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Abstract

This paper describes the masked reasoner system that participated in SemEval-2020 Task 4:
Commonsense Validation and Explanation. The system participated in the subtask B. We propose
a novel method to fine-tune RoBERTa by masking the most important word in the statement. We
believe that the confidence of the system in recovering that word is positively correlated to the
score the masked language model assigns to the current statement-explanation pair. We evaluate
the importance of each word using InferSent and do the masked fine-tuning on RoBERTa. Then
we use the fine-tuned model to predict the most plausible explanation. Our system is fast in
training and achieved 73.5% accuracy.

1 Introduction

Commonsense validation and explanation is a critical area in natural language understanding. Recent
research advances (Yang et al., 2019; Devlin et al., 2018; Liu et al., 2019) pushed the bar in this area to a
new height. SemEval 2020 Task 4 (Wang et al., 2020) is focused on this area. It has 3 subtasks. Subtask
A is focused on commonsense validation. It gives two statements. One of them is against commonsense.
For example,

1) He poured orange juice on his cereal.
2) He poured milk on his cereal.

The system needs to know which one is against commonsense. Subtask B is what we participated in. It
first gives a statement, which is wrong or not proper. Then it lists 3 explanations. One of them can explain
why the statement is not proper. For example,

statement: He poured orange juice on his cereal.
Explanations:
1) Orange juice is usually bright orange.
2) Orange juice doesn’t taste good on cereal.
3) Orange juice is sticky if you spill it on the table.

The system needs to select it out of the three. Subtask C, in our opinion, is more challenging. The system
needs to generate an explanation that explains why a statement is against commonsense. For example:

Statement: He put an elephant into the fridge.
Possible Valid Reasons:
1) An elephant is much bigger than a fridge.
2) A fridge is much smaller than an elephant.
3) Most of the fridges are not large enough to contain an elephant.

BLEU(Papineni et al., 2002) is used to judge whether the generated reason is a valid one. Subtask B is very
similar to other famous datasets, such as CommonsenseQA(Talmor et al., 2018) and COPA(Roemmele et
al., 2011). Many previous research(Talmor et al., 2018; Lin et al., 2019) showed that pre-trained language
models can implicitly hold knowledge thus are able to answer these questions well. By fine-tuning based
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on these pre-trained models, many datasets archived new heights. Our system fine-tuned in a novel way.
We argue that whether a explanation fits a statement is strongly correlated to the ‘core’ of the statement,
which should be the most important word. We first use InferSent to locate the most important word of the
statement. Then we mask that word and start fine-tuning RoBERTa. By concatenate the proper explanation
to the statement by adding a few concatenate words such as ‘ is wrong because ’, we can get a full-text
format. After the fine-tuning, we can apply the model to the test set. We provide our code on GitHub for
reproduce purpose: https://github.com/daming-lu/Code-for-SemEval2020-Task4.

2 System Description

2.1 Problem Abstraction
Suppose we have an input statement s =

(
w(1), w(2), . . . , w(Ls)

)
, where each w(i) is a word. We also

have a set of candidate explanations:

E =
{
ei =

(
e
(1)
i , e

(2)
i , . . . , e

(Li)
i

)}
i=1...n

we aim to identify the most proper explanation e∗ ∈ E which can explain why statement s is improper.
Ls is the length of the statement. The candidate explanations can have various lengths.

2.2 Core Word
In InferSent (Conneau et al., 2017), the authors focus on getting sentence embeddings that hold semantic
information that are useful in natural language inference. We find that we can find the most important
word, a.k.a the ‘core’ word in the statement, by representing the statement. We use both the statement and
the candidate explanations as the corpus to build a relatively small vocabulary. The semantic information
that implicitly stored in InferSent can help pinpoint the core word in the statement. See Figure 1 for more
details.

Figure 1: Example of a core word ‘cereal’

2.3 Sentence Evaluation
For each pair of 〈s, ei〉, we first build its full-text format. We simply add ‘ is wrong because ’ to
concatenate s and ei. For example, the ‘cereal’ example mentioned in Introduction will look like below:

He poured orange juice on his cereal is wrong because orange juice doesnt́ taste good on cereal.

We then mask the core word, i.e. ‘cereal’, in the statement and train the model to try to recover the
masked word. Intuitively, the higher confidence the model has in recovering the masked word, the more
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plausible the explanation ei can best explain the statement s. We denote Sen as the concatenated full-text
sentence. Following the notation in (Song et al., 2019), we note Sen

\w
i as the sentence Seni with the

word w replaced by the [MASK] token. The sentence evaluation formula is as follows:

Score(Seni) = log

[
P

(
p(k)|Sen\p

(k)

i

)]
where k is the index of core word. Masked word probability is estimated from a direct calculation on the
pre-trained masked language model, in our case, RoBERTa. See Figure 2 for more information.

Figure 2: System architecture

3 Data

Trial data were given out in practice period. For Subtask B, trial data has 2,021 rows. Then 10,000 training
data were released. Each has 1 improper statement and 3 candidate explanations. Follow concatenating
method mentioned above, we have 30,000 training data for our system, 10,000 are positive and 20,000
are negative. We have 997 dev data that can be used as testing data during the practice period. Both trial,
training and dev data have gold answers. Then in the evaluation period, the real test data were released
whose gold answers are never revealed. See Table 1 for more information.

Table 1: Dataset Information
Dataset Number of data records have gold answer

Trial 2,021 Yes
Train 10,000 Yes
Dev 997 Yes
Test 1,000 No

4 Experimental Results

Figure 3: System Performance

Epoch Accuracy
3 83.21%
6 85.22%

10 87.43%

During the training period, our system reached
83.21% accuracy after 3 epochs, 85.22% after 6
epochs and 87.43% after 10 epochs. We trained
on 2 Nvidia GEFORCE GTX 1080 Ti GPUs. We
tried both RoBERTa-base and RoBERTa-large.
We set hidden size to be 768 for RoBERTa-base
and 1024 for RoBERTa-large. We used a batch
size of 4 and set max learning rate to be 1e-5.
The hidden state dropout percentage is 5%. One
epoch takes about 10 minutes. More details can be accessible in our github repo. We got a 73.5% accuracy
for the test dataset, which makes us rank 21st out of the 30 teams.
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5 Discussion

There is a big drop in terms of accuracy between training and testing. We doubt it is due to over-fitting. Our
system gain very little after 3 epochs so we should stop earlier to make the system more general-purpose.
Despite over-fitting, our best accuracy, 87.43% still cannot enter the top 10 on the leader board. We
suspect that it is because we did not use any external knowledge base. Some large external knowledge
base such as ConceptNet(Speer et al., 2017), could help a lot.

6 Conclusion

We proposed a novel method for fine-tuning pre-trained model and fit it into Subtask B. The combination
of InferSent and RoBERTa can make the masked training faster. Meanwhile, (Tamborrino et al., 2020)
introduced a more thorough way of masking every word as well as N-grams in both the statement and the
explanation. We think that only the important words need mask. Trivial words such as ‘he’, ‘the’, ‘to’
could be noise.
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