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Abstract

This paper presents our submission to the SemEval 2020 - Task 10 on emphasis selection in
written text. We approach this emphasis selection problem as a sequence labeling task where we
represent the underlying text with various contextual embedding models. We also employ label
distribution learning to account for annotator disagreements. We experiment with the choice
of model architectures, trainability of layers, and different contextual embeddings. Our best
performing architecture is an ensemble of different models, which achieved an overall matching
score of 0.783, placing us 15th out of 31 participating teams. Lastly, we analyze the results in
terms of parts of speech tags, sentence lengths, and word ordering.

1 Introduction

Emphasis selection is an emerging research problem (Shirani et al., 2019) in the natural language pro-
cessing domain, which involves automatic identification of words or phrases from a short text that would
serve as good candidates for visual emphasis. This research is most relevant to visual media such as fly-
ers, posters, ads, and motivational messages where certain words or phrases can be visually emphasized
with the use of different color, font, or other typographic features. This type of emphasis can help with
expressing an intent, providing more clarity, or drawing attention towards specific information in the
text. Automatic emphasis selection is therefore useful in graphic design and presentation applications to
assist users with appropriate choice of text layout.

Prior works in speech processing (Mishra et al., 2012; Chen and Pan, 2017) have modeled word-level
emphasis using acoustic and prosodic features. Understanding emphasis in speech is critical to many
downstream applications such as text-to-speech synthesis (Nakajima et al., 2014), speech-to-speech
translation (Do et al., 2015), and computer assisted pronunciation training (Felps et al., 2009). In com-
putational linguistics, emphasis selection is very closely related to the problem of keyphrase extraction
(Turney, 2002). Keyphrases typically refer nouns and noun-phrases that capture the most salient topics
in long documents such as scientific articles (Sahrawat et al., ; Mahata et al., 2018; Swaminathan et al.,
2020), news articles (Hulth and Megyesi, 2006), web pages (Yih et al., 2006), etc. In contrast, emphasis
selection deals with very short texts (e.g. social media posts), and also emphasis could be applied to
words belonging to various parts of speech.

The goal of SemEval 2020 - Task 10 is to design methods for automatic emphasis selection in short
texts. To this end, the organizers (Shirani et al., 2020) provided a dataset consisting of over 3,000
sentences annotated for token-level emphasis by multiple annotators. The authors employed the standard
I-O tagging schema, which is widely used in annotation of token-level tags. We approached emphasis
selection as a sequence labeling task solved using a Bidirectional Long Short-term Memory (BiLSTM)
model, where the individual tokens are represented using various contextual embedding models. We
also employ label distribution learning (LDL) (Geng, 2016) approach, which elegantly accounts for
disagreements between the annotators.
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Figure 1: BiLSTM architecture used for emphasis selection.

2 Methods

Let d = {w1, w2, ..., wn} be the input text, where wi is the ith token. The problem of emphasis selection
is to assign each token wi one of two possible labels E = {eI , eO}, where eI denotes emphasis on the
token and eO means otherwise. We approach this problem as a sequence labeling task solved using a
BiLSTM model. We first represent each token wi with a dense vector xi of a fixed size. To this end,
we explore three different embedding architectures: BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), and XL-NET (Yang et al., 2019). Thus the given input text d is transformed into a sequence of
vectors {x1, x2, ..., xn}. We then feed these vectors to a BiLSTM model which captures the sequential
relations between the tokens. The hidden state of the BiLSTM hi is associated with the token wi. Thus hi
provides a fixed-size representation for token wi while incorporating information from the surrounding
tokens.

In standard sequence prediction problem, we can apply an affine transformation to map hi to the
class space. However, in this paper, as with (Shirani et al., 2019), we employ LDL (Geng, 2016) which
transforms the output space into a distribution over the labels E. Namely, the objective of the model is
not to just assign one label for a token but a real-valued vector. This vector is a distribution over the
labels E, where the values are proportional to the number of annotations. To achieve this objective, we
use KL-Divergence between the predictions and ground truth as the loss function for the model.

∑
ej∈E

p(ej) log
p(ej)

p̃(ej)
(1)

The above equation demonstrates the loss for one sample, where p(ej) is the ground truth distribution
and p̃(ej) is the model prediction. Note that the above equation reduces to negative log-likelihood in
case of standard sequence prediction. The entire architecture is described in Figure 1.

3 Experimental work

3.1 Dataset
The dataset provided for this SemEval task consists of 3,134 samples labeled for token-level emphasis
by multiple annotators. The data was split into a training set consisting of 2,742 samples and develop-
ment set with 392 samples. The training set has approximately 12 tokens per instance with the longest
sample containing 38 tokens, and the shortest has one token. Likewise, the development set also has
approximately 12 tokens per sample, and the longest sample has 31 tokens while the shortest has two
tokens. Shirani et al. (Shirani et al., 2019) has more details about the experimental protocols used for
data collection.

3.2 Experimental settings
We trained all the BiLSTM models using stochastic gradient descent in batched mode with the batch
of 32. We used four different contextual embedding models for word representation: BERT (bert-base-
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Architecture Embedding Trainable layers M1 M2 M3 M4 Average
BiLSTM BERT 0.592 0.739 0.797 0.833 0.740

BERT Cased None 0.615 0.753 0.795 0.823 0.747
RoBERTa 0.587 0.745 0.804 0.836 0.743
XL-Net 0.551 0.698 0.770 0.797 0.704

BiLSTM BERT 0.602 0.745 0.801 0.826 0.744
BERT Cased Last Layer 0.579 0.758 0.806 0.832 0.744
RoBERTa 0.627 0.752 0.815 0.845 0.760
XLNet 0.571 0.710 0.761 0.811 0.713

BiLSTM BERT 0.612 0.752 0.824 0.840 0.757
BERT Cased All 0.610 0.760 0.805 0.829 0.750
RoBERTa 0.683 0.782 0.826 0.853 0.786
XLNet 0.584 0.757 0.799 0.826 0.742

Dense BERT 0.589 0.733 0.792 0.827 0.735
BERT Cased None 0.559 0.736 0.783 0.813 0.723
RoBERTa 0.533 0.695 0.760 0.814 0.700
XLNet 0.526 0.671 0.741 0.786 0.681

Dense BERT 0.582 0.744 0.801 0.832 0.740
BERT Cased Last Layer 0.586 0.750 0.798 0.8219 0.739
RoBERTa 0.630 0.761 0.810 0.836 0.759
XLNet 0.510 0.704 0.766 0.808 0.697

Dense BERT 0.630 0.776 0.810 0.837 0.763
BERT Cased All 0.617 0.755 0.808 0.839 0.755
RoBERTa 0.702 0.776 0.826 0.850 0.788
XLNet 0.602 0.745 0.813 0.847 0.752

Table 1: Performance of both model architectures (BiLSTM and Dense), for different choices of contex-
tual embeddings and trainability of layers. The results are expressed in terms of match scores for four
cardinalities, and the average of the four.

uncased), BERT cased (bert-base-cased), RoBERTa (roberta-base), and XL-Net (xlnet-base-cased). We
experimented on replacing the BiLSTM layer with a simple feed-forward dense layer. We also exper-
imented with the trainabliity of different layers in the architecture. Namely, if none of the layers are
trainable, only the last layer is trainable, and if all the layers are trainable.

All the models were trained for 20 epochs: after each epoch, we evaluated on development dataset and
stored the model from the best performing epoch. The hidden layers for the BiLSTM models were set to
128 units, the dense layers had 256 units, and the models trained at learning rates ranging from 2e− 5 to
3e − 4. We evaluated all the models in terms match scores as described in (Shirani et al., 2019). These
match scores, for a given cardinality m, quantify the intersection between the top m model predictions
for emphasis and the ground truth as obtained from annotations.

4 Results

4.1 Architectures, Embeddings, and Trainablity

Table 1 presents the performance of both the BiLSTM and the dense models for different choices of
embeddings, and varying number of trainable layers. The first observation from these results is that the
choice of architecture (BiLSTM vs. Dense) did not make a big difference in the performance. Second,
the choice of embeddings did contribute significantly towards the performance: RoBERTa based models
most often obtained the best scores, and XL-Net based models obtained the lowest scores. Lastly, we
also observed that the model performance also improved with more trainable layers irrespective of the
choice or architecture or embeddings. The best performing model, with an average match score of 0.788,
was RoBERTa with a dense layer and all the layers set to be trainable.

4.2 Ensembling

We experimented with two model ensembling approaches: average and weighted average. Average en-
sembling predicts the output simply as the average of outputs from all the models. In weighted averaging,
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Model M1 M2 M3 M4 Average
RoBERTa (Dense & BiLSTM) 0.684 0.792 0.835 0.853 0.791

RoBERTa, BERT, BERT Cased (Dense) 0.658 0.801 0.842 0.862 0.791
RoBERTa, BERT, BERT Cased (BiLSTM) 0.679 0.790 0.835 0.859 0.791

RoBERTa, BERT, BERT Cased, XL-Net (Dense & BiLSTM) 0.681 0.801 0.844 0.864 0.797

Table 2: Performance of different ensembled models

Models Count Humans BERT RoBERTa
Noun 789 0.528 0.463 0.488
Verb 855 0.305 0.275 0.295
Adjectives 260 0.534 0.436 0.482
ADP 327 0.136 0.139 0.131
Det 388 0.142 0.133 0.136
Punctuations 514 0.136 0.141 0.154
Adverbs 263 0.290 0.249 0.273
Pro-nouns 325 0.164 0.154 0.150
CCONJ 88 0.130 0.143 0.139
Proper-nouns 156 0.531 0.504 0.548
Part 102 0.212 0.189 0.195
Num 32 0.406 0.365 0.368
X 5 0.222 0.262 0.298
INTJ 3 0.481 0.45 0.530

Table 3: POS tags vs. average emphasis scores on dev dataset

we use the model performance on development dataset to weigh its contribution towards final prediction.
We observed that the difference between these two ensembling approaches was rather minimal. We also
tried ensembles of models with different combination of architectures and embeddings but eventually
observed that the ensemble of all the models obtained the best performance. Table 2 summarizes the
results from some of these experiments. Our best system achieved an average match score of 0.783 on
the final test dataset, placing us 15th out of 31 teams. The highest score achieved in the task was 0.823.

5 Analysis

5.1 Emphasis vs. Parts of Speech
We wanted to understand how the model predictions compared to the annotations for various parts of
speech (POS) tags. Table 3 presents the average emphasis score of human annotators on the development
dataset for various POS tags. Also included in this table are the predictions from the best BERT and
RoBERTa models. Of the various POS tags, nouns, proper-nouns, and adjectives are the classes with
the most emphasis. This is also the case with the model outputs, however, they seem to be predicting
higher emphasis scores for proper-nouns than nouns or adjectives. At the other end of the spectrum are
coordinating conjunctions, adpositions, and punctuations. Figures 2 show an example of a situation
where our models achieve very low match scores. Here, the models predicted the nouns ’Happiness’ and
’Unhappiness’ to have high emphasis but the annotators emphasized tokens which are verbs and adverbs.

5.2 Shuffling Word Order
We wanted to demonstrate that our models are not just picking up on certain keyphrases but capturing
some important semantics in the data. To this end, we trained a new set of models on the training dataset,
where for each sample, the order of the words was randomly shuffled. The resulting models were then
evaluated on the development dataset. We repeated this experiment five times and Table 4 presents the
average performance across these runs. Also included in this table is a baseline model which predicts a
random score for each token. As expected, the models trained on shuffled data are significantly worse
than their counterparts in Table 1. Another interesting observation is that the performance of these models
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Figure 2: Heat-map of: Ground truth (A), Roberta prediction (B), Bert prediction (C).

Architecture Embedding M1 M2 M3 M4 Average
BiLSTM BERT 0.179 0.297 0.382 0.453 0.328
BiLSTM BERT Cased 0.168 0.280 0.368 0.438 0.314
BiLSTM RoBERTa 0.173 0.292 0.378 0.446 0.322
BiLSTM XL-Net 0.171 0.286 0.377 0.448 0.321
Dense BERT 0.171 0.294 0.377 0.441 0.321
Dense BERT Cased 0.175 0.289 0.368 0.437 0.317
Dense RoBERTa 0.178 0.282 0.374 0.444 0.319
Dense XL-Net 0.157 0.280 0.365 0.444 0.311

Random 0.175 0.276 0.352 0.428 0.308

Table 4: Performance of models trained on data where the sentences were randomly shuffled.

is comparable to the random baseline. This suggests that the word order and therefore semantic structure
is very important to the emphasis selection problem.

5.3 Length vs. Performance

We also wanted to understand how the model performance is influenced by the length of the samples. As
mentioned earlier the average length of each sample in the dataset is 12 tokens and the standard deviation
of the length is around 6. Driven by these statistics, we decided to split the development data into three
sets: Short (< 6 tokens, 80 samples), Medium (6 to 18 tokens, 262 samples), and Long (>18 tokens,
50 samples). Table 5 summarizes the results (average match score) of all the models split into these
three groups. All the models, irrespective of the choice of architecture or embeddings, have deteriorated
with increasing length of the samples. The difference between the longest and shortest samples is most
pronounced for BERT-based models. RoBERTa-based models seem to be handling longer samples much
better than the other two embeddings.

Architecture Embedding Short Medium Long
Dense BERT 0.850 0.776 0.664
BiLSTM BERT 0.870 0.762 0.656
Dense BERT Cased 0.850 0.762 0.668
BiLSTM BERT Cased 0.852 0.763 0.637
Dense RoBERTa 0.863 0.801 0.702
BiLSTM RoBERTa 0.873 0.793 0.710

Best Ensemble 0.875 0.808 0.709

Table 5: Average match score vs. length of the sample
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6 Conclusion

In this paper, we present our submission to the SemEval 2020 - Task 10 on emphasis selection in written
text. Our best performing model achieved an overall matching score of 0.783, placing us 15th out of
31 participating teams. We approached emphasis selection as sequence prediction problem solved using
BiLSTMs. Our experimental work demonstrates the effect of model architectures, trainability of layers,
and embeddings on the performance. We analyze the results in terms of parts of speech tags and sentence
lengths. Our analysis provides some interesting insight into some of the shortcomings of the models and
also the challenges with emphasis selection.
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