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Abstract
We describe an approach to task-oriented
dialogue in which dialogue state is rep-
resented as a dataflow graph. A dialogue
agent maps each user utterance to a program
that extends this graph. Programs include
metacomputation operators for reference
and revision that reuse dataflow fragments
from previous turns. Our graph-based state
enables the expression and manipulation
of complex user intents, and explicit meta-
computation makes these intents easier for
learned models to predict. We introduce a
new dataset, SMCalFlow, featuring complex
dialogues about events, weather, places, and
people. Experiments show that dataflow
graphs and metacomputation substantially
improve representability and predictability
in these natural dialogues. Additional
experiments on the MultiWOZ dataset show
that our dataflow representation enables
an otherwise off-the-shelf sequence-to-
sequence model to match the best existing
task-specific state tracking model. The SM-
CalFlow dataset, code for replicating exper-
iments, and a public leaderboard are avail-
able at https://www.microsoft.com/en-
us/research/project/dataflow-
based-dialogue-semantic-machines.

1 Introduction

Two central design decisions in modern conversa-
tional AI systems are the choices of state and ac-
tion representations, which determine the scope of
possible user requests and agent behaviors. Di-
alogue systems with fixed symbolic state repre-
sentations (like slot filling systems) are easy to
train but hard to extend (Pieraccini et al., 1992).
Deep continuous state representations are flexible
enough to represent arbitrary properties of the dia-
logue history, but so unconstrained that training a

User: Where is my meeting at 2 this afternoon?

User: Can you create a meeting with Megan right 
before that starts?

User: Megan Bowen.

place(findEvent(EventSpec(start=pm(2))))

createEvent(EventSpec( 
  end=start(refer(Constraint[Event]())), 
  attendee=PersonSpec(name='Megan') 
))

revise( 
  new=PersonSpec(name='Megan Bowen'), 
  oldLoc=Constraint[PersonSpec](), 
  rootLoc=RoleConstraint(output) 
)

pm2 findEvent

Event(name=“kickoff”, place=…)

Agent: It’s in Conference Room D.

start

'Megan'

Agent: Which person named Megan did you mean?

UnderconstrainedException!(invite)

Agent: Ok, I’ll book a meeting with Megan 
Bowen from 1:30 to 2:00 pm today.

(1)

(2)

(3)

createEvent
name

end
att.

Event(start=1:30, end=2:00, attendee=Person(…))

“Conference Room D”

placeEventSpec

findEvent
place

start

pm2 EventSpec
start

EventSpecPersonSpec

start

'Megan' createEvent
name

end

att.

findEvent
place

pm2 EventSpec
start

EventSpecPersonSpec

'Megan 
  Bowen' 

createEvent
name att.

EventSpecPersonSpec

oldLoc

New

rootLoc

Figure 1: A dialogue and its dataflow graph. Turn (1) is
an ordinary case of semantic parsing: the agent predicts
a compositional query that encodes the user’s question.
Evaluating this program produces an initial graph frag-
ment. In turn (2), that is used to refer to a salient Event;
the agent resolves it to the event retrieved in (1), then
uses it in a subsequent computation. Turn (3) repairs
an exception via a program that makes a modified copy
of a graph fragment.
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neural dialogue policy “end-to-end” fails to learn
appropriate latent states (Bordes et al., 2016).

This paper introduces a new framework for dia-
logue modeling that aims to combine the strengths
of both approaches: structured enough to enable
efficient learning, yet flexible enough to support
open-ended, compositional user goals that involve
multiple tasks and domains. The framework has
two components: a new state representation in
which dialogue states are represented as dataflow
graphs; and a new agent architecture in which di-
alogue agents predict compositional programs that
extend these graphs. Over the course of a dia-
logue, a growing dataflow graph serves as a record
of common ground: an executable description of
the entities that were mentioned and the actions
and computations that produced them (Figure 1).

While this paper mostly focuses on representa-
tional questions, learning is a central motivation
for our approach. Learning to interpret natural-
language requests is simpler when they are under-
stood to specify graph-building operations. Hu-
man speakers avoid repeating themselves in con-
versation by using anaphora, ellipsis, and bridg-
ing to build on shared context (Mitkov, 2014).
Our framework treats these constructions by trans-
lating them into explicit metacomputation opera-
tors for reference and revision, which directly re-
trieve fragments of the dataflow graph that repre-
sents the shared dialogue state. This approach bor-
rows from corresponding ideas in the literature on
program transformation (Visser, 2001) and results
in compact, predictable programs whose structure
closely mirrors user utterances.

Experiments show that our rich dialogue state
representation makes it possible to build better
dialogue agents for challenging tasks. First, we
release a newly collected dataset of around 40K
natural dialogues in English about calendars, lo-
cations, people, and weather—the largest goal-
oriented dialogue dataset to date. Each dialogue
turn is annotated with a program implementing the
user request. Many turns involve more challeng-
ing predictions than traditional slot-filling, with
compositional actions, cross-domain interaction,
complex anaphora, and exception handling (Fig-
ure 2). On this dataset, explicit reference mech-
anisms reduce the error rate of a seq2seq-with-
copying model (See et al., 2017) by 5.9% on all
turns and by 10.9% on turns with a cross-turn
reference. To demonstrate breadth of applica-

bility, we additionally describe how to automati-
cally convert the simpler MultiWOZ dataset into a
dataflow representation. This representation again
enables a basic seq2seq model to outperform a
state-of-the-art, task-specific model at traditional
state tracking. Our results show that within the
dataflow framework, a broad range of agent be-
haviors are both representable and learnable, and
that explicit abstractions for reference and revision
are the keys to effective modeling.

2 Overview: Dialogue and Dataflow

This section provides a high-level overview of
our dialogue modeling framework, introducing the
main components of the approach. Sections 3–5
refine this picture, describing the implementation
and use of specific metacomputation operators.

We model a dialogue between a (human) user
and an (automated) agent as an interactive pro-
gramming task where the human and computer
communicate using natural language. Dialogue
state is represented with a dataflow graph. At each
turn, the agent’s goal is to translate the most re-
cent user utterance into a program. Predicted pro-
grams nondestructively extend the dataflow graph,
construct any newly requested values or real-world
side-effects, and finally describe the results to the
user. Our approach is significantly different from a
conventional dialogue system pipeline, which has
separate modules for language understanding, di-
alogue state tracking, and dialogue policy execu-
tion (Young et al., 2013). Instead, a single learned
model directly predicts executable agent actions
and logs them in a graphical dialogue state.

Programs, graphs, and evaluation The sim-
plest example of interactive program synthesis is
question answering:

User: When is the next retreat?

start(findEvent(EventSpec(
name='retreat',
start=after(now()))))

Agent: It starts on April 27 at 9 am.

Here the agent predicts a program that invokes
an API call (findEvent) on a structured input
(EventSpec) to produce the desired query.1 This

1Note that what the agent predicts is not a formal rep-
resentation of the utterance’s meaning, but a query that
enables a contextually appropriate response (what Austin
(1962) called the “perlocutionary force” of the utterance on
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is a form of semantic parsing (Zelle, 1995).
The program predicted above can be rendered

as a dataflow graph:

findEvent
'retreat'

now

start

start

name

after

EventSpec

Each function call in the program corresponds to a
node labeled with that function. This node’s par-
ents correspond to the arguments of the function
call. The top-level call that returns the program’s
result is depicted with a solid border. A dataflow
graph is always acyclic, but is not necessarily a
tree, as nodes may be reused.

Once nodes are added to a dataflow graph, they
are evaluated in topological order. Evaluating a
node applies its function to its parents’ values:

DateTime(2020, . . .)

findEvent
'retreat'

now

start

start

name

after

EventSpec

DateTimeSpec(. . .)

Here we have annotated two nodes to show that
the value of after(now()) is a DateTimeSpec and
the value of the returned start node is a specific
DateTime. Evaluated nodes are shaded in our dia-
grams. Exceptions (see §5) block evaluation, leav-
ing downstream nodes unevaluated.

The above diagram saves space by summarizing
the (structured) value of a node as a string. In
reality, each evaluated node has a dashed result
edge that points to the result of evaluating it:

2020

27

apr DateTime

year

month

day

start

That result is itself a node in the dataflow graph—
often a new node added by evaluation. It may have
its own result edge.2 A node’s value is found by
transitively following result edges until we arrive

its hearer). The fact that next in this context triggered a search
for “events after now” was learned from annotations. See §6
for a discussion of how these annotations are standardized in
the SMCalFlow dataset.

2In other words, a function does not have to return a
terminal node. Its result may be an existing node, as we will
see in §3. Or it may be a new non-terminal node, i.e., the root
of a subgraph that implements the function. The new nodes
in the subgraph are then evaluated further, giving them result
edges, although they also remain available for reference and
revision. Of course, a library function such as findEvent or

at a node whose result is itself. Such a terminal
node is either a primitive value (e.g., 2020), or a
constructor (e.g., DateTime) whose parent nodes’
values specify its arguments. A constructor has the
same (capitalized) name as the type it constructs.

Reference and revision We now sketch two
metacomputation functions whose evaluation ex-
tends the graph in complex ways.

As a representation of dialogue state, the
dataflow graph records entities that have been
mentioned and the relationships among them.
All nodes in the dataflow graph are eligible to be
referenced by subsequent utterances. Suppose,
for example, that the user continues the previous
dialogue fragment with a follow-up question:

User: What day of the week is that?

dayOfWeek(refer())

Agent: It’s a Monday.

The user’s word that becomes the refer call in our
predicted program, as it is a reference to “some
salient previously mentioned node.” Evaluating
refer here chooses the top-level node, start, from
the previous turn. That node is then used as an ar-
gument to a dayOfWeek node (nodes existing from
previous turns are shown here in lighter ink):

findEvent
'retreat'

now

start

start

name

after

EventSpec

dayOfWeek

DateTime(2020, . . .)

Monday

and evaluating the latter node applies dayOfWeek

to start’s value. This diagram is actually a sim-
plification: we will show in §3 how the refer call
itself is also captured in the dataflow graph.

The user may next ask a question that changes
the upstream constraint on the event’s start time:

User: What about in 2021?

revise(
new=DateTimeSpec(year=2021),
oldLoc=Constraint[DateTimeSpec](),
rootLoc=RoleConstraint(output))

+ that invokes an API will generally return its value directly
as a terminal node. However, translating natural language
to higher-level function calls, which have been defined to
expand into lower-level library calls (reminiscent of macro
expansion), is often more easily learnable and more main-
tainable than translating it directly to the expanded graph.
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A “new” DateTimeSpec (representing in 2021)
is to be substituted for some salient existing
old node that has value type DateTimeSpec (in
this case, the node after(now())). The revise

operator non-destructively splices in this new
sub-computation and returns a revised version of
the most salient computation containing old (in
this case, the subgraph for the previous utterance,
rooted at dayOfWeek):

findEvent
'retreat'

2021

start

name

DateTimeSpec

EventSpec

dayOfWeek
year

start

As in the refer example, the target program
(though not the above subgraph) corresponds
closely to the user’s new utterance, making it easy
to predict. Like the utterance itself, the program
does not specify the revised subgraph in full, but
describes how to find and reuse relevant structure
from the previous dataflow graph.

Given a dataset of turns expressed in terms
of appropriate graph-manipulation programs, the
learning problem for a dataflow agent is the same
as for any other supervised contextual semantic
parser. We want to learn a function that maps user
utterances to particular programs—a well-studied
task for which standard models exist. Details of
the model used for our experiments in this paper
are provided in §7.

Aside: response generation This paper focuses
on language understanding: mapping from a
user’s natural language utterance to a formal re-
sponse, in this case the value of the outlined
node returned by a program. Dialogue systems
must also perform language generation: mapping
from this formal response to a natural-language
response. The dataset released with this paper
includes output from a learned generation model
that can describe the value computed at a previous
turn, describe the structure of the computation that
produced the value, and reference other nodes in
the dataflow graph via referring expressions. Sup-
port for structured, computation-conditional gen-
eration models is another advantage of dataflow-
based dialogue state representations. While a
complete description of dataflow-based language
generation is beyond the scope of this paper, we
briefly describe the components of the generation
system relevant to the understanding system pre-
sented here.

The generation model is invoked after the eval-
uation phase. It conditions on a view of the graph
rooted at the most recent return node, so gener-
ated responses can mention both the previously re-
turned value and the computation that produced it.
As the generation model produces the natural lan-
guage response, it extends the dataflow graph. For
example, if after the user query “What’s the date
of the next retreat?” the agent responds:

Agent: It starts on April 27 at 9 am, and runs for
8 hours.

then it will also extend the dataflow graph to reflect
that the event’s duration was mentioned:

findEvent
'retreat'

2021

start

name

DateTimeSpec

EventSpec

year

start

Duration(hours=8, . . .)

duration

The duration of the event is now part of the com-
mon ground in the conversation and available for
future reference by either the agent or the user.

The generation model is also important for
agent initiative:

User: Put an event on my calendar.

Agent: What should it be called?

As discussed in detail in §5, questions of this kind
can be generated in response to exceptions gener-
ated by underspecified user requests. In the ac-
companying dataset release, the agent’s utterances
are annotated with their dataflow graphs as ex-
tended by the generation model.

3 Reference resolution

In a dialogue, entities that have been introduced
once may be referred to again. In dataflow di-
alogues, the entities available for reference are
given by the nodes in the dataflow graph. Entities
are salient to conversation participants to differ-
ent degrees, and their relative salience determines
the ways in which they may be referenced (Lap-
pin and Leass, 1994). For example, it generally
refers to the most salient non-human entity, while
more specific expressions like the Friday meeting
are needed to refer to accessible but less salient en-
tities. Not all references to entities are overt: if the
agent says “You have a meeting tomorrow” and the
user responds “What time?”, the agent must pre-
dict the implicit reference to a salient event.
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Dataflow pointers We have seen that refer is
used to find referents for referring expressions. In
general, these referents may be existing dataflow
nodes or new subgraphs for newly mentioned en-
tities. We now give more detail about both cases.

Imagine a dialogue in which the dataflow graph
contains the following fragment (which translates
a mention of Easter or answers When is Easter?):

findDateeaster
holiday

findDateTimeeaster

Suppose the user subsequently mentions the day
after that. We wish to produce this computation:

Days1

+
findDateTimeeaster

In our framework, this is accomplished by map-
ping the day after that to +(refer(), Days(1)).
The corresponding graph is not quite the one
shown above, but it evaluates to the same value:

Days1

+referfindDateTimeeaster

DateTime DateTime

This shows how the refer() call is reified as a
node in the dataflow graph. Its result is the salient
findDateTime node from the previous turn—
whose own result, a specific DateTime, now serves
as the value of refer. We show both result edges
here. Evaluating + adds a day to this old DateTime

value to get the result of +, a new DateTime.
To enable dataflow graph manipulation with re-

ferring expressions, all that is required is an im-
plementation of refer that can produce appropri-
ate pointers for both simple references (that) and
complex ones (the first meeting).

Constraints A call to refer is essentially a
query that retrieves a node from the dialogue
history, using a salience model discussed below.
refer takes an optional argument: a constraint on
the returned node. Indeed, the proper translation
of that in the context the day after that would be
refer(Constraint[DateTime]).3 Constraints are

3Fortunately, this constraint need not be manually anno-
tated. Given the rest of the program, it can be inferred auto-
matically by Hindley-Milner type inference (Hindley, 1969;
Milner, 1978), which establishes that this refer node must
return a DateTime if the program is to type-check.

predicates built from boolean connectives and the
constructions illustrated below:4

• Type constraints: the meeting maps to the
call refer(Constraint[Event]()), where the
constraint matches all nodes with values of
type Event.

• Property constraints: Assuming a struc-
tured Event type with a date property, and a
Date type with a weekday property, the Thurs-
day meeting maps to this nested call:
refer(Constraint[Event](date=

Constraint[DateTime](weekday=thurs)))

• Role constraints: A role constraint speci-
fies a keyword and matches nodes that are
used as keyword arguments with that key-
word. For example, the month maps to
refer(RoleConstraint(month)) and resolves
to the constant node apr in the dialogues in
§2, since that node was used as a named argu-
ment month=apr. We further allow keyword
paths that select arguments of arguments:
thurs in the previous bullet would satisfy
refer(RoleConstraint([date,weekday])).

To interpret a natural language referring expres-
sion, the program prediction model only needs
to translate it into a contextually appropriate
constraint C. refer(C) is then evaluated using a
separate salience retrieval model that returns an
appropriate node. The following dialogue shows
referring expressions in action:

User: What’s happening this morning?

findEvent(EventSpec(
start=and(today(), during(morning())))))

Agent: You have a planning meeting at 9 am.

User: What do I have after that?

findEvent(EventSpec(start=after(end(
refer(Constraint[Event]())))))

Agent: Your birthday lunch is at 12:30 pm.

User: How many people are coming to the
9 am meeting?

length(attendees(
refer(Constraint[Event](start=am(9)))))

Agent: 5 people will be at the planning meeting.

4refer and revise are not the only operations that take
constraints as arguments. For example, constraint arguments
to findEvent and createEvent specify what sort of event is
to be retrieved or created. In these other contexts, to avoid
distracting the reader, this paper uses EventSpec as an alias
for Constraint[Event]. It similarly uses aliases PersonSpec

and DateTimeSpec. (Our dataset does not.)
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Here the 9 am meeting refers to the one that is
salient from the first response, not an arbitrary one.

Salience retrieval model The salience retrieval
model returns the most salient node satisfying the
underlying constraint. Our dataflow framework
is agnostic to the implementation of this model.
A sophisticated model could select nodes via a
machine-learned scoring function. In the experi-
ments in this paper, however, we rank nodes using
a hard-coded heuristic.

The heuristic chooses the root node r of the pre-
vious user utterance, if it satisfies the constraint.
More generally, the heuristic prefers nodes to the
extent that they can be reached from r in a small
number of steps, where a step may move from a
node to one of its input nodes, from an evaluated
node to its result node, or from the root of an ut-
terance to the root of an adjacent (user or system)
utterance. If no satisfying node is found in the
past several utterances, the heuristic falls back to
generating code (see footnote 2) that will search
harder for a satisfying salient entity, perhaps by
querying a database. For example, our earlier
Constraint[Event](start=am(9)) may return the
expression findEvent(EventSpec(start=am(9)))

if no 9 am meeting has been mentioned recently,
and Constraint[Person](name=‘Adam’) may re-
turn findPerson(PersonSpec(name=‘Adam’)) if no
Adam has been mentioned. (See footnote 4.)

4 Revision

Beyond referring to previously mentioned entities
(nodes), task-oriented dialogues frequently refer
to previously executed computations (subgraphs).
This is one of the major advantages of representing
the dialogue state as a dataflow graph of computa-
tions, not just a set of potentially salient entities.

User: What time on Tuesday is my planning
meeting?

start(findEvent(EventSpec(
name='planning',
start=DateTimeSpec(weekday=tuesday))))

Agent: You meet with Grace at noon.

User: Sorry, I meant all-hands.

Agent: Your all-hands meeting is at 2:30 pm.

The second user utterance asks for the computa-
tion from the first user utterance to be repeated,
but with all-hands in place of planning. The ex-
pected result is still a time, even though the second

utterance makes no mention of time.

In the dataflow framework, we invoke a revise

operator to construct the revised computation:

User: Sorry, I meant all-hands.

revise(rootLoc=RoleConstraint(output),
oldLoc=Constraint[String](),
new='all-hands')

Again, the content of the program closely reflects
that of the corresponding utterance. The revise

operator takes three arguments:

• rootLoc, a constraint to find the top-level
node of the original computation;

• oldLoc, a constraint on the node to replace
within the original computation;

• new, a new graph fragment to substitute there.

The revise node evaluates to the root of a mod-
ified copy of the original computation, in which
new now fills the role at the “old” location. Nor-
mally rootLoc is RoleConstraint(output), which
selects a node returned by a previous user utter-
ance; thus, we revise that entire original request.

Revision is non-destructive—no part of the dia-
logue history is lost, so entities computed by the
original target and its ancestors remain avail-
able for later reference. However, the copy shares
nodes with the original computation where pos-
sible, to avoid introducing unnecessary duplicate
nodes that would have to be considered by refer.

For the example dialogue at the beginning of
this section, the first turn produces the light gray
nodes below. The second turn adds the darker gray
nodes, which specify the desired revision.

'planning'

findEvent

name

DateTimeSpec tuesday

start

weekday

EventSpec

Constraint[String]

revise'all-hands'
oldLoc rootLoc

new

start

RoleConstraint(output)

Finally, evaluating the revise node selects the
salient locations that match the rootLoc and
oldLoc constraints (indicated in the above drawing
by temporary dotted lines), and constructs the re-
vised subgraph (the new start node below and its
ancestors). The result of evaluation (dashed arrow
below) is the root of the revised subgraph.
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DateTimeSpectuesday
weekday

revise'all-hands'
new

findEventEventSpec start

name

start

Finally, evaluating these new nodes as well will es-
tablish that the value of the top-level revise is the
start time of the ‘all-hands’ meeting on Tuesday.

In the following example, the second utterance
asks to replace a date specification. However, the
utterance appears in a context where the relevant
DateTimeSpec-valued node to be “replaced” is an
argument that has actually not yet been provided:

User: When is lunch?

start(findEvent(EventSpec(name='lunch')))

Agent: It’s at 1 pm.

User: What about tomorrow?

revise(
rootLoc=RoleConstraint(output),
oldLoc=Constraint[DateTimeSpec],
new=tomorrow())

The revision replaces the missing start argu-
ment to the previous EventSpec (whose absence
had resulted in some default behavior) with an
explicit argument (the DateTimeSpec returned by
tomorrow()). To achieve this, when the salience
retrieval model is run with an oldLoc constraint,
it must be able to return missing arguments that
satisfy that constraint. Missing arguments are im-
plicitly present, with special value missing of the
appropriate type. In practice they are created on
demand.

RoleConstraint(output)Constraint[DateTimeSpec]

revise
oldLoc

rootLoc

new

'lunch' EventSpec findEventname

missing

tomorrow

start

start

Evaluating the revise node results in the new, re-
vised subgraph pointed to by the dashed arrow,
(which can then be evaluated):

revisetomorrow
new

'lunch' EventSpec start
name

start

findEvent

Relatedly, a user utterance sometimes modi-
fies a previously mentioned constraint such as an
EventSpec (see footnote 4). To permit this and

more, we allow a more flexible version of revise
to (non-destructively) transform the subgraph at
oldLoc by applying a function, rather than by sub-
stituting a given subgraph new. Such functions are
similar to rewrite rules in a term rewriting system
(Klop, 1990), with the oldLoc argument supplying
the condition. Our dataset (§6) makes heavy use
of reviseConstraint calls, which modify a con-
straint as directed, while weakening it if neces-
sary so that it remains satisfiable. For example,
if a 3:00–3:30 meeting is onscreen and the user
says make it 45 minutes or make it longer, then the
agent can no longer preserve previous constraints
start=3:00 and end=3:30; one must be dropped.

While the examples in this section involve a sin-
gle update, real-world dialogues (§6) can involve
single user requests built up over as many as five
turns with unrelated intervening discussion. Re-
visions of revisions or of constraints on reference
are also seamlessly handled: revise can take an-
other revise or a refer node as its target, leading
to a longer chain of result edges (dashed lines) to
follow. Coordination of interactions among this
many long-range dependencies remains a chal-
lenge even for modern attentional architectures
(Bordes et al., 2016). With revise all the needed
information is in one place; as experiments will
show, this is crucial for good performance in more
challenging dialogues.

5 Recovery

Sometimes users make requests that can be ful-
filled only with the help of followup exchanges, if
at all. Requests might be incomplete:

User: Book a meeting for me.

Agent: When should the meeting start?

referentially ambiguous:

User: Who is coming to the planning meeting?

Agent: Susan Chu and Susan Brown.

User: What is Susan’s email?

or have no identifiable referent (a presupposition
failure):

User: When is my first meeting on February 30?

Our solution is to treat such discourse failures as
exceptions. In principle, they are no different from
other real-world obstacles to fulfilling the user’s
request (server errors, declined credit cards, and
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other business logic). To be useful, a dialogue
model must have some way to recover from all
these exceptions, describing the problem to the
user and guiding the dialogue past it.

Our dialogue manager consists mainly of an ex-
ception recovery mechanism. This contrasts with
traditional slot-filling systems, where a scripted
policy determines which questions to ask the user
and in which order. Scripted policies are straight-
forward but cannot handle novel compositional ut-
terances. Contextual semantic parsers treat com-
positionality, but provide no dialogue management
mechanism at all. Our dataflow-based approach
allows the user to express complex compositional
intents, but also allows the agent to reclaim the ini-
tiative when it is unable to make progress. Specif-
ically, the agent can elicit interactive repairs of
the problematic user plan: the user communicates
such repairs through the reference and revision
mechanisms described in preceding sections.

Exceptions in execution In the dataflow graph
framework, failure to interpret a user utterance is
signaled by exceptions, which occur during eval-
uation. The simplest exceptions result from errors
in function calls and constructors:

User: What do I have on February 30?

findEvent(EventSpec(
start=DateTimeSpec(month=feb, day=30)))

Evaluation of the dataflow graph specified by this
program cannot be completed. The DateTimeSpec

constructor generates an exception, and descen-
dants of that node remain unevaluated.

30

EventSpec
feb

findEvent

30

DateTimeSpec

NoSuchValueException!

month

day

An exception is essentially just a special result
(possibly a structured value) returned by evalua-
tion. It appears in the dataflow graph, so the agent
can condition on it when predicting programs in
future turns. When an exception occurs, the gen-
eration model (§2) is invoked on the exceptional
node. This can be used to produce prompts like:

Agent: There is no 30th of February. Did you
mean some other date?

At this point, recovering from the exception looks
like any other revision step: the user supplies a
new value, and the agent simply needs to patch it

into the right location in the dataflow graph. There
are several answers the user could make, indicat-
ing repairs at different locations:

User: I meant February 28.

revise(rootLoc=RoleConstraint(output),
oldLoc=Constraint[DateTimeSpec](),
new=DateTimeSpec(month=feb, day=28))

User: I meant March.

revise(rootLoc=RoleConstraint(output),
oldLoc=Constraint[Month],
new=mar)

The fact that exception recovery looks like any
other turn-level prediction is another key advan-
tage of dataflow-based state representations. In
the above examples, the user specified a revision
that would enable them to continue, but they also
would have been free to try another utterance (List
all my meetings in February) or to change goals
altogether (Never mind, let’s schedule a vacation).

Because of its flexibility, our exception-
handling mechanism is suitable for many situa-
tions that have not traditionally been regarded as
exceptions. For example, an interactive slot-filling
workflow can be achieved via a sequence of under-
specified constructors, each triggering an excep-
tion and eliciting a revision from the user:

User: Create a meeting.

createEvent()
99K UnderconstrainedException!(name)

Agent: What should it be called?

User: Planning meeting.

revise(rootLoc=RoleConstraint(output),
oldLoc=RoleConstraint(name),
new='Planning meeting')

99K UnderconstrainedException!(start)

Agent: When should it start?

The agent predicted that the user intended to revise
the missing name because an exception involving
the name path appeared in the dialogue history on
the previous turn.

Recovery behaviors are enabled by the phase
separation between constructing the dataflow
graph (which is the job of program synthesis from
natural language) and evaluating its nodes. The
dataflow graph always contains a record of the
user’s current goal, even when the goal could
not be successfully evaluated. This goal persists
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across turns and remains accessible to reference,
and thus can be interactively refined and clari-
fied using the same metacomputation operations
as user-initiated revision. Exception handling in-
fluences the course of the dialogue, without requir-
ing a traditional hand-written or learned “dialogue
policy” that reasons about full dialogue states. Our
policy only needs to generate language (recall §2)
that reacts appropriately to any exception or ex-
ceptions in the evaluation of the most recent ut-
terance’s program, just as it reacts to the ordinary
return value in the case where evaluation succeeds.

6 Data

To validate our approach, we crowdsourced a large
English dialogue dataset, SMCalFlow, featuring
task-oriented conversations about calendar events,
weather, places, and people. Figure 2 has an exam-
ple. SMCalFlow has several key characteristics:

Richly annotated: Agent responses are exe-
cutable programs, featuring API calls, function
composition, and complex constraints built from
strings, numbers, dates and times in a variety of
formats. They are not key-value structures or
database queries, but instead full descriptions of
the runtime behavior needed to react to the user in
a real, grounded dialogue system.

Open-ended: We did not constrain crowdwork-
ers to scripts. Instead, they were given general
information about agent capabilities and were en-
couraged to interact freely. A practical dialogue
system must also recognize and respond to out-of-
scope requests. Our dataset includes many such
examples (see the fourth user turn in Figure 2).

Cross-domain: SMCalFlow spans four major
domains: calendar, weather, places, and people.
Cross-domain interaction is pervasive (Figure 2).

To cover a rich set of back-end capabilities
while encouraging worker creativity, we designed
a wide range of scenarios to guide dialogue con-
struction. There are over 100 scenarios of varying
topic and granularity. Dialogues are collected via
a Wizard-of-Oz process. Every dialogue is associ-
ated with a scenario. At each turn, a crowdworker
acting as the user is presented with a dialogue as
context and is asked to append a new utterance.
An annotator acting as the agent labels the utter-
ance with a program (which may include refer

and revise) and then selects a natural-language re-
sponse from a set of candidates produced by the
language generation model described in §2. The

User: Can you remind me to go to the airport tomorrow
morning at 8am?

createCommitEventWrapper(
createPreflightEventWrapper(

EventBuilder(
subject='go to the airport',
start=dateAtTime(

date=tomorrow(),
time=numberAM(8)))))

Agent: Does this look right? [showing an event card with
start at 8 am and the event name]

User: Make the location LaGuardia Airport.

reviseConstraint(
rootLoc=RoleConstraint(output),
oldLoc=Constraint[EventBuilder](),
new=EventBuilder(

location=LocationKeyphrase(
'LaGuardia Airport')))

Agent: How is this? [showing an updated card]

User: What can I expect the weather there to be tomorrow
morning?

weatherQueryApi(
place=findPlace(PlaceSpec(

keyphrase=refer(
Constraint[LocationKeyphrase]()))),

time=DateTimeSpec(
date=tomorrow(),
constraint=morning()))

Agent: It will be partly cloudy with a high of 77 °F and a
low of 67 °F in LaGuardia Airport between 6:00 AM
and 12:00 PM.

User: How is the traffic on the way there?

fenceNavigation()

Agent: I can’t answer questions about transit.

User: That’s fine. Book that please.

confirmAndReturnAction()

Agent: I’ve put that on your calendar. [showing the con-
firmed event card]

Figure 2: A sample annotated dialogue in SMCalFlow.
Turn 1 features free-text subject and date/time. Turn
2 features reviseConstraint. Turn 3 features cross-
domain interaction via refer and nested API calls
(findPlace and weatherQueryApi are both real-world
APIs). Turn 4 features an out-of-scope utterance that is
parried by a category-appropriate “fencing” response.
Turn 5 confirms a proposal after intervening turns.

annotation interface includes an autocomplete fea-
ture based on existing annotations. Annotators
also populate databases of people and events to en-
sure that user requests have appropriate responses.
The process is iterated for a set number of turns
or until the annotator indicates the end of conver-
sation. A single dialogue may include turns from
multiple crowdworkers and annotators.

Annotators are provided with detailed guide-
lines containing example annotations and informa-
tion about available library functions. Guidelines
also specify conventions for pragmatic issues like
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the decision to annotate next as after at the be-
ginning of §2. Crowdworkers are recruited from
Amazon Mechanical Turk with qualification re-
quirements such as living in the United States and
with a work approval rate higher than 95%.

Data is split into training, development, and
test sets. We review every dialogue in the test
set with two additional annotators. 75% of turns
pass through this double review process with no
changes, which serves as an approximate measure
of inter-annotator consensus on full programs.

For comparison, we also produce a version of
the popular MultiWOZ 2.1 dataset (Budzianowski
et al., 2018; Eric et al., 2019) with dataflow-based
annotations. MultiWOZ is a state tracking task,
so in its original format the dataset annotates each
turn with a dialogue state rather than an executable
representation. To obtain an equivalent (program-
based) representation for MultiWOZ, at each user
turn we automatically convert the annotation to
a dataflow program.5 Specifically, we represent
each non-empty dialogue state as a call to an
event booking function, find, whose argument is a
Constraint that specifies the desired type of book-
ing along with values for some of that type’s slots.
Within a dialogue, any turn that initiates a new
type of booking is re-annotated as a call to find.
Turns that merely modify some of the slots are re-
annotated as reviseConstraint calls. Within ei-
ther kind of call, any slot value that does not ap-
pear as a substring of the user’s current utterance
(all slot values in MultiWOZ are utterance sub-
strings) is re-annotated as a call to refer with an
appropriate type constraint, provided that the ref-
erence resolution heuristic would retrieve the cor-
rect string from earlier in the dataflow. This cov-
ers references like the same day. Otherwise, our
re-annotation retains the literal string value.

Data statistics are shown in Table 1. To
the best of our knowledge, SMCalFlow is the
largest annotated task-oriented dialogue dataset to
date. Compared to MultiWOZ, it features a larger
user vocabulary, a more complex space of state-
manipulation primitives, and a long tail of agent
programs built from numerous function calls and
deep composition.

7 Experiments

We evaluate our approach on SMCalFlow and
MultiWOZ 2.1. All experiments use the Open-

5We release the conversion script along with SMCalFlow.

NMT (Klein et al., 2017) pointer-generator net-
work (See et al., 2017), a sequence-to-sequence
model that can copy tokens from the source se-
quence while decoding. Our goal is to demon-
strate that dataflow-based representations benefit
standard neural model architectures. Dataflow-
specific modeling might improve on this baseline,
and we leave this as a challenge for future work.

For each user turn i, we linearize the target
program into a sequence of tokens zi. This
must be predicted from the dialogue context—
namely the concatenated source sequence
xi−c zi−c · · ·xi−1 zi−1 xi (for SMCalFlow) or
xi−c yi−c · · ·xi−1 yi−1 xi (for MultiWOZ 2.1).
Here c is a context window size, xj is the user
utterance at user turn j, yj is the agent’s natural-
language response, and zj is the linearized agent
program. Each sequence xj , yj , or zj begins with
a separator token that indicates the speaker (user
or agent). Our formulation of context for Multi-
WOZ is standard (e.g., Wu et al., 2019). We take
the source and target vocabularies to consist of all
words that occur in (respectively) the source and
target sequences in training data, as just defined.

The model is trained using the Adam optimizer
(Kingma and Ba, 2015) with the maximum likeli-
hood objective. We use 0.001 as the learning rate.
Training ends when there have been two different
epochs that increased the development loss.

We use Glove800B-300d (cased) and Glove6B-
300d (uncased) (Pennington et al., 2014) to ini-
tialize the vocabulary embeddings for the SM-
CalFlow and MultiWoZ experiments, respectively.
The context window size c, hidden layer size d,
number of hidden layers l, and dropout rates r are
selected based on the agent action accuracy (for
SMCalFlow) or dialogue-level exact match (for
MultiWoZ) on the development set from {2, 4,
10}, {256, 300, 320, 384}, {1, 2, 3}, {0.3, 0.5,
0.7} respectively. Approximate 1-best decoding
uses a beam of size 5.

Quantitative evaluation Table 2 shows results
for the SMCalFlow dataset. We report program
accuracy: specifically, exact-match accuracy of
the predicted program after inlining metacompu-
tation (i.e., replacing all calls to metacomputation
operations with the concrete program fragments
they return).6 We also compare to baseline mod-

6Specifically, we inline all refer calls and revise calls
that involve direct substitution of the kind described in §4.
We preserve reviseConstraint calls to avoid penalizing
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# Dialogues # User Turns
User Vocab.

Size
Library

Size
Utterance

Length
Program
Length

Program
Depth

OOS

SMCalFlow 41,517 155,923 17,397 338 (5, 8, 11) (11, 40, 57) (5, 9, 11) 10,466
MultiWOZ 2.1 10,419 71,410 4,105 35 (9, 13, 17) (2, 29, 39) (2, 6, 6) 0

Table 1: Dataset statistics. “Library Size” counts distinct function names (e.g., findEvent) plus keyword names
(e.g., start=). “Length” and “Depth” columns show (.25, .50, .75) quantiles. For programs, “Length” is the num-
ber of function calls and “Depth” is determined from a tree-based program representation. “OOS” counts the out-
of-scope utterances. MultiWOZ statistics were calculated after applying the data processing of Wu et al. (2019).
Vocabulary size is less than reported by Goel et al. (2019) because of differences in tokenization (see code release).

Full Ref. Turns Rev. Turns
dev test dev test dev test

# of Turns 13,499 21,224 3,554 8,965 1,052 3,315

Dataflow .729 .665 .642 .574 .697 .565
inline .696 .606 .533 .465 .631 .474

Table 2: SMCalFlow results. Agent action accuracy is
significantly higher than a baseline without metacom-
putation, especially on turns that involve a reference
(Ref. Turns) or revision (Rev. Turns) to earlier turns in
the dialogue (p < 10−6, McNemar’s test).

els that train on inlined metacomputation. These
experiments make it possible to evaluate the im-
portance of explicit dataflow manipulation com-
pared to a standard contextual semantic parsing
approach to the task: a no-metacomputation base-
line can still reuse computations from previous
turns via the model’s copy mechanism.

For the full representation, c, d, l, and r are 2,
384, 2, and 0.5, respectively. For the inline variant,
they are 2, 384, 3, and 0.5. Turn-level exact match
accuracy is around 73% for the development set
and 67% for the test set. Inlining metacomputa-
tion, which forces the model to explicitly resolve
cross-turn computation, reduces accuracy by 5.9%
overall, 10.9% on turns involving references, and
9.1% on turns involving revision. Dataflow-based
metacomputation operations are thus essential for
good model performance in all three cases.

We further evaluate our approach on dialogue
state tracking using MultiWOZ 2.1. Table 3 shows
results. For the full representation, the selected
model uses c = 2, d = 384, l = 2, and r = 0.7.
For the inline refer variant, they are 4, 320, 3, and
0.3. For the variant that inlines both refer and
revise calls, they are 10, 320, 2, and 0.7. Even
without metacomputation, prediction of program-
based representations gives results comparable to
the existing state of the art, TRADE, on the stan-
dard “Joint Goal” metric (turn-level exact match).

baselines that do not have access to pre-defined constraint
transformation logic.

Joint Goal Dialogue Prefix

Dataflow .467 .220 3.07
inline refer .447 .202 2.97
inline both .467 .205 2.90
TRADE .454 .168 2.73

Table 3: MultiWOZ 2.1 test set results. TRADE (Wu
et al., 2019) results are from the public implementa-
tion. “Joint Goal” (Budzianowski et al., 2018) is aver-
age dialogue state exact-match, “Dialogue” is average
dialogue-level exact-match, and “Prefix” is the average
number of turns before an incorrect prediction. Within
each column, the best result is boldfaced, along with
all results that are not significantly worse (p < 0.05,
paired permutation test). Moreover, all of “Dataflow,”
“inline refer,” and “inline both” have higher dialogue
accuracy than TRADE (p < 0.005).

(Our dataflow representation for MultiWOZ is de-
signed so that dataflow graph evaluation produces
native MultiWOZ slot-value structures.) However,
Joint Goal does not fully characterize the effec-
tiveness of a state tracking system in real-world
interactions, as it allows the model to recover from
an error at an earlier turn by conditioning on gold
agent utterances after the error. We thus evaluate
on dialogue-level exact match and prefix length
(the average number of turns until an error). On
these metrics the benefit of dataflow over past ap-
proaches is clearer. Differences within dataflow
model variants are smaller here than in Table 2.
For the Joint Goal metric, the no-metacomputation
baseline is better; we attribute this to the com-
parative simplicity of reference in the MultiWOZ
dataset. In any case, casting the state-tracking
problem as one of program prediction with ap-
propriate primitives gives a state-of-the-art state-
tracking model for MultiWOZ using only off-the-
shelf sequence prediction tools.7

7A note on reproducibility: Dependence on internal li-
braries prevents us from releasing a full salience model im-
plementation and inlining script for SMCalFlow. The accom-
panying data release includes both inlined and non-inlined
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Error category Count

Underprediction 21

Entity linking 21
Hallucinated 7
Wrong type 7
Wrong field 2
Boundary mismatch 5

Fencing 22
Should have fenced 9
Shouldn’t have fenced 8
Wrong message 5

Ambiguity 23
Wrong in context 8
Acceptable (same semantics) 8
Acceptable (different semantics) 7

Miscellaneous 10
Used wrong function 4
Other / Multiple 6

Error in gold 3

Table 4: Manual classification of 100 model errors
on the SMCalFlow dataset. The largest categories are
underprediction (omitting steps from agent programs),
entity linking (errors in extraction of entities from user
utterances, fencing (classifying a user request as out-
of-scope), and ambiguity (user utterances with multiple
possible interpretations). See §7 for discussion.

Error analysis Beyond the quantitative results
shown in Tables 2–3, we manually analyzed 100
SMCalFlow turns where our model mispredicted.
Table 4 breaks down the errors by type.

Three categories involve straightforward pars-
ing errors. In underprediction errors, the model
fails to predict some computation (e.g., a search
constraint or property extractor) specified in the
user request. This behavior is not specific to our
system: under-length predictions are also well-
documented in neural machine translation systems
(Murray and Chiang, 2018). In entity linking er-
rors, the model correctly identifies the presence of
an entity mention in the input utterance, but uses
it incorrectly in the input plan. Sometimes the en-
tity that appears in the plan is hallucinated, ap-
pearing nowhere in the utterance; sometimes the
entity is cast to a wrong type (e.g., locations inter-
preted as event names) used in the wrong field or
extracted with wrong boundaries. In fencing er-
rors, the model interprets an out-of-scope user ut-
terance as an interpretable command, or vice-versa

versions of the full dataset, and inlined and non-inlined ver-
sions of our model’s test set predictions, enabling side-by-
side comparisons and experiments with alternative represen-
tations. We provide full conversion scripts for MultiWOZ.

(compare to Figure 2, turn 4).
The fourth category, ambiguity errors, is more

interesting. In these cases, the predicted plan cor-
responds to an interpretation of the user utterance
that would be acceptable in some discourse con-
text. In a third of these cases, this interpretation
is ruled out by either dialogue context (e.g., in-
terpreting what’s next? as a request for the next
list item rather than the event with the next earliest
start time) or commonsense knowledge (make it at
8 means 8 a.m. for a business meeting and 8 p.m.
for a dance party). In the remaining cases, the pre-
dicted plan expresses an alternative computation
that produces the same result, or an alternative in-
terpretation that is also contextually appropriate.

8 Related work

The view of dialogue as an interactive process of
shared plan synthesis dates back to Grosz and Sid-
ner’s earliest work on discourse structure (1986;
1988). That work represents the state of a dia-
logue as a predicate recognizing whether a desired
piece of information has been communicated or
change in world state effected. Goals can be re-
fined via questions and corrections from both users
and agents. The only systems to attempt full ver-
sions of this shared-plans framework (e.g., Allen
et al., 1996; Rich et al., 2001) required inputs that
could be parsed under a predefined grammar. Sub-
sequent research on dialogue understanding has
largely focused on two simpler subtasks:

Contextual semantic parsing approaches fo-
cus on complex language understanding without
reasoning about underspecified goals or agent ini-
tiative. Here the prototypical problem is iterated
question answering (Hemphill et al., 1990; Yu
et al., 2019b), in which the user asks a sequence of
questions corresponding to database queries, and
results of query execution are presented as struc-
tured result sets. Vlachos and Clark (2014) de-
scribe a semantic parsing representation targeted
at more general dialogue problems. Most existing
methods interpret context-dependent user ques-
tions (What is the next flight to Atlanta? When
does it land?) by learning to copy subtrees (Zettle-
moyer and Collins, 2009; Iyyer et al., 2017; Suhr
et al., 2018) or tokens (Zhang et al., 2019) from
previously-generated queries. In contrast, our ap-
proach reifies reuse with explicit graph operators.

Slot-filling approaches (Pieraccini et al., 1992)
model simpler utterances in the context of full, in-
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teractive dialogues. It is assumed that any user in-
tent can be represented with a flat structure con-
sisting of a categorical dialogue act and a map-
ping between a fixed set of slots and string-valued
fillers. Existing fine-grained dialogue act schemes
(Stolcke et al., 2000) can distinguish among a
range of communicative intents not modeled by
our approach, and slot-filling representations have
historically been easier to predict (Zue et al., 1994)
and annotate (Byrne et al., 2019). But while re-
cent variants support interaction between related
slots (Budzianowski et al., 2018) and fixed-depth
hierarchies of slots (Gupta et al., 2018), modern
slot-filling approaches remain limited in their sup-
port for semantic compositionality. By contrast,
our approach supports user requests correspond-
ing to general compositional programs.

More recent end-to-end dialogue agents at-
tempt to map directly from conversation histo-
ries to API calls and agent utterances using neural
sequence-to-sequence models without a represen-
tation of dialogue state (Bordes et al., 2016; Yu
et al., 2019a). While promising, models in these
papers fail to outperform rule- or template-driven
baselines. Neelakantan et al. (2019) report greater
success on a generation-focused task, and promis-
ing results have also been obtained from hybrid
neuro-symbolic dialogue systems (Zhao and Eske-
nazi, 2016; Williams et al., 2017; Wen et al., 2017;
Gao et al., 2019). Much of this work is focused on
improving agent modeling for existing representa-
tion schemes like slot filling. We expect that many
modeling innovations (e.g., the neural entity link-
ing mechanism proposed by Williams et al.) could
be used in conjunction with the new representa-
tional framework we have proposed in this paper.

Like slot-filling approaches, our framework is
aimed at modeling full dialogues in which agents
can ask questions, recover from errors, and take
actions with side effects, all backed by an ex-
plicit state representation. However, our notions
of “state” and “action” are much richer than in
slot-filling systems, extending to arbitrary com-
positions of primitive operators. We use seman-
tic parsing as a modeling framework for dialogue
agents that can construct compositional states of
this kind. While dataflow-based representations
are widely used to model execution state for pro-
gramming languages (Kam and Ullman, 1976),
this is the first work we are aware of that uses them
to model conversational context and dialogue.

9 Conclusions

We have presented a representational framework
for task-oriented dialogue modeling based on
dataflow graphs, in which dialogue agents predict
a sequence of compositional updates to a graphical
state representation. This approach makes it pos-
sible to represent and learn from complex, natural
dialogues. Future work might focus on improv-
ing prediction by introducing learned implementa-
tions of refer and revise that, along with the pro-
gram predictor itself, could evaluate their hypothe-
ses for syntactic, semantic, and pragmatic plausi-
bility. The representational framework could it-
self be extended, e.g., by supporting declarative
user goals and preferences that persist across utter-
ances. We hope that the rich representations pre-
sented here—as well as our new dataset—will fa-
cilitate greater use of context and compositionality
in learned models for task-oriented dialogue.
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