BLEU
score on the validation set did not improved after
30 epochs. At the end, we kept the model that
achieved the best BLEU on the validation set.

To study the impact of curriculum learning, we
launched fine-tuning with and without it. In the for-
mer case, we prevented the shuffling of the batches
for 30 epochs. The data being sorted by number
of triples, the model had to deal first with simple
samples, and then with more complex ones as the
learning did progress. In the results, we report this
setting as CL (for Curriculum Learning).

Decoding For decoding, we did a beam search
with a beam of size 5. We merged the subwords
back into words and detokenized.

6.2 Evaluation setting
For evaluation, we used the official WebNLG eval-
uation script7. The metrics we used to compare
our models are BLEU, METEOR, chrf++ and
BLEURT. BLEURT metric has been recently pro-
posed and proven to be well-correlated with hu-
man judgments. Relying on BERT’s contextual
embeddings, BLEURT offers semantically robust
feedback. The n-gram-based evaluation techniques
such as BLEU, METEOR or chrf++ are additional
metrics to judge the generation quality. When used
together, they give good assessment of the genera-
tion quality of our system.

6We used the compiled version 0.9.0 from https://
github.com/pytorch/fairseq

7Available on github https://github.com/
WebNLG/GenerationEval
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Task Input sequence Output sequence

WebNLG

〈subject〉 Italy 〈predicate〉 capital 〈object〉 Rome 〈eot〉 Rome is the capital of Italy .
〈subject〉 Bionico 〈predicate〉 course 〈object〉 Dessert
〈eot〉 〈subject〉 Bionico 〈predicate〉 ingredient 〈object〉
Raisin 〈eot〉

Bionico is a dessert which contains raisins .

WS1 He died he@@ art f@@ ail@@ ure h@@ ospital Oc-
tober 5 2014

He died of he@@ art f@@ ail@@ ure
at the h@@ ospital on October 5 , 2014 .

ST1 〈subject〉 He 〈predicate〉 retired 〈object〉 199@@ 0 〈eot〉 He retired in 199@@ 0 .

Table 1: Preprocessed samples fed to the Transformer model during pre-training or fine-tuning. The triples are
concatenated into one sequence. We used Moses tokenizer and a subwords encoding, the subwords are divided
by @@ . Special tokens are used to keep the RDFs triplet format : 〈subject〉, 〈predicate〉, 〈object〉 and 〈eot〉.
In the case of the denoising task (WS1) we do not have these special tokens. We left the data trucased and no
delexicalization is applied.

Unlike in 2017, this time the generated sentences
must be detokenized and true-cased. Our models
are therefore not directly comparable with the mod-
els of the previous version of the challenge.

Also, as the test base is not available, we do
not know how many references our generated sen-
tences are compared to.

6.3 Results

To gauge the influence of our different learning ap-
proaches, we conducted an ablation study. We de-
fined our baseline as the Transformer solely trained
on WebNLG dataset, without curriculum. We want
to assess the influence of pre-training, data aug-
mentation and curriculum learning compared to the
baseline. To provide a fair and detailed analysis,
we evaluated models on seen and unseen domains
to shed light on the models’ generalization ability.
Results are given in Table 2.

In Table 2, when comparing our baseline with
pre-training strategies for each category (no cur-
riculum), we note an average rise of 3.07, 19.6
and 10.97 respectively in BLEU when pre-training.
Similar variations can be noted with METEOR,
chrf++ and BLEURT metrics, albeit less strik-
ing. Based on BERT’s contextual embeddings,
BLEURT gives a good estimate of the semantic cor-
relation between prediction and references. Most
of the time, n-gram-based and semantic metrics
show perfect harmony. Top values of BLEURT are
obtained for the same models than n-gram-based
metrics. Therefore, all metrics tend to correlate
proving a good agreement. The high improvements
over unseen domains are easily explained due to
the diversity of augmented data. New entities and
domain-specific lexicon encountered better help
to model out-of-distribution data relations. Thus,
such results underline usefulness of external cor-
pora and strengthen the need of pre-trained model

to lexicalize KBs.
On seen categories, our baseline give an accept-

able BLEU score of 55.24. However, for out-of-
domain generation, all models demonstrate severe
shortcomings. Tested on unseen entities, our base-
line shows a BLEU drop of 42.34 to reach 12.9
BLEU. We witness similar and even more impor-
tant loss in unseen categories. In the case that pred-
icates are unknown to the model, it is hard to gener-
ate consistent description of the input RDFs. From
seen categories to unseen categories, our baseline
is nearly penalized by a factor of 5. Such effect is
tempered with our pre-training approaches. The av-
erage drop in BLEU of pre-trained models (without
curriculum learning) is 25.6 from seen categories
to unseen entities, and 35.5 from seen to unseen
categories.

Unexpectedly, when a curriculum learning ap-
proach is used, we witness drops in performance.
This is counter-intuitive and opposed to previous
experiment on our validation set. CL seems to help
lightly when the model was pre-trained with both
external corpora WS1 and ST1. We propose to
investigate the reason of such outcome in future
work.

Interestingly, best results are revealed with a pre-
training on ST1, exclusively. With 5 times less data,
ST1 leads to better performance. The extracted
triples surely include inaccurate triples. Notwith-
standing the imperfect quality of the ST1 dataset,
its use contributes to generalization ability. On
the contrary, we report that denoising pre-training
does not show satisfying results when combined
with our pre-training on the ST1 dataset, leading
eventually to negative effect. This may be caused
by an input distribution discrepancy between WS1
and ST1 input. Denoising pre-training doesn’t re-
quire triples as input but a noisy sentence. Mis-
match between this representation and the triples
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Seen categories
WebNLG WS1 ST1 CL BLEU METEOR chrf++ BLEURT

X 55.24 0.401 0.680 0.56
X X 57.3 0.417 0.701 0.58
X X 59.32 0.428 0.712 0.6
X X X 57.49 0.420 0.702 0.59
X X 54.78 0.399 0.676 0.56
X X X 56.94 0.417 0.701 0.58
X X X 58.36 0.422 0.703 0.61
X X X X 58.81 0.427 0.713 0.6

Unseen entities
WebNLG WS1 ST1 CL BLEU METEOR chrf++ BLEURT

X 12.9 0.167 0.319 -0.62
X X 29.16 0.301 0.518 0.1
X X 35.77 0.326 0.565 0.26
X X X 32.33 0.310 0.535 0.18
X X 11.94 0.156 0.295 -0.68
X X X 28.83 0.295 0.509 0.05
X X X 31.99 0.312 0.537 0.16
X X X X 32.69 0.315 0.542 0.19

Unseen categories
WebNLG WS1 ST1 CL BLEU METEOR chrf++ BLEURT

X 11.17 0.162 0.310 -0.64
X X 21.02 0.265 0.452 -0.06
X X 23.26 0.288 0.485 0.03
X X X 23.42 0.275 0.469 -0.02
X X 12.45 0.156 0.298 -0.63
X X X 21.84 0.263 0.451 -0.04
X X X 22.84 0.273 0.465 -0.05
X X X X 22.72 0.276 0.466 -0.02

Table 2: Ablation study: Automatic results on the official WebNLG test set for different learning strategy. For
each experiment, we provide testing performance on seen categories (top), unseen entities (middle) and unseen
categories (bottom). Bold and underlined values correspond to the best and second-best results respectively.

linearization may be the culprit of such side-effect.

As for the WebNLG 2020 challenge, participants
were requested to submit a single model for evalu-
ation. In our case, we decided to submit our Trans-
former pre-trained with both WS1 and ST1 (with-
out curriculum). After an analysis of the generated
text, the model trained with much more data has
a tendency to be much more fluent and aggregate
information better. Castro-Ferreira et al. (2020)
report human evaluation based on different criteria:
data coverage, relevance, correctness, text structure
and fluency. For each criterion, a value between 0
(complete disagreement) and 100 (complete agree-
ment) is given. The scores are normalized and

then clustered into groups such that models of a
same cluster do not show any significant statistical
differences in their scores8. When tested on seen
categories, we note that our submitted model is
competitive with other teams’ models. However,
on unseen data, although a significant improvement
over a simple training of a Transformer, our model
shows limitations compared to other participants.
A lower rank is systematically observed for both
unseen entities and unseen categories. We assume
that a delexicalization step and a much massive

8Details of the evaluation procedure is outlined in
(Castro-Ferreira et al., 2020) and scores are publicly
available at https://gerbil-nlg.dice-research.
org/gerbil/webnlg2020resultshumaneval
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pre-training as (Devlin et al., 2019; Radford et al.,
2019) may help to improve our generalization abil-
ity on unseen domains. This direction is also to be
explored in future work.

7 Conclusion

We proposed to use the Transformer model with
data augmentation for the RDF-to-text task on the
WebNLG dataset. We took advatange of Wikipedia
to build new datasets for different pre-training
strategies. We investigated the effect of denoising
autoencoder objective and data augmentation as
pre-training approaches. We studied the impact of
curriculum learning while fine-tuning our model on
WebNLG data. Further analysis demonstrated that
pre-training is highly beneficial for knowledge ver-
balization. Although noisy, our massive data aug-
mentation contributed to generate much accurate
textual content. As future work, we will perform
a deep analysis of the robustness of our models to
unseen entities and categories.
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Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
Proceedings of the 26th Annual International Con-
ference on Machine Learning, ICML ’09, page
41–48, New York, NY, USA. Association for Com-
puting Machinery.

Thiago Castro-Ferreira, Claire Gardent, Nikolai
Ilinykh, Chris van der Lee, Simon Mille, Diego
Moussalem, and Anastasia Shimorina. 2020. The
2020 bilingual, bi-directional webnlg+ shared task:
Overview and evaluation results (webnlg+ 2020). In
Proceedings of the 3rd WebNLG Workshop on Nat-
ural Language Generation from the Semantic Web
(WebNLG+ 2020), Dublin, Ireland (Virtual). Associ-
ation for Computational Linguistics.

Philipp Cimiano, Janna Lüker, David Nagel, and
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