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Abstract

Collecting modality exclusivity norms for lex-
ical items has recently become a common
practice in psycholinguistics and cognitive re-
search. However, these norms are available
only for a relatively small number of lan-
guages and often involve a costly and time-
consuming collection of ratings.

In this work, we aim at learning a mapping be-
tween word embeddings and modality norms.
Our experiments focused on crosslingual word
embeddings, in order to predict modality asso-
ciation scores by training on a high-resource
language and testing on a low-resource one.
We ran two experiments, one in a monolin-
gual and the other one in a crosslingual setting.
Results show that modality prediction using
off-the-shelf crosslingual embeddings indeed
has moderate-to-high correlations with human
ratings even when regression algorithms are
trained on an English resource and tested on
a completely unseen language.

1 Introduction

The expression modality exclusivity norms refers
to a collection of words and their association
scores with sensory modalities. The use of
modality norms has been a recent trend in
psycholinguistic and cognitive science, based on
the observation that words with sensory meanings
are associated with certain perceptual regions
of the brain (Barsalou, 1999; Goldberg et al.,
2006; Barros-Loscertales et al., 2012). Words are
typically associated with multiple modalities: for
example, the word sweet can be used to describe
sounds, flavours, looks etc. (Connell, 2007; Lynott
and Connell, 2009, 2013). Psycholinguistic studies
use modality exclusivity norms to control for

This work is licensed under a Creative Commons Attri-
bution 4.0 International License. License details: http:
//creativecommons.org/licenses/by/4.0/.

the perceptual strength of lexical items used in
their experiments, motivating the publication of
datasets in which words are rated according to their
association with each of the five senses (see the
example in Table 1). Moreover, such norms have
also been shown to be useful for other NLP tasks,
such as metaphor detection (Wan et al., 2020a,b).
Normative studies on modality for English words
are relatively common (Lynott and Connell, 2009;
Juhasz et al., 2011; Lynott and Connell, 2013;
Lynott et al., 2019), and similar norms have also
been made available for other languages such as
French (Bonin et al., 2015), Serbian (Ðurd̄ević
et al., 2016), Dutch (Speed and Majid, 2017),
Russian (Miklashevsky, 2018), Chinese (Chen
et al., 2019) and Italian (Vergallito et al., 2020).
But in general, the number of languages for which
they are available is still limited, and collecting
modality norms is a time-consuming process,
especially for low-resource languages.

word Taste Sight Sound Smell Touch
dress 0.02 4.86 0.4 0.86 4.37

Table 1: Modality norms for the word dress.

Our working hypothesis for this study is that
the commonalities in human perceptual cogni-
tion would lead to reliable automatic induction of
modality exclusivity norms for unseen words (i.e.
words without experimental data) in the same lan-
guage. In addition, the five primary sensory modal-
ities are assumed to be universal, and consequently,
the prediction of norms in a new language can be
carried out with the same procedure. Crosslingual
word embeddings provide an ideal model for the
prediction of modality exclusivity norms in low-
resource languages, as they represent words of mul-
tiple languages in a shared feature space. It is thus

http://creativecommons.org/licenses/by/4.0/
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possible to train a regressor on a resource-rich lan-
guage, e.g English, and predict modality ratings for
words in an unseen language. We experimented
with this crosslingual transfer method on Italian,
Dutch and Chinese norms. Results show that a)
crosslingual embeddings perform similarly to or
slightly better than monolingual embeddings in a
monolingual setting; b) even after training only on
English data, the regressor can predict norms in
a totally unseen language with moderate-to-high
correlations with human judgements.

2 Related Work

Although word vectors have been a standard
for word representations for almost two decades
(Lenci, 2018), they became an essential ingredient
for most NLP applications only after the introduc-
tion of word embeddings (Mikolov et al., 2013a;
Pennington et al., 2014; Bojanowski et al., 2017).
Differently from the first generation models using
co-occurrence counting and weighting, word em-
beddings are estimated via neural network training
with the objective of maximizing the probability of
the contexts of a target word, and they gained popu-
larity due to the availability of efficient and easy-to-
use tools (Mikolov et al., 2013a). The development
of research on crosslingual transfer and the avail-
ability of new benchmarks for multilingual NLP
has recently led to the introduction of the so-called
crosslingual embeddings, vector space models that
represent words from multiple languages through
some form of mapping from a monolingual to a
multilingual space (Conneau et al., 2018; Ruder
et al., 2019). A classical study by Mikolov et al.
(2013b) learnt a linear projection to transform the
space of a source language to the space of a target
language by maximizing the similarity between the
two spaces. Other approaches apply Canonical Cor-
relation Analysis to simultaneously project words
from two languages into a shared embedding space
where the correlation between projected vectors are
maximized (Faruqui and Dyer, 2014). Other works
make use of the max-margin method such that, for
embeddings projected from a source language, they
maximize the margin between the correct transla-
tions and other candidates (Lazaridou et al., 2015;
Joulin et al., 2018). For this study, we use the off-
the-shelf crosslingual embeddings by Joulin et al.
(2018) based on FastText (Bojanowski et al., 2017)

and trained on Wikipedia. 1

Despite the success of word embeddings, a com-
mon criticism is that they are not grounded in per-
ception, as words are only defined in relation to
each other and not to entities and actions in the
physical world (Glenberg and Robertson, 2000; Fa-
garasan et al., 2015; Li and Gauthier, 2017). To
address this issue, Fagarasan et al. (2015) used a
regression method to map embeddings onto the
conceptual properties of the McRae norms (McRae
et al., 2005). A similar approach, using feedfor-
ward neural networks for predicting properties, was
recently described by Li and Summers-Stay (2019).
The work by Derby et al. (2019) goes in the op-
posite direction: instead of predicting norms from
embeddings, they combined pretrained vectors and
property vectors to inject conceptual knowledge
into a new type of word representations. Their Fea-
ture2Vec system showed a strong performance in
the predicting norms of unseen words, compared to
previous proposals. Finally, Utsumi (2018, 2020)
proposed a similar mapping technique to exploit
semantic feature norms by Binder et al. (2016)
to analyze the semantic content of word embed-
dings in terms of neurobiologically-motivated fea-
tures. Turton et al. (2020) also experimented with
embeddings based on Binder features, showing
that they can achieve performances comparable
to Word2Vec (Mikolov et al., 2013a) and GloVe
(Pennington et al., 2014) on similarity datasets.

3 Our Proposed Approach

In this work, we used regressors trained on crosslin-
gual word embeddings to predict modality ratings
in two different scenarios. In the monolingual sce-
nario, we adopt a 5-fold cross-validation to predict
the modality norms of an English dataset (Lynott
and Connell, 2009, 2013). In the crosslingual sce-
nario, a regressor is trained on a high-resource lan-
guage, e.g. English, to predict the modality norms
of an unseen language.

3.1 Datasets
Four modality norms datasets are used in this work:
the English norms by Lynott and Connell (2009,

1We ran experiments also with the Numberbatch embed-
dings by Speer and Lowry-Duda (2017), which are obtained
by retrofitting different types of word embeddings with a sub-
graph of ConceptNet (Speer et al., 2017). However, while
these vectors showed a strong performance in predicting the
norms in the monolingual setting, they never achieved signifi-
cant correlations with human judgements in the crosslingual
prediction, and thus we omitted them from the Results section.
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2013) (1002 words); the Italian norms by Vergal-
lito et al. (2020) (1121 words); the Dutch norms
by Speed and Majid (2017) (485 words); the Chi-
nese norms by Chen et al. (2019) (291 words). The
latter three datasets were collected using a similar
methodology, inherited by the original study on
English. The questions used for data collection are
typically in the following form: "To what extent
you experience a (target word) by (sensory modal-
ity)". Human participants had to provide a rating
from 1 to 7 for each of the five sensory modalities,
taste, sight, sound, smell and touch. All the datasets
contain the mean ratings (thus, five modality scores
for each word), which are the target variables to
be predicted by our embedding-based regressors.
The proportion of the dominant modality (i.e. the
modality with the highest rating score per word) for
each language is depicted in Figure 1. Generally,
sight is the most represented modality while smell
is relatively scarce.

Figure 1: Percentages of dominant modality.

3.2 Models

Using the scikit-learn package (Pedregosa et al.,
2011), we tested several regressors on this task.
We show the results for the two top-performing
ones: Multilayer Perceptron (MLP ) and Ridge
Regression (RR). As a result of parameter tuning,
we adopt the following settings for MLP : 2 hidden
layers, respectively of 50 and 10 hidden units ,
and the identity activation function. All the other

hyperparameters correspond to the default settings
of the scikit-learn library.

In all settings, regressors are trained on the em-
beddings of the words to predict the modality rat-
ings in the original norms. For the monolingual
scenario, both monolingual and crosslingual em-
beddings are trained on Wikipedia with the Fast-
Text library (Joulin et al., 2018). 2 As a baseline for
the monolingual scenario, we also include models
trained on random embeddings (RANDOM ).

3.3 Experiment 1
In the monolingual scenario, we test whether word
embeddings are capable to predict modality ratings
of English. Although there were previous stud-
ies on mapping word embeddings on conceptual
properties (Louwerse and Connell, 2011), the pre-
diction on modality norms is not obvious. Firstly,
most of those studies predict discrete properties
(e.g. whether one concept is primarily experi-
enced through a given sensory modality or not),
and not continuous values. Secondly, modality
norms represent semantic features that are learned
through bodily experience, and it has yet to be
tested whether they can be predicted by text-based
vectors, to the best of our knowledge.

We used 5-fold cross-validation, by splitting the
complete dataset into five sets. In each iteration,
we leave one group out and use it as a test set, while
training on the instances of all the other groups. Ta-
ble 2 shows the results for Random, Monolingual
and Crosslingual Embeddings, reporting the Spear-
man correlations, respectively, per modality and
per word. 3 Concerning the differences between
modalities, it can be observed that both embedding
types achieve a correlation above 0.5 on all senses
and are well above the random baseline, which
never manages to achieve a significant correlation
per modality. Smell, the least represented modality
in the data, is also the least correlated while Sound
and Touch are the easiest to predict. Surprisingly,
we can observe that Crosslingual Embeddings per-
form similarly, and even slightly better than the
Monolingual vectors for all modalities.

Figure 2 shows the scores for two best perform-
ing regressors, and we can observe that the Multi-

2The crosslingual embeddings can be found at https://
fasttext.cc/docs/en/aligned-vectors.html
and the monolingual vectors at https://fasttext.cc/
docs/en/pretrained-vectors.html.

3Word correlations are computed between vectors of just
five values, which is not ideal. Also for this reason, Random
embeddings achieve relatively high values for this metric.

https://fasttext.cc/docs/en/aligned-vectors.html
https://fasttext.cc/docs/en/aligned-vectors.html
https://fasttext.cc/docs/en/pretrained-vectors.html
https://fasttext.cc/docs/en/pretrained-vectors.html
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Embedding taste sight sound smell touch word
random -0.084 -0.002 -0.003 -0.032 0.017 0.566
monolingual 0.502 0.543 0.652 0.464 0.641 0.781
crosslingual 0.529 0.595 0.699 0.486 0.674 0.808

Table 2: Spearman correlations per modality and per
word (average across two best regressors).

layer Perceptron and the Ridge Regression perform
similarly, with no significant differences. 4

Figure 2: Monolingual Performance with Crosslingual
Embeddings (Spearman correlation per modality).

Language Avg Score
Italian 0.668
Dutch 0.663
Chinese 0.546

Table 3: Spearman correlations score per word in the
crosslingual setting (scores of the two top regressors
have been averaged).

3.4 Experiment 2
In the second experiment, we tested the Crosslin-
gual Embeddings on the prediction of modality
norms of Italian, Dutch and Chinese after training
only on English data. The summary of the perfor-
mance per sense modality is given in Figure 3 and
per word in Table 3. For the error analysis, we
extracted the least correlated words and reported
the bottom five for each language in Table 4.

The global performance of the mappers with
the Crosslingual Embeddings is not too distant
from the monolingual setting. The correlations-
by-modality are generally around 0.5, but there are
also some notable exceptions. For example, the
sound modality for Chinese seems to be particu-
larly difficult to predict. This could be due to differ-
ences in the sensory lexicon: European languages
like English and Italian have quite a lot of words
where the sound is the dominant component (it is

4p-values computed with Fisher’s r-to-z transformation.

the second most common dominant modality after
sight), while those are rarer in Chinese (the second
rarest modality after smell: see also the percentages
in Figure 1). It is also noticeable that, despite being
the most frequent dominant modality, sight is never
the best predicted one. Actually, sight is the most
internally complex modality, and recent proposals
for categorizing sensory-related semantics have fur-
ther divided this sense in several sub-modalities. 5

For this reason, future studies aiming at modeling
this modality should probably try to adopt a more
fine-grained annotation scheme.
Looking at the correlations-by-word, the values
for Chinese are much lower than for the other lan-
guages. This was expected: compared to Dutch and
Italian, which are both Indo-European languages,
Chinese is way more distant from English.

Figure 3: Spearman correlation scores per modality in
the crosslingual setting (scores of the two top regres-
sors have been averaged).

In Table 4, we can observe that many of the worst
predictions are either words with a taste dominant,
which are relatively rare in the English data but
more common in the other languages (Dutch and
Chinese), or polysemic words with strong associ-
ations with multiple senses (e.g. ’good’ in Italian
and ’sweet’ in Chinese). Concerning this last point,
we decided to test whether there is a relationship be-
tween prediction accuracy and modality exclusivity.
Modality Exclusivity (ME) scores are included in
the original datasets and are defined as follows:

ME(w) =
max(w)−min(w)∑

(w)
(1)

where max(w) and min(w) are, respectively,
the mean ratings of the strongest and of the weak-
est sense modality for the word w. Scores close to
1 indicate that the concept described by the word
is experienced only through one sensory modality,

5E.g. Binder et al. (2016) identifies 15 different vision-
related meaning components, each one associated with a dis-
tinct neural processing system
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Dataset Error Cases

Italian
buono (’good’, taste), pizza (’pizza’, taste), affogare (’to drown’, sight),
buono (’good’, smell), puzza (’stink’, smell)

Dutch
parmezaan (’parmesan’, taste), openhaard (’fireplace’, sight), dragon (’dragon’, taste),
zalm (’salmon’, taste), roosmarijn (’rose marin’, smell)

Chinese
雜 (’mixed taste’, sound),口氣 (’tone’, smell)
火鍋 (’hotpot’, smell),甘 (’sweet’, taste),苦 (’bitter’, taste)

Table 4: Words with lowest correlations (English translation and worst predicted modality in brackets).

Language Translated Words
Italian 148/1121 (13.2%)
Dutch 46/485 (9.48%)
Chinese 108/291 (37.1%)

Table 5: Number and percentage of words that are trans-
lations of English items for each dataset.

while multimodal concepts are typically associated
with lower scores. Strongly multimodal concepts
might be more difficult to predict, as their scores
for the five modalities are generally closer than in
the unimodal concepts. We tested this hypothesis
by measuring the Spearman correlation between
the word correlations and the modality exclusiv-
ity scores from the original dataset, but no strong
evidence was found: the models showed no signifi-
cant correlation for the Italian data, while finding
positive weak correlations (between 0.2 and 0.3)
on the Dutch and on the Chinese data.

We also needed to check whether words that
are direct translations of words in the English data
are predicted better than the others. The number
of words translated from English and the percent-
ages can be seen in Table 5, and in the Chinese
dataset they represent more than 37% of the dataset
items. A high number of these words might in-
flate the evaluation scores, as the models could be
just memorizing the English representations, and
the crosslingual transfer would be working just
because the vectors are well-aligned in the target
language. However, in our analysis we did not find
evidence for this: we compared the word correla-
tion scores of translations with the other items by
means of a Mann-Whitney U test, without finding
any significant difference for any of the datasets,
with just a single exception (the Ridge Regression
model on Dutch data, where translations have sig-
nificantly higher scores at p < 0.05). In conclu-
sion, neither modality exclusivity nor the number
of translations had a big impact on our results.

4 Conclusions

In this paper, we have proposed the first study
dedicated to the prediction of modality norms via
word embeddings mapping. We experimented with
crosslingual embeddings in order to assess the po-
tential for crosslingual transfer.

Our results first showed that modality norms can
be reliably predicted even by purely text-based vec-
tors. This is in accordance with cognitive hypothe-
ses claiming that various aspects of experiential
information are redundantly encoded in linguis-
tic expressions (e.g. the Symbol Interdependency
Hypothesis) (Louwerse, 2008; Riordan and Jones,
2011). Moreover, crosslingual vectors turned out
to be better performing than their monolingual
counterparts. This result is certainly surprising, al-
though it is unclear whether it is due to differences
in the training data, or the mapping itself benefits
performance by abstracting away from language-
specific patterns to a more ’conceptual’ space.

Even more importantly, given the availability of
crosslingual embeddings for a low-resource lan-
guage, it is possible to train a regressor on a high-
resource language (e.g. English) and to predict
the norms for the low-resource one. In our experi-
ments, we obtained moderate-to-high correlations
even in the crosslingual setting. We think this is po-
tentially a very useful application for the research
on modality norms.

In this first study we used a relatively simple
methodology, but several refinements are possible
for improving the prediction quality. Two possible
directions would be, firstly, to exploit the presence
of words that are direct translations from English to
the other languages to apply retrofitting techniques
(Faruqui et al., 2015; Mrkšić et al., 2016, 2017;
Vulić et al., 2018) to the crosslingual space, and
secondly, to tackle the task by introducing more
advanced neural architectures for the representation
of words in context, e.g. multilingual transformers
(Devlin et al., 2019; Pires et al., 2019).
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