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Abstract

We ask whether text understanding has pro-
gressed to where we may extract event in-
formation through incremental refinement of
bleached statements derived from annotation
manuals. Such a capability would allow for the
trivial construction and extension of an extrac-
tion framework by intended end-users through
declarations such as, Some person was born in
some location at some time. We introduce an
example of a model that employs such state-
ments, with experiments illustrating we can ex-
tract events under closed ontologies and gener-
alize to unseen event types simply by reading
new definitions.

1 Introduction

This work is aimed at the disconnect between how
human annotators and machines carry out informa-
tion extraction: humans read annotation manuals
consisting of guidelines and illustrative examples
then label data, whereas machines label data (by
making predictions) based purely on previously
seen examples (Figure 1). We explore the feasibil-
ity of building a model that has access to informa-
tion derived from annotation manuals. Specifically
we focus on the task of event extraction and convert
annotation guidelines describing event types into
natural language bleached statements. An example
bleached statement for the ACE 2005 (Walker et al.,
2006) L1FE:BE-BORN event type is:

some person was born in some location at some time
PLACE TIME

PERSON

The bleached statement describes a general oc-
currence of an event of a given type. The event’s
arguments are initialized with bleached placehold-
ers (e.g. some person) to be replaced with extracted
spans from the text, eventually resulting in, e.g.:

Barack Obama was born in Hawaii at some time
PERSON PLACE TIME
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Figure 1: Comparison of data sources for human anno-
tators, traditional information extraction systems, and
our proposed approach. Human annotators use annota-
tion guidelines and limited illustrative examples, tradi-
tional systems use large amounts of labeled examples,
and our system uses bleached statements (derived from
annotation guidelines) and labeled examples.

We are motivated to consider these statements
owing to the rapid progress in sentence-level repre-
sentation learning and machine reading comprehen-
sion: can a contemporary encoder understand event
statements well enough that their derived represen-
tation may be directly employed in extraction?

Bleached statements are straightforward to write
and accommodate various levels of expressiveness
in both the choice of arguments present and in the
lexicalization of the trigger.! These features allow
for easy adaptation as an ontology changes: simply
introduce new or modified statements. In the case
where the amount of labeled examples is small or
non-existent, a bleached statement serves as a sort

IFor example, for a CONFLICT: ATTACK event, we could
use the simple trigger “attacked” or the more descriptive
phrase “violently caused physical harm or damage to.”
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Figure 2: An example of our approach on a sentence from the ACE 2005 dataset for the LIFE:DIE event. The
bleached statement is incrementally populated with values from the text (in the order denoted by the superscripts),
and not all event arguments are supported by the text. The grayed out text in the paragraph is given for context to
the reader, but our model operates on single-sentence contexts.

of canonical example provided ahead of further
annotation. We would like a solution where one
simply declared the intended information, where
any traditional labeled examples were used for dis-
ambiguation and fine-tuning, rather than being a
critical component in building a model.

As an example of such a solution, we propose
a model which incrementally populates bleached
statements by querying partially filled statements
against text. This strategy is similar to the tasks of
machine reading comprehension (MRC) and ques-
tion answering (QA), in which an answer span is
predicted in response to a question about a docu-
ment. Conceptually this may also be considered a
form of incremental recognizing textual entailment
(RTE) (Dagan et al., 2006) where we iteratively
refine a hypothesis that is supported by the docu-
ment context. Experimental results demonstrate
that zero- and few-shot event extraction are feasi-
ble with this approach. While our intent here is
exploratory, we manage to achieve state-of-the-art
performance on trigger identification and trigger
classification on the ACE 2005 dataset. The con-
tributions of this work are: (i) A novel approach
to event extraction that takes into account annota-
tion guidelines through bleached statements; (ii)
A multiple-span selection model that demonstrates
the feasibility of the approach for event extraction
as well as for zero- and few-shot settings.

2 Background

Event extraction is traditionally viewed as three
subtasks: (1) event trigger detection, where trig-
gers of events (words that most clearly express the
occurrences of events) are detected; (2) entity men-
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tion detection, where all potential arguments (entity
mentions) to events are detected; and (3) argument
role prediction, where relations between detected
arguments and trigger words are recognized with
respect to each event type’s defined set of roles.

Much prior work adopts a pipelined approach to
these 3 subtasks or focuses on a subset of the sub-
tasks based on gold entity mention spans. These
include feature-based approaches (Ji and Grishman,
2008; Liao and Grishman, 2010; McClosky et al.,
2011; Huang and Riloff, 2012; Li et al., 2013, inter
alia) and neural approaches (Nguyen and Grish-
man, 2015; Chen et al., 2015, 2017; Nguyen and
Grishman, 2018; Sha et al., 2018, inter alia).

Because pipelined approaches suffer from error
propagation in which the error from earlier sub-
tasks (e.g. entity mention detection) is inherited
by later subtasks, joint modeling of the 3 subtasks
has been attempted. Yang and Mitchell (2016) at-
tempts to jointly model the three components with
hand-crafted features, but still need to detect entity
mentions and event triggers separately. Nguyen
and Nguyen (2019) jointly models the three tasks
using neural networks with shared underlying rep-
resentations. The models proposed in these two
works are the baselines used in this paper.

Huang et al. (2018) approach zero-shot event
extraction by stipulating a graph structure for each
event type and finding the event type graph struc-
ture whose learned representation most closely
matches the learned representation of the parsed
AMR (Banarescu et al., 2013) structure of a text.
In contrast, our approach forgoes explicit graph-
structured semantic representations such as AMR.

Researchers have introduced large question an-



swering (QA) / machine reading comprehension
(MRC) datasets in a cloze style (Hermann et al.,
2015; Onishi et al., 2016), where a query sentence
contains a placeholder and the model fills the blank.
Our work can be viewed as an extension to such
work, where multiple placeholders are extracted.

Li et al. (2019) casts relation extraction as multi-
turn QA with natural language questions, where in
each turn one argument of the relation is found..
The method requires writing a question for each
entity type and each relation type. In (Levy et al.,
2017), sets of crowdsourced paraphrastic questions
are written for each relation type in the ontology.
In contrast, for each event type we use a single
declarative bleached statement derived from the an-
notation guidelines. Soares et al. (2019) proposes
a model for relation extraction by filling in two
blanks given a contextual relation statement.

These three methods focus on binary relation
extraction, and do not readily generalize to n-ary
events or relations. Our approach naturally sup-
ports variable arity events and relations.

3 Problem Formulation

A bleached statement consists of: the statement
tokens S = (s, 82, ,5n); a placeholder dictio-
nary R = {(rx : Ix) }4=1,... x> Where ry is the pre-
defined role of that argument (e.g. AGENT, PA-
TIENT); and an index set I, C {1,---,n}, a set
containing indices of tokens in the statement S (i.e.
if I = {iy,---,ir}, then (s;,,---,s;) is a place-
holder).> An example bleached statement in the
ACE 2005 dataset for the event type LIFE: DIE (also
used in our Figure 2 for illustration purposes) is:

someone killed someone else with something
AGENT VICTIM INSTRUMENT

in some place at some time
PLACE TIME

This statement is accompanied by the follow-
ing placeholder dictionary, in which each role is
mapped to an index set that highlights the place-
holder in the bleached statement?:

AGENT {1}
VICTIM {3,4}
R = | INSTRUMENT {6}
PLACE {8,9}
TIME {11, 12}

2 Our bleached statements are inspired in part by linguistic
resource creation efforts by White and Rawlins (2018).

3 The model itself does not see the role names. They are
used only for human readability and evaluation.
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The event extraction task as defined in the ACE
2005 dataset also requires finding an event trigger—
a span in the text that most clearly expresses the
event’s occurrence. In this example, the trigger is
the word “killed”. For a consistent implementation,
we consider the trigger to be a special argument of
the event, with role name TRIGGER.

Formally, the task is: given a bleached statement
S, its placeholder dictionary R, and text tokens 7',
return a dictionary R that contains the event trigger
and the the extracted arguments. Such a result is
shown in the bottom right of Figure 2. Note that
the INSTRUMENT role is not filled in the example
because the model does not find a span to fill it.

4 Approach

Given a bleached statement with multiple place-
holders, we do not fill the placeholders in parallel—
instead, we fill them incrementally in an enforced
order.* In each step, the model attempts to fill
a single focused placeholder, which is replaced
by the extracted span(s) thereby creating a refined
statement (see Figure 2). In this work we fill the
placeholders in the statement from left to right and
leave other orders as future work.

Formally, in each round, our model returns mul-
tiple arguments (see “Multiple Argument Selector”
section below) for each placeholder:

A «— GETARGS(S,1,T) ,

where S is the (partially refined) statement, [ is
the index set that covers the focused placeholder
(which corresponds to a role), and T is the text to
extract from. The returned argument set A contains
a number of text spans (potentially zero) in T that
replace the placeholder in S picked out by 1.

If A is the empty set, then the model did not find
an appropriate text span to replace the placeholder.
If the answer set A is not empty, we replace the
placeholder with the extracted span. Note that in
some cases, there can be more than one argument
that fits a role. Consider the following bleached
statement (for the ACE 2005 event LIFE:MARRY),
focused on the first placeholder “some people’:

3

some people! married in some location” at some time
PERSON PLACE TIME

We expect multiple arguments for the same
role PERSON in this event. If our model returns

4The enforced order is denoted in our examples by indices
on the placeholders and the values that fill them.



Algorithm 1 Argument extraction

Algorithm 2 Event extraction

Input: statement S, placeholder dictionary R, text T
Output: extracted argument structure £
function EXTRACTARGS(S, R, T)

i—1 > i-th round
S — § > the initial statement
E o > extracted event

for (r,I) € Rdo
A «— GETARGS(SD,I,T)
if A # @ then
S+ replace the I tokens in S
> refine the statement
E—EU(r:A)
else S(*D « S » skip to the next role
end if
i—i+1
end for
return £
end function

with A

A = {“Kim”, “Pat”}, i.e. a set containing multiple
extracted arguments, we replace the placeholder
with all arguments, concatenated with the “and”
token, and shift the focus to the next placeholder,
creating the refined statement:

Kim and Pat' married in some location® at some time>

PERSON PLACE TIME

If our model returns nothing, i.e. A = @, we
simply skip the placeholder and move the focus to
the next placeholder. For example, if the model
finds no argument for the PLACE role, the refined
statement of the next iteration would be

Kim and Pat' married in some location® at some time>

PERSON PLACE TIME

We run this iterative process until all roles of an
event are visited. An advantage of this method is
that during the incremental refinement process, the
statement always remains a natural language sen-
tence. The incremental process for extracting event
arguments is formalized in Algorithm 1, given the
initial bleached statement S, the role dictionary R,
and the text T to extract from.

Annotation manuals of interest usually define
multiple event types. For each event type 7 de-
scribed in the manual, we require a bleached state-
ment S and a role dictionary R. These together
form our ontology O = { (1%, Sk, Rx)}. To perform
full event extraction (Algorithm 2), we first run
a trigger detection model for all event types (see
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Input: ontology O, text T
Output: extracted event structures £
function EXTRACTEVENTS(O,T)
E—0w
for (7,S5,R) € O do
triggers <« TRIGGERID(S,R,T)
for ¢t € triggers do
S’ < ANCHORTRIGGER(S, 1)
E <« EXTRACTARGS(S’,R,T)
R «— E U (TRIGGER : 1)
E—EUR
end for
end for
return £
end function

> all events extracted from T

“Trigger Identification™ section below) specified in
the ontology. For those event types whose trig-
ger is found, we proceed with argument extraction
(Algorithm 1).

4.1 Model

Architecture for MRC In light of recent ad-
vancements in NLP from large-scale pre-training,
we use BERT (Devlin et al., 2019) as our sequence
encoder. We first review the answer selector archi-
tecture for machine reading comprehension (MRC)
used in BERT, then extend it for our approach.

Under the formulation of MRC, each training
data point is of the form (S, 7)) where S is a natural
language question with tokens S = (s, ,S,)
and T is the text to extract answers from, with
tokens T = (t1,- -+ ,t;). The model returns a span
in T or predicts that the question is not answerable,
in which case an empty span is returned.

To perform MRC, Devlin et al. (2019) proposed
the following architecture. First the question S and
the text 7" are concatenated with special delimiters
and passed through the BERT contextualizer:

BERT ([cCLS, sy, , Sp, SEP, t1, -+ , 1, SEP]),

where CLS is a special sentinel token whose em-
bedding encompasses the whole string, and SEP
is a sentence separator. We denote the output en-
coding of each question token s; (1 < i < n)
as s; € RY, and the encoding of each text token
ti(l<j<m)ast; € R4, Additionally, two vec-
tors, biefc and byigny, for the left and right boundaries
of the answer span are learned. The probability of



each token ¢; (1 < j < m) being the left or right
boundary of the answer span is computed as

Presi(t) o< exp(biefi-t;); Prighe(f;) oc exp(brigne-t;)

The two vectors biese and byigne act as attention
query vectors to the text, resulting in a soft pointer
over the text tokens.

Multiple Argument Selector Our scenario is
fundamentally different from MRC in two ways:
(1) Our query is not formulated as a natural lan-
guage question; instead, it is a cloze-style problem
with a natural language statement and a highlighted
blank to fill; (2) For some cases, there can be more
than one answer for a given blank. Previous MRC
models support extracting only at most one answer.

To accommodate these requirements, we pro-
pose a new architecture for this scenario that de-
scribes the GETARGS function in Algorithm 1.
Given a bleached statement S = (s1,---,5,)
with a highlighted placeholder span with indices
I={i, - ,i} C€{1,---,n}, instead of two atten-
tion query vectors byeg and byign to get the left and
right boundary for the answer span, we consider
the problem of answer span selection as a fagging
problem, first proposed in Yao et al. (2013), where
answer spans are tagged using a linear chain CRF
(Lafferty et al., 2001). By considering answer span
selection as tagging, our model selects potentially
multiple spans for a query.

We enforce the constraint that all extracted spans
come from the same sentence in the text, but in gen-
eral this constraint need not be enforced. Addition-
ally, our model operates on single-sentence con-
texts, so information available in other sentences is
not considered.

We use the BIO tagging scheme (Ramshaw and
Marcus, 1995), where each token in the text is
tagged with B (beginning), I (inside), or O (out-
side). In a linear-chain CRF, the probability of
an output tag sequence yi,---,y; (for each j,
yj € {B,I,0}) giventhe text T = (t1,--- ,t;) is

m
Py, yjltn, ) o« [ Jojm1.yy.0) (1)
j=I

where we define the potential function
Y(yj-1,y;,J) as the output of a neural func-
tion described below. Our model is trained to
maximize P.

We first compute an attentive representation for a
placeholder with respect to each text token 7, using
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the attention mechanism proposed by Luong et al.
(2015), since the placeholder is of variable length
but we desire a fixed-size vector representation:

exp (s; - t;)
ajj = (2)
! Zi/el exp (si - t;)
§j =D aijsi 3)

iel

Then the attentive placeholder representation §;, to-
gether with its corresponding text token representa-
tion t;, are joined using various matching methods
proposed in Mou et al. (2016):°

ij[gj;t], |§j_tj|;§j®tj] @
yielding the joined feature vector x; € R4,

Finally the joined feature vector X; is passed
through a multi-layer feed-forward neural network
to get the final potential function for each token
and each predicted tag type y; € {B, I,O}:

Y (yj-1,yj,J) = FENNy. (x;) &)

In our experiments, we pass X; through 4 layers,
with output dimensions 2d,d,d, and 1, respec-
tively, and tanh as the nonlinearity function be-
tween layers.

Trigger Identification Triggers of events can be
thought as a special argument, which usually is the
main verb (or a nominalized verb) that expresses
the occurrence of an event. We reuse the argu-
ment selection model for trigger identification: the
highlighted token set for the trigger is all tokens
in the statement that are not part of any standard
argument:

Itrigger ={l,---,n}\ U 1

(r,I)eR

(6)

For example, the highlighted token set for the trig-
ger of the statement in Figure 2 consists of the
tokens underlined below:

someone killed someone else with some-
thing in some place at some time

4.2 Training Data Generation

We generate data examples in the form of (S, 7, T)
triples to train the argument extractor, where S is a
bleached statement, [ is the index set of the focused

5| - is elementwise absolute value, © is elementwise prod-
uct, and [; ] is vector concatenation.



placeholder, and T is the text. Algorithm 1 gen-
erates a sequence of bleached statements, where
each successive statement is a refinement of its
predecessor. During training, instead of replac-
ing placeholders with their predicted arguments
A «— GETARGS(S, I, T), we replace them with the
gold argument(s) from the event extraction dataset.

Negative Sampling For trigger identification,
we augment each example with negative samples
from the set of event types not found in the exam-
ple’s text. For each event, a% of the non-occurring
event types are taken as negative samples. We tune
a € {10, 20, 30, 40, 50}.

4.3 Recasting MRC Data for Pre-training

SQuAD (Rajpurkar et al., 2016) is a reading com-
prehension dataset consisting of questions on a set
of Wikipedia articles, where the answer to each
question is a span of text extracted from the cor-
responding reading passage. Its version 2.0 (Ra-
jpurkar et al., 2018) contains additional data that
poses unanswerable questions to reading compre-
hension systems. To do well, a system should learn
to abstain from answering when no answer is sup-
ported by the text.

We employ recast versions of the training and
development splits of SQUAD 2.0 as pre-training
data for our event extraction system. We cast each
SQuAD natural language question to a format simi-
lar to our bleached statements, where the wh- ques-
tion phrases of the questions are tagged as the place-
holders to be filled. For example, given the follow-
ing SQuAD question,

What form of oxygen is composed of 3
oxygen atoms?

the extracted wh- phrase is “What form of oxygen”,
which is chosen as the single placeholder in this
statement. This is answered as

ozone is composed of 3 oxygen atoms?
ANSWER

This methodology is linguistically motivated, as
both questions (as in SQuAD) and bleached state-
ments (this work) reduce to logical forms with the
same predicate. The denotations can be written
(using a generic operator Q) as

QOx. [[form of oxygen] (x)
A [[composed of three oxygen atoms]| (x)
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where Q is A for the question and is 3 for the
bleached statement. Hence the wh- phrase is seman-
tically similar to an existentially quantified phrase
(e.g. some form of oxygen, where some introduces
existential quantification), despite their pragmatic
difference in illocutionary force (inquiring vs. stat-
ing). Additionally, wh- phrases presuppose the
existence of their answer referent; to use a wh-
phrase when no referent exists would be infelici-
tous. Hence wh- question phrases serve the same
function as the existentially quantified placeholder
phrases in our bleached statements, and so the re-
cast SQuUAD questions are appropriate data for pre-
training.

We extract wh- phrases through syntactic anal-
ysis of the questions. We define the wh- phrase
of a question to be the maximum span in its con-
stituency parse that bears any of the question tags
in the Penn Treebank (Marcus et al., 1993) parsing
annotation guideline.®

We employ the neural span-based constituency
parser (Stern et al., 2017) in the AllenNLP (Gard-
ner et al., 2018) toolkit to parse the SQuAD ques-
tions for extracting the wh- phrases.

5 Experiments and Discussions

5.1 Event Extraction on ACE 2005

We evaluate our approach on the ACE 2005 dataset
and use the same data splits as previous work, in
which 40 newswire documents are used as the test
set, another 30 documents of different genres are
selected as the development set, and the remain-
ing 529 documents constitute the training set (Li
et al., 2013; Yang and Mitchell, 2016; Nguyen and
Nguyen, 2019). Following previous work, we use
four evaluation metrics: (1) Trigger Identification:
a trigger is correctly identified if its span offsets
exactly match a reference trigger; (2) Trigger Clas-
sification: a trigger is correctly classified if its span
offsets and event subtype exactly match a reference
trigger; (3) Argument Identification: an argument
is correctly identified if its span offsets and corre-
sponding event subtype exactly match a reference
argument; and (4) Argument Classification: an ar-
gument is correctly classified if its span offsets,
corresponding event subtype, and argument role
exactly match a reference argument. The overall

These include the following tags (followed by examples):
WHADJP (how many), WHADVP (why), WHNP (which book),
textttWHPP (by whose authority), WDT (which), WP (who),
WP$ (whose), WRB (where).



Model Trigger Argument

Identification Classification Identification Classification

P R F, P R F, P R F, P R F,
JOINTFEATURE 77.6 654 710 751 633 68.7 737 385 506 70.6 369 484
JOINT3EE 705 745 725 680 71.8 698 599 598 599 521 521 521
Ours w/ partial data  64.5 62.3 63.4 609 587 59.8 43.1 428 43.0 352 349 350
Ours w/o pre-training 50.0 85.7 63.2 48.1 824 60.7 29.3 550 382 247 464 322
Ours w/ full data 68.9 77.3 729 667 747 705 449 412 43.0 443 40.7 424

Table 1: P(recision), R(ecall), and F; obtained by models on the ACE 2005 dataset. Best results are bolded. Using
the full training set improves F; performance over using the partial training set on all metrics except argument
identification (equal). Pre-training on the recast SQuAD 2.0 dataset improves F; performance over no pre-training

on all metrics.

performance is evaluated using precision (P), recall
(R), and F-measure (Fy) for each metric.

We use BERT for sequence encoding.” For pre-
training on the recast SQuAD 2.0 dataset, we fol-
low the previously mentioned pre-processing strat-
egy. We pre-train on the training set of SQuAD
2.0 and perform early stopping using the devel-
opment partition. Examples that do not have ex-
actly 1 wh-phrase are discarded.® The maximum
sequence length is 512 word pieces, the maximum
query length is 128 word pieces, the learning rate
is 3 x 107 with an Adam optimizer, the maximum
gradient norm for gradient clipping is set to 1.0,
and the number of training epochs is 3.

After pre-training on SQuAD 2.0, we fine-tune
the model on ACE 2005. While keeping other hy-
perparameters unchanged, we set the learning rate
to 1 x 107> and the number of training epochs to 8.
During fine-tuning, we employ negative sampling
and set the negative sampling rate to 30%.

In addition to fine-tuning on the full training set
of ACE 2005, we consider a single-genre “partial”
training setting in which the model is trained only
on the 58 documents that appear in the newswire
portion of the full training set.

Experimental Results & Discussion We train
our model using full and partial training data and
compare with two joint event extraction model
baselines. The JOINTFEATURE model (Yang and
Mitchell, 2016) is a feature-based model that ex-

7We use the BERT-BASE-CASED model, which has 12 lay-
ers, 768-dimensional hidden embeddings, 12 attention heads,
and 110 million parameters.

80ur effective training set contains 128,649 examples af-
ter 1,670 were discarded, and the effective development set
contains 11,772 examples after 100 were discarded.
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ploits document-level information; the JOINT3EE
model (Nguyen and Nguyen, 2019) is a neural
model that achieves state-of-the-art performance
on ACE 2005. These two models represent the
state-of-the-art performance for feature-based and
neural models, respectively.

Table 1 reports the performance of the systems
on the four evaluation metrics. Training on the full
training set improves F; performance over train-
ing on the partial training set, giving the largest
improvement on trigger identification and classi-
fication. Additionally, pre-training on the recast
SQuAD 2.0 dataset provides large F; improve-
ments (4.8%—10.2% absolute F; increase) on all
four evaluation metrics. Our model also tends to
have higher recall than precision, especially on
trigger identification and classification, and suf-
fers from low precision compared to prior work.
Our model achieves state-of-the-art performance
on trigger identification and trigger classification.

Because our model does not explicitly incorpo-
rate entity mention detection, we hypothesize that
our MRC-inspired approach predicts answer spans
that are semantically correct but do not exactly
match the gold answers, hurting performance on
argument-related subtasks. We compare predicted
arguments with gold references and find the follow-
ing sources of errors:

e Relative clauses: Our model predicts Mosul
whereas the gold answer is Mosul, where U.S.
troops killed 17 people in clashes earlier in the
week.

e Counts: The gold annotation is 300 billion yen
but our model predicts 300 billion.

e Durations: The gold annotation is lasted two
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Figure 3: Few-shot experimental results on FrameNet.

hours but our model predicts two hours.

5.2 Few-shot Learning on FrameNet

In order to evaluate our approach under a lower-
resource setting than the partial training setting, we
consider few- and zero-shot learning on annotated
documents from FrameNet.” 7 documents are ex-
cluded from FrameNet’s 107 annotated documents
because they do not have frame annotations. The ar-
guments in our bleached statements consist of only
the frame’s core frame elements. We use the same
four evaluation metrics as used for ACE 2005.

We split the remaining 100 documents into 5
training documents and 95 test documents and ex-
periment with training on between 1 and 5 docu-
ments.'® We pick the top-10 most frequent frames
that represent events and write bleached statements
based on their frame definitions.

Following the same pre-training setup, we then
train the model using the same hyperparameters as
the model fine-tuned on ACE 2005.

Experimental Results & Discussion The re-
sults in Figure 3 show that F; performance on all
evaluation metrics increases as more documents
are added to the training set. The marginal util-
ity of adding training documents almost monoton-
ically decreases as the training set increases, so
that performance from training on 3 documents
roughly matches performance from training on 5
documents.

5.3 Zero-shot Learning on FrameNet

We additionally investigate the model’s ability to
generalize to unseen event types using the same

9We use the Full Text Annotation portion of FrameNet.

10Because we do not perform a hyperparameter sweep in
this setting, we do not use a development set.
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Frame Trigger Argument
Id. Cls. Id. Cls.

ARRIVING 9.1 9.1 6.1 6.1
ATTACK 664 664 42.1 42.1

GETTING 17.6 17.6 143 13.8
INTENTIONALLY_CREATE 12.5 12.5 7.1 7.1
KiLLING 224 224 13.1 7.0
MANUFACTURING 374 374 27.6 26.7
SCRUTINY 16.6 16.6 11.7 11.0
STATEMENT 0.6 0.6 0.7 0.5
SuppLy 3.1 3.1 1.7 1.5

UsING 104 104 10.0 8.8
Macro-averaged F;  19.6 19.6 13.4 12.46

Table 2: Zero-shot results on FrameNet frames. Trigger
classification performance is equivalent to trigger iden-
tification performance because we evaluate on only one
frame in each zero-shot learning experiment.

dataset as the few-shot setting. We employ a leave-
one-out strategy to the frames in Table 2, training
on 9 frames and testing on the other 1.

Experimental Results & Discussion The re-
sults in Table 2 reveal a large variation in perfor-
mance on the frames. The best performance is
achieved on the ATTACK frame, but frames such as
STATEMENT achieve poor performance.

We report the macro-averaged Fy over all frames
to reveal overall performance instead of micro-
average, since we care how the approach gen-
eralizes to different frames. Overall, the macro-
averaged F; shows that the model can feasibly ex-
tract information about events of unseen types, but
performance varies greatly across frames.

Possible reasons why the STATEMENT frame
has low performance include: (1) the event type
being too general, (2) the bleached statement being
poorly constructed, (3) the span for the “message”
role being long and difficult to tag exactly correctly
using the BIO scheme.

6 Conclusion & Future Work

We present an approach to event extraction that
uses bleached statements to give a model access to
information contained in annotation manuals. Our
model incrementally refines the statements with
values extracted from text. We also demonstrate
the feasibility of making predictions on event types
seen rarely or not at all. Future work can apply our
approach to n-ary relation extraction.
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