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Abstract 

This paper describes the systems our team (AdelaideCyC) has developed for SemEval Task 12 
(OffensEval 2020) to detect offensive language in social media. The challenge focuses on 
three subtasks – offensive language identification (subtask A), offense type identification 
(subtask B), and offense target identification (subtask C). Our team has participated in all the 
three subtasks. We have developed machine learning and deep learning-based ensembles of 
models. We have achieved F1-scores of 0.906, 0.552, and 0.623 in subtask A, B, and C 
respectively. While our performance scores are promising for subtask A, the results 
demonstrate that subtask B and C still remain challenging to classify. 

1 Introduction 

The surge of Internet and social media technologies provides a wealth of opportunities for cybercrime, 
and has led to the unprecedented social crisis of online abuse. Despite the illegality of such behaviour, 
most social media platforms such as Facebook, Twitter, Instagram are susceptible to online bullying 
due to their openness and anonymisation. The sheer amount of offensive language generation vastly 
exceeds the capacity of manual detection. Therefore, there is a crucial need for urgent development of 
technological solutions. The automated identification of offensive language has been recognised as a 
subtask of NLP only recently and most of the advances have occurred in the last few years. 

  The offensive language identification as an NLP problem is inherently complex and challenging – 
even for humans (aside from the offensive language's victims) due to many variants of language used 
by harassers such as coarse language, sarcasm, intimidation, and colloquialisms. People also tend to 
use coarse language in a friendly manner, without an intention to harm anyone. Therefore, it is 
important to identify whether a post or a tweet is offensive and whether it is targeted at an individual 
or a group. In this paper, we focus on identifying offensive posts extracted from the Twitter platform. 
The training dataset contained more than 9 million tweets and they were annotated using a semi-
supervised approach. Our team has participated in English versions of all three subtasks organised by 
Zampieri et al. (2020), i.e., subtask A: offensive language identification (offensive or not), subtask B: 
offense type identification (targeted insults and threats or untargeted), and subtask C: offense target 
identification (individual, group, other). In this paper, we discuss the models developed for each 
subtask along with the performance. The advancement of offensive  language identification has many 
benefits for social media and online communities to protect their users.  

2 Related work 

The identification of unacceptable language in social media and online communities has attracted 
attention from researchers in related fields such as cyberbullying (Rosa et al., 2018), aggression 
(Kumar et al., 2018), hate speech (Fortuna and Nunes, 2018), abusive language (Waseem et al., 2017), 



1517

and offensive language (Zampieri et al., 2019).  Davidson et al. (2017) is one of the first studies to 
create a dataset for offensive language detection by categorising tweets into hate speech, offensive but 
not hate speech, and neither. Their work utilised various features such as n-grams, TF-IDF, readability 
scores, and sentiments to build machine learning models like logistic regression and SVM.  Recently, 
multiple classification tasks like OffensEval (Zampieri et al., 2019) and HatEval (Basile et al., 2019) 
contributed to the advancement of the research field by creating datasets and tasks to identify 
offensive language, type, and target (Zampieri et al., 2019) and hate speech, target, and aggressiveness 
(Basile et al., 2019).  
 
  The systems developed for these tasks used cutting-edge NLP, machine learning and deep learning 
techniques. Some key systems for OffensEval and HatEval such as Fermi (Indurthi et al., 2019) used 
Universal Sentence Encoder to build a SVM model, NLPR@SAPOL (Seganti et al., 2019) used an 
ensemble of deep learning models like OpenAI Finetune and Transformer, while NULI (Liu et al., 
2019) developed a BERT-based model. Although some systems have achieved reasonable 
performance (e.g., 0.82 F1-score for subtask A of OffensEval by NULI), most other systems still lack 
‘good’ performance for other subtasks such as identifying target and type of offenses. Some of these 
challenges focus on specific problems like hate speech against minorities (women, migrants) (Basile et 
al., 2019) while OffensEval classification tasks focus on ‘general’ offensive language available on 
Twitter.  

3 Methods 

3.1 Dataset 

Table 1 includes the data description of the training dataset. Instead of labels, the training dataset 
provided by the organisers includes average confidence values. For subtask A, we have considered 0.5 
as the threshold and categorised tweets as ‘offensive’ when the average confidence is greater than 0.5 
and ‘not-offensive’ otherwise. Similarly, in subtask B, average confidence greater than 0.5 is 
considered as ‘targeted’ and ‘untargeted’ otherwise. For subtask C, we considered maximum average 
confidence as the measure to determine ‘individual (IND)’, ‘group (GRP)’, and ‘other (OTH)’ labels. 
The test dataset included 3887, 1422, and 850 tweets for subtasks A, B, and C respectively. More 
information about the dataset and the annotation process is included in Zampieri et al. (2020) and 
Rosenthal et al. (2020).  

Subtask Offensive Not-offensive Total 
A  1,449,656   7,637,462  9,087,118 
B Targeted Untargeted     
   149, 550 39,424   188,974 
C Individual Group Other       
   93,638  16,768  3,396     113,802 

 
Table 1: Data description of training dataset. 

3.2 Preprocessing 

The datasets for all three subtasks have been sourced from Twitter. Thus slang words, abbreviations, 
misspelled words and emoticons etc. are abundant in data instances. Therefore we carried out a few 
pre-processing steps to clean the datasets. These steps include replacing slang words and 
abbreviations1, decoding emoticons2 and removing non-ascii characters from the dataset. In addition to 
this, several standard data pre-processing steps such as removal of punctuation and URLs were 
inherently performed while fine-tuning deep learning based language models like DistilBERT (Sanh et 
al., 2019).  

                                                
1 https://floatcode.wordpress.com/2015/11/28/internet-slang-dataset/ 
2 https://github.com/carpedm20/emoji 
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3.3 Data preparation 

A significant class imbalance was observed in the training datasets of all three subtasks. In subtask A, 
a binary classification problem,  84.05% of the tweets in the training dataset belonged to the class 
‘NOT’ and only 15.95% of tweets belonged to the class ‘OFF’. In subtask B, a binary classification 
problem, 78.4% of the tweets in the training dataset were labeled ‘TIN’ while only 21.6% of the 
tweets were labeled ‘UNT’. In subtask C, a multi-class classification problem, 82.28% of the tweets in 
the training dataset belonged to class ‘IND’, with only 14.73% and 2.98% of the tweets belonging to 
classes ‘GRP’ and ‘OTH’ respectively. To mitigate adverse effects of class imbalance, we 
experimented with downsampling the majority class instances in the training datasets for subtask A 
and B. Similarly in subtask C, where we employed a one-vs-all strategy to train binary classifiers, we 
downsampled the majority class instances accordingly.   

4 Models and Results 

4.1 Subtask A 

We used DistilBERT (Sanh et al., 2019), a lighter, faster version of BERT (Devlin et al., 2019), to 
create four classification models A, B, C and D for subtask A. Model A was trained on a 
downsampled and balanced subset of training data while models B and C were trained on imbalanced 
subsets of training data where the majority classes were  ‘OFF’ and ‘NOT’ respectively.  Drawing 
inspiration from Khoussainov et al. (2005), model D was trained on a balanced subset of the training 
data composed of tweets which were assigned opposing class labels by the two biased classifiers B 
and C. All three models were finetuned with a learning rate of 5e-5 for 2 epochs using a batch size of 
32.  
 
  We then created an ensemble classifier combining the models B, C and D using a voting scheme. If 
the two biased classifiers B and C agreed upon a predicted label, the data instance was assigned that 
particular label. In case they disagreed, we assigned the prediction made by model D. Thus model D 
served as a tie-breaker. We also created another ensemble classifier based on a majority voting scheme 
using models A, B and C. All our models for subtask A were trained and tested on the Google 
Colaboratory platform3.  
 
  We evaluated the performance of our classifiers against three different distributions of held-out 
validation data. Dataset A was a balanced subset of validation data, while datasets B and C were 
imbalanced subsets of validation data with majority of ‘OFF’ and ‘NOT’ labels respectively. Table 2 
shows the results of our experiments. Our official submission to the competition was made using the 
ensemble model B + C + D. Table 3 shows our performance in comparison with the competition 
results.  
 

 
Model 

Macro Averaged F1-Score 
Dataset A Dataset B Dataset C 

 A 
 B 
 C 
 A + B + C 
 B + C + D 

0.9468 
0.9270 
0.9244 
0.9490 
0.9542 

0.9332 
0.8640 
0.9385 
0.9329 
0.9403 

0.9096 
0.9300 
0.8498 
0.9124 
0.9240 

    
 

Table 2: Performance of the models on the evaluation datasets of subtask A 
 
 

 
                                                
3 https://colab.research.google.com/ 
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System 
Top system
Our system
Baseline 1
Baseline 2
 

Table 3: The results of subtask A in comparison with the competition.

 
Figure 1: Confusion matrices of the best performing ensemble model for evaluation datasets A, B and 
C of subtask A 
   
  According to the results in Table 2, we have achieved a 0.95
combination of models B, C and D using the dataset A. All other datasets also showed promising 
performance with F1-score greater than 0.92. This robustness of the model is also evident from the 
confusion matrices shown in Figure 1. According to the results in Table 3, we achieved comparable 
results with the top system. The F1 difference is 0.016.  

4.2 Subtask B 

For subtask B, we experimented with machine learning models such as Logistic Regression, Linear 
SVC, and a neural network model 
BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019) and XLNet (Yang et al., 2019) since these 
pre-trained language models demonstrate state
train Logistic Regression and Linear SVC, we used TF
hyperparameters for neural network and transformer models and the best performance was achieved 
with 3 epoches.  Performance of these single classifiers wa
dataset. We have achieved more than 0.87 F1
showed the best performance of 0.889. However, when single classifiers were further experimented 
with the test dataset from OffensEval 2019 (Zampieri, 2019), we experienced a drop in performance 
using single classifiers. Therefore, we experimented with ensemble models by averaging predictions 
from combinations of single classifiers to deduce the final predictions for the test d
shows the best models with stable performances. We have selected the ensemble of Logistic 
Regression, LinearSVC, RoBERTa, XLNet and BERT as our most robust model across different 
distributions of testing data. 

System
XLNet
CNN
Ensemble
 

Table 4: The performance of the models on the evaluation dataset of subtask B .

 F1-Score 
Top system 
Our system 
Baseline 1 
Baseline 2 

0.922 
0.906 
0.419 
0.419 

 
 

Table 3: The results of subtask A in comparison with the competition. 
 

Figure 1: Confusion matrices of the best performing ensemble model for evaluation datasets A, B and 

According to the results in Table 2, we have achieved a 0.95 macro-averaged F1
combination of models B, C and D using the dataset A. All other datasets also showed promising 

score greater than 0.92. This robustness of the model is also evident from the 
igure 1. According to the results in Table 3, we achieved comparable 

results with the top system. The F1 difference is 0.016.   

For subtask B, we experimented with machine learning models such as Logistic Regression, Linear 
ork model - CNN-LSTM. We also fine-tuned transformer models such as 

BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019) and XLNet (Yang et al., 2019) since these 
trained language models demonstrate state-of-the-art performance for downstream NLP tas

train Logistic Regression and Linear SVC, we used TF-IDF vectors as features. We used default 
hyperparameters for neural network and transformer models and the best performance was achieved 
with 3 epoches.  Performance of these single classifiers was measured against a held-
dataset. We have achieved more than 0.87 F1-score with all experimented models while XLNet 
showed the best performance of 0.889. However, when single classifiers were further experimented 

OffensEval 2019 (Zampieri, 2019), we experienced a drop in performance 
using single classifiers. Therefore, we experimented with ensemble models by averaging predictions 
from combinations of single classifiers to deduce the final predictions for the test dataset. Table 4 
shows the best models with stable performances. We have selected the ensemble of Logistic 
Regression, LinearSVC, RoBERTa, XLNet and BERT as our most robust model across different 

System F1-Score 
XLNet 
CNN-LSTM 

         0.889 
0.876 

Ensemble 0.890 
 

 
Table 4: The performance of the models on the evaluation dataset of subtask B .
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For subtask B, we experimented with machine learning models such as Logistic Regression, Linear 
tuned transformer models such as 

BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019) and XLNet (Yang et al., 2019) since these 
art performance for downstream NLP tasks. To 

IDF vectors as features. We used default 
hyperparameters for neural network and transformer models and the best performance was achieved 

-out evaluation 
score with all experimented models while XLNet 

showed the best performance of 0.889. However, when single classifiers were further experimented 
OffensEval 2019 (Zampieri, 2019), we experienced a drop in performance 

using single classifiers. Therefore, we experimented with ensemble models by averaging predictions 
ataset. Table 4 

shows the best models with stable performances. We have selected the ensemble of Logistic 
Regression, LinearSVC, RoBERTa, XLNet and BERT as our most robust model across different 

Table 4: The performance of the models on the evaluation dataset of subtask B . 



1520

 
Figure 2: Confusion matrices of top performing models for subtask B

 
  The test set of subtask B consisted of unlabelled 1,422 data points, each required to be predicted as 
either  targeted insult and threat (TIN) or untargeted (UNT). Table 5 shows the performance of our 
ensemble model using the test dataset.
 

Table 5: The results for subtask B in comparison with the competition.
 
  Even though our performance was good using the held
(F1score of 0.55) of our system when applied to the test set. This drop could be occured due to the 
large class imbalance in the dataset (i.e. TIN class is approxima
see Table 1). We also observed a difference in the class distribution between the training dataset and 
the official, labelled test dataset. In the training dataset 78.4% of all tweets belong to the class ‘TIN’. 
However in the official test dataset only 59.7% tweets belong to the same class. Similarly while only 
21.6% of tweets in the training dataset are labelled as ‘UNT’, 40.2% of test tweets belong to the class 
‘UNT’. Since this is quite prevalent in many real world pr
models is highlighted through these results. Further, a manual analysis of a sample of misclassified 
tweets suggested that our threshold of 0.5 to distinguish TIN and UNT classes is quite ambiguous in 
some instances. 

4.3 Subtask C 

We reduced the multi-class classification problem of subtask C into separate binary classification sub 
tasks. According to the problem description, every training data instance can belong to only one of the 
given three classes, ‘IND’, ‘GRP’ or ‘O
predict whether a given data instance belongs to the class ‘IND’ and the other to predict whether the 
given data instance belongs to the class ‘GRP’. We finetuned each model with a learning rat
and a batch size of 32, for 2 epochs. We then combined the predictions from two classifiers to retrieve 
final class labels. If a data instance was marked as positive by either of the classifiers, we assigned the 
class label corresponding to that classifier. Whenever there was a tie, we selected the prediction with 
the highest probability score, while giving precedence to ‘GRP’ class when highest probability scores 
were equal.  We assigned the label ‘OTH’ to instances which were marked as negative 
classifiers. Each classifier was trained using DistilBERT (Sanh et al., 2019)  on balanced subsets of 
training data. Our official submission to subtask C was made using this model. 
 
  In addition, we trained a third binary classifier to distinguis
using DistilBERT, and created an ensemble of the three classifiers. Whenever the positive predictions 
from a pair of classifiers or all three classifiers resulted in a tie, we selected the prediction with the 
highest probability score. Whenever all three classifiers predicted negative for a given data instance, 
we selected the prediction with the lowest probability score to break the tie. 

Figure 2: Confusion matrices of top performing models for subtask B

The test set of subtask B consisted of unlabelled 1,422 data points, each required to be predicted as 
either  targeted insult and threat (TIN) or untargeted (UNT). Table 5 shows the performance of our 
ensemble model using the test dataset. 

System F1-Score 
Top system 
Our system 
Baseline 1 
Baseline 2 

0.746 
0.552 
0.374 
0.374 

  
 

Table 5: The results for subtask B in comparison with the competition. 

Even though our performance was good using the held-out set, we observed low performance 
(F1score of 0.55) of our system when applied to the test set. This drop could be occured due to the 
large class imbalance in the dataset (i.e. TIN class is approximately 4 times bigger than UNT class 
see Table 1). We also observed a difference in the class distribution between the training dataset and 
the official, labelled test dataset. In the training dataset 78.4% of all tweets belong to the class ‘TIN’. 

in the official test dataset only 59.7% tweets belong to the same class. Similarly while only 
21.6% of tweets in the training dataset are labelled as ‘UNT’, 40.2% of test tweets belong to the class 
‘UNT’. Since this is quite prevalent in many real world problems, the need to design more robust 
models is highlighted through these results. Further, a manual analysis of a sample of misclassified 
tweets suggested that our threshold of 0.5 to distinguish TIN and UNT classes is quite ambiguous in 
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predict whether a given data instance belongs to the class ‘IND’ and the other to predict whether the 
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final class labels. If a data instance was marked as positive by either of the classifiers, we assigned the 

classifier. Whenever there was a tie, we selected the prediction with 
the highest probability score, while giving precedence to ‘GRP’ class when highest probability scores 
were equal.  We assigned the label ‘OTH’ to instances which were marked as negative 
classifiers. Each classifier was trained using DistilBERT (Sanh et al., 2019)  on balanced subsets of 
training data. Our official submission to subtask C was made using this model.  

In addition, we trained a third binary classifier to distinguish instances belonging to the class ‘OTH’ 
using DistilBERT, and created an ensemble of the three classifiers. Whenever the positive predictions 
from a pair of classifiers or all three classifiers resulted in a tie, we selected the prediction with the 

t probability score. Whenever all three classifiers predicted negative for a given data instance, 
we selected the prediction with the lowest probability score to break the tie.  
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  This newer ensemble model was created after the official deadline for subta
not submit it for the challenge. Yet, after the official, labelled test dataset of subtask C was made 
available at the end of the challenge, we evaluated our system and observed a macro averaged F1
score of 0.6719, which would have ranked 2nd amongst all submissions for subtask C. 
 

Ensemble Model
IND + GRP
IND + GRP + OTH
 

  
 Table 6: Performance of the ensemble models on the evaluation dataset of subtask C
 

Table 7: The results of subtask C in comparison with the competition.

Figure 3: Confusion matrices of the two ensemble models for the evaluation dataset of subtask C
 
  As evident from the confusion matrices in Figure 3, both ensemble models perform relatively well 
when identifying ‘IND’ and ‘GRP’ instances, but perform poorly when identifying ‘OTH’ instances. 
When experimenting on the held-out evaluation dataset, singl
‘GRP’ instances reported F1-scores of 0.8765 and 0.8648 respectively, while the single classifier for 
‘OTH’ instances reported an F1-score of 0.6071. This drop could be attributed to the scarcity of 
training instances belonging to class ‘OTH’. While the first two single classifiers were trained on 
balanced samples having 25,810 and 21,462 data instances respectively, the classifier for ‘OTH’ class 
was trained on a balanced sample having just 4,348 data instances. 
examples of class ‘OTH’ would have helped improve the performance of the latter classifier, and 
subsequently the overall performance of the ensemble model.

5 Conclusion 

This paper presents the description of the systems we developed
subtask A and C, we have developed ensembles of models using DistilBERT. In subtask B, our best 
performing model was an ensemble developed using Logistic Regression, LinearSVC, RoBERT, 
XLNet and BERT. We have achieved promisi
competition. Despite the good results we have obtained for subtask B and C using the held
systems could be further improved by 

This newer ensemble model was created after the official deadline for subtask C, and hence we could 
not submit it for the challenge. Yet, after the official, labelled test dataset of subtask C was made 
available at the end of the challenge, we evaluated our system and observed a macro averaged F1

ranked 2nd amongst all submissions for subtask C.  

Ensemble Model Macro averaged F1-Score 
IND + GRP 
IND + GRP + OTH 

0.6351 
0.7064 
 

Table 6: Performance of the ensemble models on the evaluation dataset of subtask C

System F1-Score 
Top system 
Our system 
Baseline  

0.714 
0.623 
0.005 

  
 

Table 7: The results of subtask C in comparison with the competition. 

 
 

Figure 3: Confusion matrices of the two ensemble models for the evaluation dataset of subtask C

As evident from the confusion matrices in Figure 3, both ensemble models perform relatively well 
when identifying ‘IND’ and ‘GRP’ instances, but perform poorly when identifying ‘OTH’ instances. 
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balanced samples having 25,810 and 21,462 data instances respectively, the classifier for ‘OTH’ class 
was trained on a balanced sample having just 4,348 data instances. Having more training data 
examples of class ‘OTH’ would have helped improve the performance of the latter classifier, and 
subsequently the overall performance of the ensemble model. 

This paper presents the description of the systems we developed for SemEval 2020 Task 12. For 
subtask A and C, we have developed ensembles of models using DistilBERT. In subtask B, our best 
performing model was an ensemble developed using Logistic Regression, LinearSVC, RoBERT, 
XLNet and BERT. We have achieved promising results for subtask A relative to other systems in the 
competition. Despite the good results we have obtained for subtask B and C using the held
systems could be further improved by optimizing hyperparameters for subtask B and C and by 
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experimenting with various other features such as personal mentions, named entities etc., particularly 
for machine learning models in subtask 2.  
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