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Abstract

Contextualized word representations have be-
come a driving force in NLP, motivating
widespread interest in understanding their ca-
pabilities and the mechanisms by which they
operate. Particularly intriguing is their abil-
ity to identify and encode conceptual abstrac-
tions. Past work has probed BERT representa-
tions (Devlin et al., 2019) for this competence,
finding that BERT can correctly retrieve noun
hypernyms in cloze tasks. In this work, we
ask the question: do probing studies shed light
on systematic knowledge in BERT representa-
tions? As a case study, we examine hyper-
nymy knowledge encoded in BERT represen-
tations. In particular, we demonstrate through
a simple consistency probe that the ability to
correctly retrieve hypernyms in cloze tasks, as
used in prior work, does not correspond to sys-
tematic knowledge in BERT. Our main conclu-
sion is cautionary: even if BERT demonstrates
high probing accuracy for a particular compe-
tence, it does not necessarily follow that BERT
‘understands’ a concept, and it cannot be ex-
pected to systematically generalize across ap-
plicable contexts.1

1 Introduction

Hierarchical representations of concepts play a cen-
tral role in reasoning and understanding natural
language (Wellman and Gelman, 1992). They have
long been studied as a core NLP objective in their
own right through tasks requiring the identification
of hypernyms (Hearst, 1992; Snow et al., 2005,
2006), and as components for use in downstream

* Part of this work was done during an internship at
Microsoft Research.

1Diagnostic framework available at https:
//github.com/AbhilashaRavichander/
probe-generalization.
This work is licensed under a Creative Commons Attri-
bution 4.0 International License. License details: http:
//creativecommons.org/licenses/by/4.0/.

A car is a _____

cars are _____

vehicle

trees

Singular Grammatical Number Probe

Plural Grammatical Number Probe

Figure 1: Illustration of BERT’s inconsistent predic-
tions on singular and plural hypernymy probes.

NLP tasks, such as recognizing textual entailment
(RTE), metaphor detection, text generation and
question answering (QA) (Girju et al., 2003; Dagan
et al., 2006; Prager et al., 2008; Mirkin et al., 2009;
Akhmatova and Dras, 2009; Mohler et al., 2013;
Biran and McKeown, 2013; Yahya et al., 2013).
Recently, Pretrained Language Models (PLMs),
such as BERT (Devlin et al., 2019), have emerged
as a popular and successful approach to a variety
of NLP tasks. Thus, there has been community
interest in evaluating their representations for the
‘knowledge’ they contain, including information
about concept abstraction (Ettinger, 2020; Talmor
et al., 2019; Jiang et al., 2020; Petroni et al., 2019).

We distinguish research that investigates knowl-
edge encoded in BERT through two broad perspec-
tives: instrumentative and agentive. We view the
instrumentative perspective as treating PLMs as a
tool to mine or store knowledge, like hypernym-
hyponym and other relations, from text (Petroni
et al., 2019; Jiang et al., 2020; Bouraoui et al., 2019;
Bosselut et al., 2019; Madaan et al., 2020). The pri-
mary purpose of these investigations is to identify
effective techniques to extract information from
PLMs for use in downstream pipelines. In contrast,
a growing body of work adopts an agentive per-
spective (Ettinger et al., 2018; Talmor et al., 2019),

https://github.com/AbhilashaRavichander/probe-generalization
https://github.com/AbhilashaRavichander/probe-generalization
https://github.com/AbhilashaRavichander/probe-generalization
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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treating PLMs as Artificial Intelligence (AI) agents
and analyzing their linguistic competencies and
world knowledge, sometimes through tasks such as
natural language inference (Williams et al., 2018;
Wang et al., 2018) or story completion (Zellers
et al., 2018, 2019; Mostafazadeh et al., 2016).

In this work, we examine the agentive perspec-
tive, focusing specifically on the validity of con-
clusions drawn from probing studies. A popular
approach to probing knowledge in pre-trained lan-
guage models is the zero-shot masked-LM probing
task. For example, given the statement ‘A robin is
a [MASK]’, a PLM that produces the correct com-
pletion ‘bird’ is considered successful.2 Past work
has studied this competency in BERT (Ettinger,
2020), offering BERT’s ability to correctly retrieve
noun hypernyms in cloze tasks as evidence that it
successfully encodes hypernymy information.

But to what extent does this knowledge of hy-
pernymy generalize? Among many systematic gen-
eralization abilities desirable in PLMs, we select
the following two. (1) Syntagmatic generalization:
A model that has knowledge of a fact will be able
to correctly answer queries about it and apply it
across different contexts; (2) Paradigmatic gener-
alization: A model with a particular competency
will be able to generalize to novel cues and items.
We implement these generalization requirements
through a set of diagnostic probing tasks, in which
a model must demonstrate consistency in applying
its knowledge across different selective contexts,
and by generalizing in trained probe settings to
novel, unseen items belonging to the same seman-
tic category or relation.

In particular, we focus on the setting of Ettinger
(2020), which demonstrates that BERT is “very
strong at associating nouns with hypernyms.” We
propose consistency tasks to illuminate the limits
and generality of this ability, as illustrated in Figure
1. Our consistency tasks combine related zero-shot
probes in such a way that a model that succeeds on
one probe, if it is drawing on a systematic, general
ability, should also succeed on the paired probe.
Our evaluation with a grammatical number consis-
tency task sheds light on the fragility of BERT’s
ability to associate correct noun hypernyms and
demonstrates that pre-trained LMs have consider-
able room for improvement to reach a human-like

2We refer to such probes henceforth as zero-shot masked
LM probes, since they require no training and use BERT’s
masked-LM component to fill in the answer.

level of understanding. 3

Contributions: We demonstrate success on a hy-
pernymy probing benchmark does not necessar-
ily correspond to a systematic conceptual under-
standing of the phenomena in BERT, as discovered
by probes. We further formulate evaluation proto-
cols for characterizing the generalizability of PLM
knowledge, in order to draw more reliable conclu-
sions from probing studies.4

2 Experimental Methodology

Saussure (1916) expounds on syntagmatic relations,
studying how words acquire relations based on the
ways in which they are chained together in lan-
guage context. The syntagmatic relation is based
on groups of terms, in this case the hyponym and
hypernym that are communicated together. In this
work, we study whether PLM probes generalize
syntagmatically, by evaluating the ability of mod-
els to produce correct predictions for hyponym-
hypernym items across both singular and plural
contexts. We also examine the ability of probes
to generalize paradigmatically, that is, do prob-
ing studies uncover paradigms embedded in text
(in this case the relations between items and their
abstractions)?5

2.1 Syntagmatic Generalization
Knowledge in BERT is often studied using zero-
shot probes (Ettinger, 2020; Talmor et al., 2019) in
a masked LM format. In this construction, a PLM is
queried by a natural language prompt designed to
exercise a particular competence; for example, ‘A
robin is a [MASK]’ to evaluate knowledge of hyper-
nymy. The word assigned the highest probability
at the masked position is considered the PLM’s
answer.

In this work, we design diagnostics to examine
how systematically this “knowledge” generalizes.
We consider two kinds of diagnostics—(1) Consis-
tency: We evaluate a PLM’s ability to consistently
answer queries reflecting the same conceptual un-
derstanding. We use a simple number consistency

3Consistency tasks can be considered complementary to
the control tasks proposed by Hewitt and Liang (2019). While
control tasks test attribution, consistency tasks test validity.

4Our study is based on probes in English.
5This distinction is concerned with the axis of generaliza-

tion of probes. In our syntagmatic generalization probes, we
are concerned with different lexico-syntactic contexts where a
model can demonstrate its knowledge of hypernymy. In the
paradigmatic generalization probes, we are concerned with
generalizing to novel hypernym/hyponym pairs.
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check for hypernymy. Queries with hyponyms are
replaced by their plural forms ; e.g. ‘A robin is
a [MASK]’ is perturbed as ‘robins are [MASK]’.
Agents drawing on a general taxonomic reasoning
ability should be able to correctly answer queries in
both forms. (2) Contextual: We examine a PLM’s
ability to recognize the correct abstraction for a hy-
ponym in context; e.g. ‘A robin perches in its nest.’
is replaced with ‘A [MASK] perches in its nest.’,
where the hypernym bird is an acceptable substitu-
tion. Agents that understand concept instantiations
should identify the correct abstraction.

2.1.1 Probes
Consistency Probes: In this paper, we adopt
a zero-shot cloze formulation where hypernymy
knowledge is in the form of triples < x, y, t1...n >.
Here, x is a hyponym, y is a hypernym and ti is
a cloze-style prompt consisting of a sequence of
tokens, two of which are placeholders for the hy-
ponym and hypernym (e.g., “A x is a y”). The
final probe replaces x with the surface form of the
hyponym, and lets the model predict the missing
hypernym y (e.g., ‘A robin is a ’).

Contextualized Probes: We further define a con-
textual probe formulation, wherein hypernymy
knowledge is in the form of triples < x, y, t1...n >.
Here, x is a hyponym, y is a hypernym and ti is a
sequence of tokens, one of which is the hyponym
y. The final probe asks the model to predict an ap-
propriate hypernym x in the place of y in ti. (e.g..,
‘A perches in its nest.’).

2.1.2 Datasets
LM DIAGNOSTIC: We use the NEG-136 diag-
nostic constructed by Ettinger (2020), selecting
the affirmative contexts to test models’ use of hy-
pernym information. Test items are drawn from a
human study conducted by Fischler et al. (1983),
wherein subject words are 18 concrete nouns and
hypernyms belong to nine superordinate categories
(Battig and Montague, 1969).6 The final diagnostic
set consists of 18 prompts.

LM DIAGNOSTIC EXTENDED: In this work,
we additionally expand LM DIAGNOSTIC to con-
struct a larger diagnostic set. For each superordi-
nate category (Battig and Montague, 1969), we ex-
tract hyponyms from WordNet (Fellbaum, 1998a)
such that they are nouns, not named entities, and

6bird, insect, fish, vehicle, tool, building, tree, flower, veg-
etable

only have a single sense in WordNet. This enables
us to construct an expanded diagnostic set of 576
prompts. Statistics of both datasets, as well as sam-
ple queries, are reported in Table 1.

For each query in both datasets, we construct
grammatical number consistency probes. Each
query is perturbed to contain both the subject hy-
ponym and target hypernym in plural form. Addi-
tionally, we construct contextual probes for each
subject hyponym and target hypernym. These
manually-crafted probes examine a PLM’s abili-
ties to identify correct abstractions for concepts in
context. Each query consists of a sentential con-
text collected from Wikipedia that contains the hy-
ponym but not the hypernym, so as not to give easy
cues to the LM. Each sentential context also sat-
isfies the following additional requirements: (a)
permissive of the abstraction (for example, the con-
text “The New York Public Library was built in the
1890’s” permits the building abstraction, but “The
New York Public Library fired John” does not), (b)
selective of the correct hypernym (for example, the
context of the target item ‘robin’ in “The charity
began preservation efforts to save the robin” is ap-
plicable to other categories besides the correct hy-
pernym category ‘bird’—such as the ‘insect’ cate-
gory), and (c) upward entailing of the correct hyper-
nym abstraction (for example, “The largest salmon
caught in the lake was 150cm” does not entail “The
largest fish caught in the lake was 150cm”).

2.2 Paradigmatic Generalization

We also examine conceptual generalization of the
hypernymy relations: does hypernymy present a
systematic pattern in the contextualized embed-
ding space that enables generalization to novel
items? To study this, we follow the popular probing
methodology of training classifiers to predict hyper-
nym relations from contextualized representations,
with no task-specific fine-tuning.

Broadly, the task can be defined as follows.
Given a pair of words a1 and a2, each grounded in a
sentential context, s1 and s2, respectively, the goal
is to describe whether a1 and a2 are in a hypernymy
relation. For example, <building> is a hypernym
of <skyscraper>, but <vehicle> is not. To exam-
ine generalization, we construct probing datasets
with two settings: one where hypernyms are seen
during training but hyponyms remain entirely un-
seen (SEEN), and one where both hyponyms and
hypernyms in the tests are unseen during training
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(UNSEEN). All datasets are constructed to enable
three-fold cross-validation.7 In all cases, each train
instance is provided with multiple contexts from
Wikipedia but test sets only feature one context per
hyponym-hypernym pair.

2.2.1 Probes
We follow the work on diagnostic classifiers (Shi
et al., 2016; Adi et al., 2017; Conneau et al., 2018;
Hupkes et al., 2018; Liu et al., 2019; Shwartz
and Dagan, 2019) and construct minimal embed-
interact-predict probes to assess taxonomic knowl-
edge in pretrained representations.
Embed: We embed each word in the hypernymy
pair using the embedding model to obtain 〈w1, w2〉.
These representations can either be functions of the
word itself (in static embeddings) or functions of
the entire sentence (in contextualized embeddings).
Interact: Following Vu and Shwartz (2018), we
concatenate the representations w1, w2 with their
difference w2−w1, and their element-wise product
w1 � w2 to form representation ~x.
Predict: We then apply a softmax classifier over
the formed representation-
~o = softmax(W · ReLU(Dropout(h(~x))))
where h is a 300-dimensional hidden layer, dropout
probability = 0.2, W ∈ Rn×300, and n=2.

2.2.2 Datasets
We select hyponym-hypernym pairs from LM DI-
AGNOSTIC EXTENDED. For each dataset, we pair
both the hyponym and the hypernym with senten-
tial contexts from Wikipedia.8 We construct chal-
lenging negative examples by choosing hypernyms
that belong to the same superordinate category 9

and which are not hypernyms of the word itself. We
construct the datasets to meet the following specifi-
cations: (1) All datasets are balanced so that simple
accuracy can be used as an evaluation metric, (2)
Target pairs do not appear across train/test parti-
tions to mitigate lexical memorization (Levy et al.,
2015), (3) Negative examples should be similar
words, so that simply exploiting distributional simi-

7Statistics of these datasets can be found in the appendix,
Table 5 and Table 6.

8For both hyponyms and hypernyms, contextualized word
representations are extracted using ‘context embeddings’ (Co-
enen et al., 2019). The input to BERT is a sequence of tokens
from the sentential context and the output consists of a se-
quence of vectors corresponding to the input tokens. To obtain
a representation for a hyponym or hypernym in a sentential
context, we construct the average of the output vectors for the
tokens in the hyponym or hypernym.

9animals, plant, object

larity does not work, (4) All examples are grounded
in phrasal or sentential context.

3 Syntagmatic Generalization

3.1 Metrics

We consider the following rank-based metrics:

Open vocabulary accuracy: We compute mean
precision@k (Open Voc.) where for a given hy-
ponym, the value is 1 if the hypernym is ranked in
the top k results and 0 otherwise. We report results
with both k = 1 and k = 5. In the open vocabulary
setting, the candidate list is BERT’s vocabulary.

Singular accuracy: For a given hyponym, the
query is posed in the singular form (e.g., ‘A robin is
a [MASK]’), and PLMs are evaluated on their abil-
ity to identify the correct hypernym from the nine
Fischler categories, where the category assigned
the highest probability by the PLM is considered
the answer, as in prior work. The value is 1 if the
correct hypernym is the top result and 0 if not.

Plural accuracy: For a given hyponym, the
query is posed in the plural form (e.g., ‘Robins
are [MASK]’), and PLMs are evaluated on their
ability to identify the correct hypernym from the
nine Fischler categories in plural form, where the
category assigned the highest probability by the
PLM is considered the answer. The value is 1 if the
correct hypernym is the top result and 0 if not.

Contextual accuracy: For a given hyponym,
PLMs are evaluated on their ability to identify the
correct hypernym in context, evaluated over the
nine Fischler categories in singular form.

Paired Singular-Plural accuracy: For a given
hyponym item, PLMs are evaluated on their ability
to identify the correct hypernym in both singular
and plural probes, over a candidate space of the
nine Fischler categories. The value is 1 if the cor-
rect hypernym is the top answer in both cases.

Paired Aggregate accuracy: For hyponyms
with a contextual probe, PLMs are evaluated on
their ability to identify the correct hypernym in sin-
gular, plural and contextual probes, evaluated over
the nine Fischler categories. The value is 1 if the
correct answer is the top answer in all three cases.

3.2 Baselines and Models

We compare to the following baselines:
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Dataset Format # Examples Example

LM DIAGNOSTIC (Ettinger, 2020) Zero-shot Cloze 18 A robin is a [MASK]
LM DIAGNOSTIC EXTENDED Singular Zero-shot Cloze 576 A robin is a [MASK[
LM DIAGNOSTIC EXTENDED Plural Zero-shot Cloze 576 Robins are [MASK[
LM DIAGNOSTIC EXTENDED Contextual Zero-shot Cloze 186 Through use of an awl [TOOL] , the surgeon

creates tiny fractures in the subchondral bone plate

Table 1: Statistics of zero-shot cloze probing datasets to study syntagmatic generalization.

Model Open Voc. k=1 Open Voc. k=5 Singular Plural Contextual Paired Singular-Plural Paired Aggregate

LM DIAGNOSTIC

Majority - - 11.11 11.11 11.11 11.11 11.11
word2vec 0.0 50.0 83.33 100.0 - 83.33 -
GloVe 0.0 27.78 88.89 100.0 - 88.89 -
FastText 0.0 0.0 22.22 16.67 - 0.0 -
BERT-control 0.0 11.11 44.44 55.56 - 38.89 -
BERT 38.89 100.0 100.0 77.78 66.67 77.78 50.0

LM DIAGNOSTIC EXTENDED

Majority - - 22.92 22.92 31.72 22.92 31.72
word2vec 3.47 18.06 60.59 54.69 - 43.75 -
GloVe 0.35 3.3 58.16 50.17 - 35.24 -
FastText 0.0 0.0 12.15 11.11 - 1.91 -
BERT-control 0.35 2.08 30.56 39.76 - 20.66 -
BERT 23.09 48.96 67.53 44.1 73.66 36.63 33.33

Table 2: Performance of models on syntagmatic generalization probes. In the open Voc. k=1 and open Voc.
k=5, we report mean precision@k, when the candidate list is BERT’s vocabulary. We report accuracy(%) for
singular, plural and contextual probes, where the candidate list is the nine superordinate categories (Battig and
Montague, 1969)-bird, insect, fish, vehicle, tool, building, tree, flower, vegetable- in singular, plural and singular
forms respectively. Paired singular-plural accuracy(%) is performance on identifying the correct hypernym in both
singular and plural probes. Paired aggregate accuracy(%) is performance on identifying the correct hypernym in
singular, plural and contextual probes, if a contextual probe for the hyponym exists.

Majority: Simple majority baseline quantifying
the performance of a model that always predicts
the majority class in the test set.

Static embedding: For each hyponym, we ex-
tract the static embedding with minimum cosine
distance to the embedding of the hyponym word,
amongst the Fischler categories. We evaluate
the following word embeddings. (1) word2vec
(Mikolov et al., 2013): Word embeddings are the
hidden representations of a feedforward network
trained to predict words in a fixed surrounding
window to a particular word. We use the 300-
dimension English word vectors trained on the
Google News corpus. (2) GloVe (Pennington et al.,
2014): GloVe embeddings are generated through
training models to estimate the log-probability of
word-pair co-occurence. We use 300-dimensional
GloVe vectors trained on 6B tokens of text. (3) Fast-
Text (Bojanowski et al., 2017): FastText vectors
extend word2vec with sub-word information. We
use 300-dimensional vectors trained on Wikipedia.

BERT-control (Devlin et al., 2019): Following
Talmor et al. (2019), we define a simple BERT
control which does not include relation information
in the probe. Each query consists of the hyponym
word followed by the ’[MASK]’ token (e.g., ‘robin
[MASK]’) and the probability assigned by the PLM
to the candidate list is computed.

BERT (Devlin et al., 2019): Bidirectional En-
coder Representations from Transformers (BERT)
is based on the transformer architecture (Vaswani
et al., 2017) and is trained with both a cloze-style
and next-sentence prediction objective.

3.3 Results
Table 2 displays performance scores of BERT on
zero-shot probing tasks. We observe that in agree-
ment with prior work, BERT achieves impressive
results on the LM DIAGNOSTIC dataset in the open
vocabulary setting, providing the right hypernym as
the top answer for 38.89% of samples, and within
the top 5 answers for 100.0% of samples. How-
ever, the LM DIAGNOSTIC consists of only 18
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Open Singular Plural

Prompt Predictions Predictions Prompt Predictions

LM DIAGNOSTIC

A robin is a [MASK] robin, bird, pigeon bird, flower, tree robins are [MASK] flowers, birds, trees
A trout is a [MASK] fish, trout, fishery fish, bird, tool trout are [MASK] fish, trees, birds
A car is a [MASK] car, vehicle, driver vehicle, building, tool cars are [MASK] trees, vehicles, fish

LM DIAGNOSTIC EXTENDED

An aircraft is a [MASK] glider, helicopter, aircraft vehicle, bird, building aircraft are [MASK] fish, trees, buildings
A bumblebee is an [MASK] insect, animal, airplane insect, bird, flower bumblebees are [MASK] birds, insects, flowers
A bedbug is an [MASK] animal, insect, object insect, tool, vegetable bedbugs are [MASK] fish, flowers, insects

Table 3: Examples of BERT predictions for hypernymy relations with divergences highlighted in red, and samples
with inconsistent predictions in bold. In the open vocabulary setting, the candidate list is BERT’s vocabulary. In
the singular probe setting, the candidate list is the nine superordinate categories from (Battig and Montague, 1969).
In the plural setting, the candidate list is the nine categories from (Battig and Montague, 1969) in plural form, and
the query is converted to the plural form.

such queries, and we observe that this performance
drops considerably on the expanded diagnostic
dataset LM DIAGNOSTIC EXTENDED (N=576),
with the right hypernym being the top answer for
only 23.09% of samples and within the top 5 an-
swers for only 48.96% of samples.10 We further
observe that in both diagnostic datasets, BERT per-
formance scores on plural probes are often lower
than singular probes. The examples answered cor-
rectly in both plural and singular form in the LM
DIAGNOSTIC EXTENDED dataset constitute ap-
proximately half what a standard singular zero-
shot probe might lead a practitioner to believe. This
is problematic, since if BERT possesses systematic
‘knowledge’ as discovered by probes, it ought to
generalize in robust ways across our diagnostics.

Table 3 features BERT predictions on both diag-
nostic datasets, with divergences highlighted. We
observe that in the open vocabulary setting, BERT
predicts correct abstractions not included within
the LM DIAGNOSTIC categories. To further esti-
mate the kinds of errors that occur in BERT pre-
dictions for hypernymy, we sample 50 diagnostic
tests from LM DIAGNOSTIC EXTENDED. We ob-
serve that in 10% of the examples, the model pre-
dicts the hyponym word itself (e.g., ‘A yacht is a
yacht.’). In 14% of examples, the model predic-
tion is a valid hypernym that is not included in
the Fischler categories. In 30% of diagnostic tests,

10However, the open vocabulary setting of Ettinger (2020)
suffers from the limitation that since there are many correct
hypernyms for any target word, models may be unfairly penal-
ized in this setting for predicting a hypernym not present in
the diagnostic. For this reason, we further consider the closed
vocabulary setting (Singular, Plural, Contextual and Paired
Singular-Plural in Table 2), where we examine probabilities
assigned by the PLM to the nine hypernym categories defined
in Battig and Montague (1969).

BERT predicts a generic hypernym, often a part-
of-speech (e.g., ‘An imaret is a noun.’) and in a
further 12% BERT predicts a subword fragment of
the hyponym as a hypernym, but this prediction is
incorrect (e.g., ‘A penknife is a pen.’) We speculate
that hypernyms often do occur in such patterns in
the training data (for example, a steamboat is a
boat), making such tests particularly difficult for
BERT.11 Finally, for 34% of the predictions the
source of error is unknown; however, for 17.6% of
these tests BERT defaults to predicting ‘horse’ and
for 11.8% BERT predicts ‘dog’, suggesting that
BERT may be assigning a higher prior to certain to-
kens when the prompt is unfamiliar. Table 3 further
displays BERT predictions in the closed vocabu-
lary setting. Surprisingly, we observe that BERT
identifies hypernyms incorrectly in plural probes,
even for frequently occurring hyponyms such as

‘car’, predicting ‘cars are trees’.

3.4 Frequency and Memorization Effects

When does BERT fail to recognize hypernyms in
the zero-shot probe setting? What role does term
frequency play in this ability? We investigate two
hypothesized failure modes. (1) Rare hyponym:
How does BERT probe performance vary with
term frequency? To examine this, we consider the
frequency statistics of each hyponym in the LM
DIAGNOSTIC EXTENDED diagnostic, and exam-
ine those where the hypernym relation is correctly
identified by BERT. We observe that correctly rec-
ognized hyponyms tend to be significantly more
frequent than unrecognized ones, occurring on av-
erage 5098.15 times in Wikipedia, compared with

11Headed noun-noun compounds in English are likely to be
right-headed (Williams, 1981).
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(a) Log probabilities assigned by BERT to each category for singular and plural queries, for insect and vehicle hyponyms.

(b) Log probabilities assigned by BERT to each category for singular and plural queries, for building and vegetable hyponyms.

(c) Log probabilities assigned by BERT to each category for singular and plural queries, for flower and fish hyponyms.

Figure 2: Category-wise log probability predicted by BERT for singular and plural probes.

4359.55 times for unrecognized hyponyms.12 (2)
Pattern Matching: To examine this, we extract co-
occurrence patterns between hyponym and hyper-
nym for all pairs in LM DIAGNOSTIC EXTENDED.
Of all the hyponym-hypernym pairs that are known
to have occurred in the template “[hyponym] is a
[hypernym]” on Wikipedia, we can predict the hy-
pernymy relation correctly at 78.34%, considerably
higher than the average performance on the diag-
nostic. These results suggest BERT may be acting
as a sophisticated n-gram index, and be strong at
retrieving facts it has explicitly seen before in the
training data.

3.5 Singular and Plural Probes

What happens when a query is posed to BERT
with plural number instead of singular? Figure 2
illustrates the probabilities assigned by BERT to
each category for both singular and plural probes
in the LM DIAGNOSTIC. We observe that in all
cases, the correct answer is predicted with greater
confidence when the probe is singular. We next

12We conduct a Shapiro-Wilk test for normality, allowing us
to reject the null hypothesis of the frequency distributions be-
ing normal. We thus perform a Kruskal-Wallis non-parametric
significance test, and find that recognized hyponyms tend to
be statistically significantly more frequent (p<0.05).

Dataset Seen Hypernyms Unseen Hypernyms
Majority 50.00 50.00
Static Partial 56.32 ± 1.56 56.09 ± 4.21
Static 62.46 ± 3.99 58.15 ± 4.24
BERT Partial 48.36 ± 3.1 47.48 ± 4.98
BERT Context 92.81 ± 0.81 58.48 ± 1.74

Table 4: BERT results on hypernymy detection in SEEN
and UNSEEN probing settings. Static is the summary
of the best performance across word2vec, FastText and
GloVe representations. The partial baseline for each
representation, is the performance of a probing classi-
fier trained only on the representation of the hypernym.

analyze errors in model predictions in singular vs.
plural probes. We find that overall 7.4% of tests are
predicted correctly only in plural form, 30.9% only
in singular form, only 36.63% in both singular and
plural forms, and 25% in neither.

4 Paradigmatic Generalization

Representations: We use the following repre-
sentations in the encode-embed-predict architec-
ture described in §2.2.1: For static representation
baselines, we use word2vec, GloVe and FastText,
and for our contextualized representation we study
BERT. Detailed descriptions of the architectures
can be found in §3.2
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Baselines: (1) Majority baseline: Performance
of classifier that always predicts the majority class
in the test set. (2) Partial: Partial-input baselines
have revealed biases in Natural Language Inference
(Tsuchiya, 2018; Gururangan et al., 2018; Poliak
et al., 2018) and Question-Answering (Kaushik and
Lipton, 2018) datasets. Levy et al. (2015) discuss
the propensity of classifiers to rely on ‘protoypi-
cal hypernyms’ in hypernymy detection datasets,
and not to solve the detection task. To control for
potential dataset biases caused by the selection of
items in the study, for each model we train a partial
counterpart baseline, which is only provided the
hypernym as input. If the dataset is unbiased in
this aspect, partial baselines should achieve similar
performance to a random classifier.

Results: Table 4 reports performance on SEEN

and UNSEEN settings in our probing task. All exper-
iments are done with 3-fold cross validation. We
observe that all partial input baselines achieve near-
random performance. Further, we observe that in
the UNSEEN setting, probing classifier performance
decreases considerably, indicating a lack of a sys-
tematic hypernymy function in BERT representa-
tions discoverable by the probing classifier. Thus,
we determine that this class of probes does not
generalize paradigmatically. Notably, we observe
that a majority of the errors made by the probing
classifiers is falsely detecting pairs as hypernyms,
accounting for 79.4% of errors. Additionally, we
observe that probing task design can considerably
affect the conclusions drawn about whether a repre-
sentation encodes any given property, emphasizing
a need for careful consideration of design choices.

5 Related Work

There has been considerable interest in probing the
capabilities of PLMs (Rogers et al., 2020). Much
recent work focuses on the grammatical and syn-
tactic capabilities of BERT (Hewitt and Manning,
2019; Liu et al., 2019; Swayamdipta et al., 2019;
Goldberg, 2019; Wolf, 2019; Coenen et al., 2019;
Tenney et al., 2019; Warstadt et al., 2019; Kim et al.,
2019). In contrast, our focus is on probing studies
that aim to uncover “knowledge” in BERT. There
have been several such studies: Forbes et al. (2019)
study physical commonsense encoded in BERT.
Da and Kasai (2019) probe BERT for its under-
standing of object attributes, finding that it learns
physical concrete norms (is made of wood) better
than abstract ones (is strong). Wallace et al. (2019)

find a ‘surprising degree of numeracy’ is present in
contextualized word representations. Talmor et al.
(2019) probe BERT for capabilities at particular
types of symbolic reasoning, such as comparison,
conjunction and composition.

Our work focuses specifically on the validity
of conclusions drawn from such probing studies
that aim to discover knowledge in BERT, using
the setting of Ettinger et al. (2018) as a case-study.
We further distinguish between the instrumentative
and agentive perspectives on probing. For exam-
ple, there has been considerable research attention
focused on querying language models for their en-
coded information (Petroni et al., 2019; Jiang et al.,
2020; Bosselut et al., 2019), which we consider
as an instrumentative effort using PLMs as a tool.
Our focus in this work is instead on agentive stud-
ies, and our conclusion is that the probes we study
should not be used to reveal evidence of some sys-
tematic knowledge or competence in PLMs— al-
though PLMs can still be utilized as tools to extract
such knowledge from text.

Closest to our work, Kassner and Schütze
(2020) find that PLMs do not differentiate between
negated and non-negated statements. Negation is
a notoriously hard phenomenon for neural NLP
models (Morante and Sporleder, 2012; Fancellu
et al., 2016; Naik et al., 2018); our work demon-
strates that even affirmative factual knowledge that
can be extracted from BERT does not systemati-
cally generalize. Our work is also closely related
to recent challenge set construction efforts, which
aim to serve as sanity checks on the knowledge
and commonsense capabilities of models (Marelli
et al., 2014; Naik et al., 2018; Glockner et al., 2018;
Ribeiro et al., 2020). For example, McCoy et al.
(2019) show that BERT finetuned for the natural
language inference task, relies heavily on shallow
heurestics instead of acquiring adequate common-
sense knowledge. Our work is complementary,
demonstrating through a simple consistency task
that BERT’s capabilities, as discovered through
probes, may not correspond to some systematic
general ability.

Our work examines, in particular, hypernymy
knowledge encoded in BERT representations. The
identification of hypernyms is studied extensively
in cognitive science and philosophy. Some promi-
nent theories include Rosch’s category theory
(Rosch and Lloyd, 1978) and Tversky’s category
resemblance approach (Tversky, 1977). This work
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does not account for either of these interpretations
of hypernymy, but instead relies on prior cognitive
studies on category norms (Fischler et al., 1983;
Battig and Montague, 1969) and relations defined
with these super-ordinate categories in WordNet
(Fellbaum, 1998b; Oltramari et al.). Additionally,
our work ties into the rich history on modeling
hypernymy in NLP systems (Lin, 1998; Weeds
and Weir, 2003; Baroni et al., 2012; Rimell, 2014;
Roller et al., 2014; Weeds et al., 2014; Shwartz
et al., 2015; Vulić and Mrkšić, 2018) and evaluat-
ing distributional semantic models on their ability
to represent it (Baroni and Lenci, 2011; Santus
et al., 2015, 2016; Necsulescu, 2011; Vyas and
Carpuat, 2017).

6 Discussion and Summary

We briefly discuss our findings and offer some guid-
ing principles for future work.

Frequency and Memorization Effects: We
find that BERT is particularly vulnerable to low-
frequency phenomena in the training data, and suc-
ceeds at examples in the probe which have explic-
itly occurred in the training data. We speculate
based on this evidence that BERT may just be mem-
orizing the vast amount of training data it has been
exposed to, rather than performing any kind of
deeper reasoning.

Caution with cloze-style probes: BERT’s
Masked-LM format lends itself easily to cloze-
style probes, which consider filling in a missing
token correctly as evidence of PLM knowledge.
Despite the accessibility of this format to inves-
tigate the behavior of PLMs, we speculate that,
by design, the model is expected to fill in tokens
whose context matches the provided template.
The designer of the probing task may include
templates to extract knowledge based on their
intuitions, which (1) may or may not be the right
template to extract the targeted kind of knowledge,
(2) may provide enough inductive bias that it is
unclear if the model understands the relation or
understands how to match a particular template
(which has been chosen so well based on the
practitioners knowledge that it mimics the model
actually understanding the deeper phenomena).
We speculate that data-driven methods (Jiang et al.,
2020; Bouraoui et al., 2019) can be designed to
mitigate (2), but will exacerbate (1).

Dual Perspectives on PLMs: In this work, we
characterize two perspectives on uncovering knowl-
edge in PLMs: instrumentative and agent-based.
We emphasize that while systematicity is a neces-
sary requirement for agent-based analysis, as ide-
ally we would like AI agents to reason like humans
do, it is not necessary from an instrumentative per-
spective if the representations offer utility for a
downstream task.

Implications for future work: In this work, we
provide an investigation of current approaches to
probing contextualized representations. Our tests
for systematic generalization present a clearer pic-
ture of the conclusions that can be drawn from
probing studies. We find that ‘knowledge’ discov-
ered by standard probes does not serve to illuminate
a systematic, general competence in the underly-
ing PLMs. We suggest that future studies carefully
evaluate the generalizability of their methods, and
always be accompanied by consistency checks and
controls to ensure that claims based on model be-
havior are made as reliable as possible.
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Fold #Train #Dev #Test

1 6164 206 232
2 7936 92 112
3 5892 222 219

Table 5: Statistics of UNSEEN dataset to study
paradigmatic generalization.

Fold #Train #Dev #Test

1 6682 176 148
2 6556 182 144
3 6582 164 154

Table 6: Statistics of SEEN dataset to examine
paradigmatic generalization.

A Datasets for Paradigmatic
Generalization

Table 5 and Table 6 summarize the dataset statistics
of the unseen and seen datasets respectively. We
perform 3-fold cross validation.


