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Abstract

There are several problems in applying gram-
matical error correction (GEC) to a writing
support system. One of them is the han-
dling of sentences in the middle of the input.
Till date, the performance of GEC for incom-
plete sentences is not well-known. Hence,
we analyze the performance of each model
for incomplete sentences. Another problem
is the correction speed. When the speed is
slow, the usability of the system is limited,
and the user experience is degraded. There-
fore, in this study, we also focus on the
non-autoregressive (NAR) model, which is a
widely studied fast decoding method. We per-
form GEC in Japanese with traditional autore-
gressive and recent NAR models and analyze
their accuracy and speed.

1 Introduction

Grammatical error correction (GEC) is a writing
support method for language learners. In recent
years, neural GEC has been actively researched
owing to its ability to produce fluent text. For ex-
ample, in Kiyono et al. (2019), state-of-the-art cor-
rection accuracy was achieved by using a Trans-
former (Vaswani et al., 2017), which is a pow-
erful neural machine translation (NMT) model.
Because the neural model can see the entire se-
quence, it can correct errors with long-range de-
pendencies; these errors cannot be corrected by a
statistical method that uses n-grams.

However, considering the application of GEC in
a writing support system, we must consider how to
handle incomplete sentences. It is easy to present
the GEC result when the user finishes writing a
sentence. However, in case of an incomplete sen-
tence, the user will not know how to fix the sen-
tence while writing it. If the system can perform
GEC correctly for incomplete sentences, the re-
sults can be presented to the user. In most previ-

ous studies, complete sentences have been evalu-
ated, and the performance of GEC for incomplete
sentences has not been researched.

In addition, there is a problem that inference
speed is slow in a conventional autoregressive
(AR) decoder of a sequence-to-sequence model.
Considering the application of GEC in a writing
support system, a slower inference speed would
restrict its utility or lower the usability of the
model. In Gu et al. (2018), a non-autoregressive
(NAR) decoder that speeds up inference time
by outputting all tokens simultaneously was pro-
posed. Following the success of NAR models,
in Gu et al. (2019), Levenshtein Transformer, an
NAR NMT model that iteratively deletes and in-
serts inputs, was proposed. Its usefulness was ver-
ified in machine translation and document summa-
rization tasks.

Moreover, fast GEC methods with sequence
tagging using an NAR model have been proposed.
In Awasthi et al. (2019), GEC was regarded as
a local sequence conversion task, and high-speed
GEC was achieved by using an NAR model that
iteratively adapted editing tags in parallel. In
Omelianchuk et al. (2020), NAR GEC was per-
formed by repetitive tagging of editing operations
on each token of an input sentence, and higher
correction accuracy and faster correction speed
than in previous studies were achieved. However,
these methods exhibited good performance by nar-
rowing down the target language to English and
preparing the editing operations as tags using lan-
guage knowledge in advance.

In this study, we focus on the NAR model as
a method for high-speed GEC. We perform GEC
in Japanese using the NAR model that does not
need to prepare editing operations in advance. We
analyze the proposed method considering its ap-
plication to writing support systems. In particular,
we analyze the relationship between the correction
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accuracy and the inference speed, focusing on in-
complete sentences, and evaluate the impact of hy-
perparameters on NAR models. The contributions
of this study can be summarized as follows.

• We evaluate the performance of NAR and AR
models for incomplete sentences in terms of
accuracy and speed, aiming for the construc-
tion of a writing support system.

• We show that the Levenshtein Transformer
that performs one-time iterative refinements
can achieve fast and stable GEC by reduc-
ing the worst inference time by 6.0 seconds
and the average inference time by 0.3 seconds
compared with the method based on convolu-
tional neural networks (CNNs).

• Using the NAR model for Japanese GEC, we
find that it is better to present the GEC re-
sult when the number of input words is six
or more because the accuracy is significantly
reduced when the number is less than five.

2 Related Work

2.1 AR NMT

AR NMT is a standard decoding method in the
encoder–decoder model (Kalchbrenner and Blun-
som, 2013) for sequence-to-sequence learning.
This method uses a recurrent language model
(Mikolov et al., 2010) during inference.

Given an original sentence, X = {x1,. . ., xT ′},
and an objective sentence, Y = {y1, . . . , yT }, an
AR NMT model calculates the target sentence as

p(Y |X; θ) =

T+1∏
t=1

p(yt|y0:t−1, x1:T ′ ; θ), (1)

where y0 and yT+1 are special tokens represent-
ing the beginning and end of the sentence, respec-
tively, and θ is the model’s parameter.

2.2 NAR NMT

NAR NMT (Gu et al., 2018) is a decoding method
that generates each token independently and si-
multaneously. This method is attracting attention
as a method to increase the speed of decoding.

In Gu et al. (2018), the concept of fertility,
which predicts how many words on the target side
correspond to each word in the source side, was in-
troduced. The decoding is performed as follows:

p(Y |X; θ) =
∑

f1,...,fT ′∈F

(
T ′∏
t′=1

pF (ft′ |x1:T ′ ; θ)·

T∏
t=1

p(yt|x1{f1}, . . . , xT ′{fT ′}; θ)

)
,

(2)

where F is the set of all fertility sequences that
sum into the length of Y , and x{f} represents to-
ken x repeated f times. As described earlier, it is
necessary to predict the target sentence length in
the NAR decoding method.

Furthermore, NAR NMT involves a problem
named the multimodality problem (Gu et al.,
2018). This problem causes errors (such as to-
ken repetitions and a lack of tokens) and signifi-
cantly deteriorates accuracy compared with an AR
decoder. To solve this problem, in recent stud-
ies, iteratively refining the output (Lee et al., 2018;
Gu et al., 2019) and partially autoregressively out-
putting the sentence divided into segments (Ran
et al., 2020) have been proposed. Knowledge
distillation (KD) (Kim and Rush, 2016) is also
used to address this problem (Zhou et al., 2020).
The output of the AR model is known to mitigate
multimodality problems because diversity is sup-
pressed such that the model can be easily learned
(Ren et al., 2020).

2.3 Levenshtein Transformer

Levenshtein Transformer (Gu et al., 2019) is one
of the most recent NAR NMT models1 that intro-
duces a workaround for the aforementioned mul-
timodality problems. In Gu et al. (2019), the use-
fulness of the Levenshtein Transformer in machine
translation and summarization tasks was verified;
however, its usefulness in GEC has not been veri-
fied yet.

This model has a Transformer (Vaswani et al.,
2017) block (T-block) as a primary component,
and the original text is given to each T-block. First,
the states coming from the lth T-block are as fol-

1In the original paper, it is called a “partially autoregres-
sive model”; however, in this paper, we call it an NAR model
because it is a model that outputs all tokens simultaneously
when decoding.
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lows:

h
(l+1)
0 ,h

(l+1)
1 , . . . ,h(l+1)

n ={
Ey0 + P0, Ey1 + P1, . . . , Eyn + Pn, l = 0

T-blockl
(
h
(l)
0 ,h

(l)
1 , . . . ,h

(l)
n

)
, l > 0

(3)

where E and P are token and position em-
beddings, respectively; y0 and yn are bound-
ary tokens representing the start and end, re-
spectively. Next, we use these decoder outputs,
(h0,h1, . . . ,hn), to classify deletions, placehold-
ers, and tokens. The deletion classifier uses
softmax

(
hi ·A⊤) , (i = 1, . . . n − 1) to perform

binary classification of “deleted” or “kept” for to-
kens other than boundary tokens. Next, it deletes
corresponding tokens. The placeholder classi-
fier uses softmax

(
concat (hi,hi+1) ·B⊤) , (i =

0, . . . n − 1) to classify how many placehold-
ers to insert from 0 to Kmax at every consec-
utive position pair. Subsequently, it inserts the
corresponding number of special tokens <PLH>,
where Kmax is the maximum number of tokens
that can be inserted at one time in one place,
and we set it to 255. The token classifier uses
softmax

(
hi · C⊤) , (∀yi = <PLH>) to classify

and replace all special tokens <PLH> into words
that are elements of vocabulary V . Here, A, B,
and C are matrices for linearly transforming the
number of dimensions of a state or a combination
of two states into the number of classes.

2.4 GEC

GEC is a task to correct errors, such as punctua-
tion, grammar, and word selection errors. Various
methods have been studied for this task. In recent
years, owing to the development of NMT, GEC is
often interpreted as a machine translation task. Al-
most all studies using the BEA Shared Task-2019
datasets (Bryant et al., 2019) used Transformer-
based models (Omelianchuk et al., 2020; Kiyono
et al., 2019; Kaneko et al., 2020; Grundkiewicz
et al., 2019; Choe et al., 2019; Li et al., 2019). For
example, in Li et al. (2019), a system that com-
bined a CNN-based model with a Transformer-
based model was used, and the method in Chol-
lampatt and Ng (2018) was adopted as the CNN
architecture.

The following are previous studies on high-
speed GEC using an NAR model. In Awasthi et al.
(2019), GEC was regarded as a local sequence

Figure 1: Schematic diagram of a writing support sys-
tem.

conversion task, and it was rapidly solved by using
a parallel iterative editing model. In Omelianchuk
et al. (2020), the same task was solved by iterative
sequence tagging. However, both methods applied
linguistic knowledge prepared in advance (such as
suffix conversion rules and verb conjugation dic-
tionaries). Thus, it is not easy to apply them to an-
other language. In this study, we propose a method
that uses only a training corpus.

3 Proposed Method

This study aims to analyze the effectiveness of an
NAR model for Japanese GEC in terms of accu-
racy and speed, assuming that NAR is used as a
back-end of a writing support system.

3.1 Writing Support System

In this section, we explain the workflow of a writ-
ing support system. Figure 1 shows a schematic
diagram of the system, which consists of a front-
end with a text input field and a back-end with
a GEC system, and it works as follows. (1) The
user inputs or deletes the text in the input field2.
(2) The front-end detects the change; (3) it sends
the changed sentence to the back-end. (4) The
back-end performs GEC; (5) it sends the correc-
tion to the front-end. (6) The front-end checks for
changes; (a) it suggests changes to the user if there
are changes; (b) otherwise, it does nothing.

3.2 Challenges for the System

In this section, we consider the system input ((1)
and (2)) and response time ((2) to (6a)).

System Input We consider two problems with
input from users of the system.

The first is how to process a sentence in the mid-
dle of input. When the user finishes writing a sen-
tence (in other words, when the user enters a line),

2For simplicity, we assume that the user enters one sen-
tence per line. In other words, line breaks divide the sen-
tences.
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the GEC result of the sentence should be presented
to the user. However, it is unclear how to deal with
an incomplete sentence. This is because the back-
end system may not perform accurate GEC owing
to its incompleteness or shortness. Thus, we pro-
pose the following hypothesis: if the incomplete
sentence is short, the correction accuracy deteri-
orates; however, if it is long, the correction accu-
racy approaches that of the complete sentence. We
verify this hypothesis in Subsection 4.2.

The second is the problem of the Japanese in-
put method. In Japanese, unlike English, user in-
puts are processed through a kana–kanji conver-
sion system3. In other words, when the front-end
is receiving the text through the kana–kanji con-
version, it is not evident in what unit (character,
word, phrase, or whole sentence) the errors can be
appropriately detected4. In this study, we assume
that users are intermediate Japanese learners and
treat the input string as words.

Response Time The processing speed from (2)
to (6a) in the system flow dominates the response
time of the system, which affects the user experi-
ence. It is known that not only is responsiveness
required, but also users prefer a system with con-
stant response speed over a system with variable
response speed (Shneiderman, 1979). We analyze
the processing time of GEC in Subsection 4.3.

4 Experiment

4.1 Experimental Settings

Dataset We use data from the Lang-8 learner
corpus (Mizumoto et al., 2011). We use the
TMU Evaluation Corpus for Japanese Learners
(Koyama et al., 2020) for the validation and test
sets5. All data, including the training set, are pre-
processed as in Koyama et al. (2020). Table 1
presents the number of sentences in the data. We
use the same training set in our experiments with
both complete and incomplete sentences.

To evaluate the performance of GEC for incom-
plete sentences, we segment the test data to the
word level and then create incomplete sentences

3The kana–kanji conversion system translates the input
hiragana (the Japanese cursive syllabary) into kanji (Chinese
characters) when necessary.

4The appropriate unit may change depending on the user’s
language learning level and Japanese input ability level.

5These data are less noisy than the corrected sentences
included initially in the Lang-8 learner corpus and have mul-
tiple references to all sentences, which is considered useful
for evaluation.

# of sentences # of corrections

Train 1,093,633 1
Validation 806 2
Test 663 3

Table 1: Dataset statistics. The number of correc-
tions denotes the number of reference sentences for one
learner’s sentence.

by increasing the number of words from the begin-
ning. For example, 10 sentences are created from a
10-word sentence. Next, based on the word align-
ment between the source and target sentences, we
create parallel sentences for incomplete sentences.
Consequently, 9,710 sentence pairs are created.
We use these data to evaluate the performance of
GEC for incomplete sentences.

Tokenization We tokenize data in all models as
follows. First, we segment data into morpheme
units using MeCab6 (Ver. 0.996) using the Uni-
Dic7 (Ver. 2.2.0) as a dictionary. Next, we divide
the morpheme units into subword units by apply-
ing the byte pair encoding (Sennrich et al., 2016)
model for dealing with rare words. We apply char-
acter normalization (compatibility decomposition,
followed by canonical composition) and share vo-
cabulary between source and target sides.8 The
vocabulary size was set to 30,000 words. We use
sentencepiece9 for implementation.

NAR Model In this study, we apply the Leven-
shtein Transformer (Gu et al., 2019), which is a
Transformer-based NAR neural model, to GEC.
We update the model 300,000 times with a batch
size of 64,000 tokens and select the model with
the highest GLEU score (Napoles et al., 2016) for
the validation set. Other hyperparameters are the
same as in Gu et al. (2019). We use publicly avail-
able PyTorch-based code10 for implementation. In
this paper, this model is called the LevT model.

The maximum number of iterative refinements
was set to nine in a previous study (Gu et al.,

6https://taku910.github.io/mecab/
7https://unidic.ninjal.ac.jp/
8As a preliminary experiment, the source side was set to

the character unit, and the target side was set to the subword
unit; however, the GLEU score (Napoles et al., 2016) was
slightly decreased; therefore, we decided to tokenize both
sides in the subword units.

9https://github.com/google/sentencepiece
10https://github.com/pytorch/fairseq/tree/master/

examples/nonautoregressive translation
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2019). However, it is unclear whether it is the
correct value for GEC because GEC is a local se-
quence conversion task in which almost all the
source words remain in the target side. Therefore,
we also evaluate the performance when the maxi-
mum iterative refinement number is changed.

Training data are obtained by replacing the cor-
rected sentences with the output of an AR model.
We use it to train a KD model (Zhou et al., 2020)
of LevT. The hyperparameters are the same as for
the LevT model, and the model described in the
next paragraph is used for the AR model. In this
paper, this model is called the LevT+KD model.

AR Model Because we focus on speeding up
GEC, we adopt the CNN-based model (Chol-
lampatt and Ng, 2018), which is faster than the
Transformer-based model as the AR baseline. Un-
like Chollampatt and Ng (2018), the output is not
reranked to match the conditions with the LevT
model. Other hyperparameters are the same as
in Chollampatt and Ng (2018). We use publicly
available PyTorch-based code11 for implementa-
tion. In this paper, this model is called the CNN
model.

Correction Evaluation We use the GLEU score
(Napoles et al., 2016) and the F0.5 score, which
weighs the precision as twice the recall, as eval-
uation metrics for the correction accuracy of
GEC. We map words automatically using the ER-
RANT12 to calculate F0.5. However, because the
ERRANT is designed for English, we cannot use it
directly; instead, we specify the Levenshtein dis-
tance in the distance function that calculates the
edit distance without using linguistic information.
Furthermore, we measure the F0.5 score in terms
of the word-wise agreement.

Inference Speed Evaluation We measure the
inference speed with the following settings. We
use the Intel ® Xeon ® processor E5-2660 without
GPUs. To measure the performance in a realistic
setting, we set the batch size to one sentence. We
measure time using the built-in time module in
Python. Specifically, the inference speed of one
sentence is calculated as the change in the system
clock from the input of the sentence before tok-
enization to the output of the GEC result.

Model GLEU Prec. Rec. F0.5

CNN 73.3 0.159 0.225 0.169
LevT 72.1 0.102 0.185 0.112

LevT+KD 75.2 0.213 0.217 0.214

Table 2: Correction accuracy of each model for com-
plete sentences from the test set. “Prec.” and “Rec.”
represent precision and recall, respectively.

Model M (242) R (441) U (124)

CNN 33 73 32
LevT 22 54 5

LevT+KD 33 79 20

Table 3: Number of errors, according to category, that
each model modified correctly on the test set. “M,”
“R,” and “U” represent missing, replacement, and un-
necessary errors, respectively. Each number in paren-
theses represents the maximum error frequency13.

4.2 Correction Accuracy

To confirm GEC’s effectiveness on complete sen-
tences, we evaluate each model using the test set.

Table 2 lists the results. Both GLEU and F0.5

scores of LevT without KD are worse than those of
CNN, but LevT+KD’s score exceeds CNN’s score.
In terms of the recall and precision of LevT and
LevT+KD, both are improved by KD, and the pre-
cision is significantly increased. Therefore, KD
dramatically improves the precision in GEC.

For a more detailed analysis of the effect of KD,
the number of categorical errors that the model
correctly changed is presented in Table 3. Com-
paring LevT and LevT+KD, it can be seen that the
number of corrections for all types of errors has in-
creased owing to KD. In particular, the correction
accuracy for “unnecessary” errors has increased.
We believe that this is because LevT+KD can in-
herit the correction accuracy for the “unnecessary”
errors of the CNN by KD.

LevT+KD has a correction accuracy compara-
ble to that of the CNN. As KD’s effectiveness in
the NAR model for GEC is confirmed, we focus
only on LevT+KD for the NAR model in the sub-
sequent experiments.

11https://github.com/nusnlp/mlconvgec2018
12https://github.com/chrisjbryant/errant
13The maximum number of corrections made by each of

the three annotators is shown. The smallest ones are 210,
428, and 103.
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Figure 2: Accuracy of LevT+KD model for the max-
imum number of iterative refinements. The solid red,
dotted black, dash-dotted, and broken blue-black lines
represent the GLEU score, precision, recall, and F0.5

score, respectively.

Model GLEU Prec. Rec. F0.5

CNN 74.6 0.100 0.199 0.111
LevT+KD 76.9 0.125 0.184 0.133

Table 4: Correction accuracy of each model for incom-
plete sentences.

Number of Iterative Refinements Unlike in the
machine translation task (which was mainly ad-
dressed in the previous studies on NAR models),
it seems that the necessary number of iterative re-
finements is reduced in the GEC task because the
input and the output are close. Therefore, we eval-
uate the change in performance because of the
number of iterative refinements in the LevT+KD
model.

Figure 2 shows the result of the GLEU and F0.5

scores for the best epoch selected in the validation
set. We can see that after the first iteration, the
GLEU score does not change significantly with the
maximum number of iterative refinements, and it
is almost optimal when the number is three. Fur-
thermore, similar to the GLEU score, we can see
that the change in the F0.5 score after the first it-
eration is small. Moreover, when the number of
iterations is more than one, the score degrades
with a decrease in precision. When the maximum
number of iterations is one, the score becomes the
maximum. Therefore, there is little need to in-
crease the maximum number of iterative refine-
ments of LevT+KD in GEC. One to three itera-
tions are sufficient.

Accuracy for Incomplete Sentences Table 4
shows each model’s overall correction accuracy
for incomplete sentences. Compared with Table 2,

it can be seen that the overall tendency is the same:
LevT+KD has a high GLEU score and a high pre-
cision, whereas CNN has a high recall. Further-
more, in both models, the GLEU score improves
slightly, and the F0.5 score deteriorates for incom-
plete sentences. Overall, the GEC model trained
only on complete sentences is useful to some ex-
tent, even for incomplete sentences.

Figure 3 shows each model’s correction accu-
racy per sentence length. Comparing the incom-
plete sentences (b) with the complete sentences
(a), we can see that the accuracy is considerably
reduced when the sentence length is extremely
short in both models. When presenting the GEC
result for incomplete sentences, it is considered
appropriate not to show it when the input sentence
length is short. In addition, the correction accu-
racy for the complete sentences fluctuates substan-
tially in the range of 31–50 words in both models.
This might be attributed to the lack of test sen-
tences.

4.3 Inference Speed

Figure 4 shows the inference speed of test data
containing 9,710 incomplete sentences for each
model. The average inference times are 0.49, 0.24,
and 0.19 seconds for CNN, LevT+KD with the
maximum number of iterations set as nine, and
LevT+KD with the maximum iterations set as one,
respectively. According to our results, the variance
of the inference time of LevT+KD is significantly
suppressed compared with that of CNN, and the
average time is also significantly lower than that
of CNN. The variance and average can be further
suppressed by reducing the maximum number of
iterations. Excluding the outliers, CNN also fits
in approximately one second. However, the corre-
spondence between the inference speeds of each
model does not change, and LevT+KD is faster
than CNN. Here, most sentences with outliers are
long sentences created from sentences whose orig-
inal length is 100 words or more, and we believe
that the lengthy sentences are the leading cause of
the increase in inference time.

Figure 5 depicts the inference speed for each
sentence length of each model. Focusing on the
linear approximation, we find that CNN is faster
than each LevT+KD when the sentence length is
extremely short (one to four words). We assume
that this is because the Levenshtein Transformer
executes three types of operations: delete, insert a
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(a) For complete sentences. (b) For incomplete sentences.14

Figure 3: Correction accuracy per sentence length breakdown for complete and incomplete sentences. The solid,
dotted, and straight dash-dotted green lines represent the F0.5 scores of LevT+KD and CNN, and CNN’s overall
F0.5 score, respectively. The step-form graph represents the number of sentences.

Figure 4: Inference speed of each model. The number
in parentheses in the model name represents the maxi-
mum number of iterations. The graph on the left does
not consider outliers, and the graph on the right shows
outliers as “+” in the range where the whiskers length
exceeds 1.5 times the interquartile range.

placeholder, and replace it with a token in one it-
erative refinement, thereby having more overhead
than the CNN model does. However, the results
show that each LevT+KD model is faster than
CNN when the sentence length is five words or
more.

Here, we analyze the effect of sentence length
on incomplete sentences in terms of both correc-
tion accuracy and speed. As shown in Figure 3b,
when CNN’s overall F0.5 score for the incomplete
sentence is used as the minimum criterion, the
LevT+KD model’s scores with five or fewer words

14Note that the performance is stable because more sen-
tences are used to evaluate the GEC model than complete
sentences.

Figure 5: Inference speed of each model per sentence
length breakdown. Each straight line represents a lin-
ear approximation, and the number in parentheses in
the model name represents the maximum number of it-
erations.

are below the standard. Furthermore, Figure 5
shows that LevT+KD is consistently faster than
CNN after six words or more. In other words, by
using the LevT+KD model and performing GEC
when six or more words are input, it is possible to
present the correction results at high speed while
maintaining a certain degree of correction accu-
racy15.

4.4 Case Study

We show examples of system output in Table 5.
In (1), a sentence in which “ですか? desuka?”

15Sentences of five or fewer words account for approxi-
mately 32.7% of the incomplete sentences used in this experi-
ment. Furthermore, in reality, considering that long sentences
are corrected many times, it is believed that the rate of short
sentences of fewer than five words is even lower.
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(1)

Learner’s sentence これはほんとに大切だか?
CNN これはほんとに大切なの?
LevT+KD これはほんとに大切ですか?
Corrected sentence これはほんとに大切だろうか? “Is this really important?”

(2)

Learner’s sentence かわいいくて、安い、素敵な生地です。
CNN かわいいて、安い、素敵な生地です。
LevT+KD かわいて、安い、素敵な生地です。
Corrected sentence かわいくて、安い、素敵な生地です。 “It’s a cute, cheap and lovely fabric.”

Table 5: Output examples for each model. Grammatical errors are underlined. Boldface represents where the
model has changed the text. Double quotes represent the meaning of the sentence.

Input: learner’s sentence きのよるはたくやきパーチイーいます。

insert17(0) きのう よる は たくさん パーティー パーティー し ます 。
delete (1) きのう よる は たくさん パーティー パーティー し ます 。
insert (1) きのう よる は たくさん やき パーティー を し ます 。
delete (2) きのう よる は たくさん やき パーティー を し ます 。
insert (2) きのう の よる は たくさん やき パーティー を し ます 。

kinou no yoru wa takusan yaki paatii paatii wo shi masu

System output sentence きのうのよるはたくさんやきパーティーをします。
“I have a lot of bake party last night.”

Corrected sentence きのうのよるはたこやきパーティーにいました。
“I was at a Takoyaki party last night.”

Table 6: Example of iterative refinements. The number of iterations is written in parentheses. Grammatical errors
are underlined. Boldface represents the inserted word, and strikethrough represents the deleted word. Italics
represent the Japanese pronunciations of each word, and double quotes represent the meaning of the sentence.

is mistaken for “だか? daka?”16 is input. The
correction differs depending on the model, but the
outputs of both models are grammatically correct.
In (2), a sentence in which “かわいく kawaiku,”
which is a conjunctive form of “かわいい kawaii”
(cute), is mistaken for “かわいいく kawaiiku” is
input. Both models changed the error part, but
both outputs are grammatically incorrect. We be-
lieve that the reason for this is that there are few
similar error examples in the training set. In the
training set, there are 172 errors of “だか? daka?,”
whereas only two errors of “かわいいくて kawai-
ikute.” We assume that the performance of the
sequence-to-sequence GEC method is limited by
the number of similar errors in the training set.

Table 6 presents an example of iterative refine-
ments in LevT+KD. In the first insertion phase,
a missing token error and repeated token errors
have occurred. The repeated token, “パーティー
paatii” (party), is deleted in the next deletion, and
in the next insertion phase, the missing tokens,

16The Japanese question marker particle, “か ka,” cannot
be added at the end of a sentence in the plain-style sentence.

17insert shows the result of both inserting the place-
holder and replacing it with the actual token. In addition,
because it starts with an empty string, there is no delete in
the first iteration.

“やき yaki” (bake) and “を wo” (accusative case
marker), are inserted to the left and right of “パー
ティー paatii,” recovering from the multimodality
problem. However, erroneous parts remain: “たく
やき takuyaki,” which is a misspelling of “たこや
き takoyaki” (octopus dumplings), is mistakenly
corrected as “たくさんやき takusan yaki.” More-
over, “ます masu” (politeness marker), which
should be corrected to the past form corresponding
to “きのう kinou” (yesterday), is not corrected.

5 Conclusion

In this study, we investigated the applicability of
the NAR model, which has a constant inference
speed, to Japanese GEC toward constructing a
writing support system. The experiments showed
that the NAR model can obtain a correction ac-
curacy that is equal to or better than that of the
AR multilayer convolutional neural model. Fur-
thermore, we demonstrated that the GEC model
trained on complete sentences can also be applied
to incomplete sentences. However, we found that
when the number of input words is small, the cor-
rection accuracy is significantly lower than that
of the complete sentence. Therefore, the system
should defer presenting correction results for short
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sentences. We also showed that the worst infer-
ence time could be reduced by approximately 6.0
seconds, and the average inference time could be
reduced by approximately 0.3 seconds in the NAR
model that performs one-time iterative refinement
compared with the AR model.

Future work includes an extrinsic evaluation of
the GEC system integrated into a writing support
system. Moreover, we plan to investigate a large-
scale pretrained model to improve GEC’s perfor-
mance.
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