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Abstract

Watching instructional videos are often used
to learn about procedures. Video caption-
ing is one way of automatically collecting
such knowledge. However, it provides only
an indirect, overall evaluation of multimodal
models with no finer-grained quantitative mea-
sure of what they have learned. We pro-
pose instead, a benchmark of structured pro-
cedural knowledge extracted from cooking
videos. This work is complementary to exist-
ing tasks, but requires models to produce in-
terpretable structured knowledge in the form
of verb-argument tuples. Our manually anno-
tated open-vocabulary resource includes 356
instructional cooking videos and 15,523 video
clip/sentence-level annotations. Our analy-
sis shows that the proposed task is challeng-
ing and standard modeling approaches like un-
supervised segmentation, semantic role label-
ing, and visual action detection perform poorly
when forced to predict every action of a proce-
dure in structured form.

1 Introduction

Instructional videos are a convenient way to learn
a new skill. Although learning from video seems
natural to humans, it requires identifying and un-
derstanding procedures and grounding them to
the real world. In this paper, we propose a new
task and dataset for extracting procedural knowl-
edge into a fine-grained structured representation
from multimodal information contained in a large-
scale archive of open-vocabulary narrative videos
with noisy transcripts. While there is a significant
amount of related work (summarized in §3 & 7), to
our knowledge there is no dataset similar in scope,
with previous attempts focusing only on a single

∗ Work done at Microsoft Research Asia. Data
and code: https://github.com/frankxu2004/
cooking-procedural-extraction. Full version:
https://arxiv.org/abs/2005.00706

Video V for Task R: Making Clam Chowder 

ID Transcript T

1
i have my big giant tamali pot that i 'm going to use today for mike lamb, 
chop suet clam shop is with my daughters used to call clam chowder 
when they were little.

2
so clam shop soup, and i got all my ingredients here and then i 'll give 
you exact measurements on my site.

3 and i 'm going to start with a cast iron skillet.

4
i 'm heating it up with a medium, medium high flame, and i 'm going to 
put some bacon in there and fry it up.

5 and this is not a diet recipe.
6 sorry they making clam chowder.

7 an eye you can see the photo montage before this what i did cool.

8 somehow i fried some bacon.

9
if i remove the bacon after was nice and chris then i added some 
chopped or diced, celery and onions and then i added a stick of butter.

10 i set a stick of butter, and i 'm going to add a quarter cup of cornstarch.

heat

cast iron 
skillet

bacon

fry

bacon

remove

skillet diced 
celery

add

onions

stick of 
butter

quarter cup 
of cornstarch

add

with heated 
skillet

𝑝1 𝑝2

Key clip:𝑣9(𝑡9)

Key clip:𝑣10(𝑡10)

𝑝3 𝑝4

𝑝5

Verb

Argument

add quarter cup of 
cornstarch

Structured Procedural 
Knowledge S

Key clip:𝑣4(𝑡4)
heat cast iron skillet; 
fry bacon on heated skillet 

remove bacon from skillet; 
add diced celery, onions, 
and stick of butter

Key Clips &
Utterances

Figure 1: An example of extracting procedures for task
“Making Clam Chowder”.

modality (e.g., text only (Kiddon et al., 2015) or
video only (Zhukov et al., 2019; Alayrac et al.,
2016)), using closed-domain taxonomies (Tang
et al., 2019), or lacking structure in the procedural
representation (Zhou et al., 2018a).

In our task, given a narrative video, say a cook-
ing video on YouTube about making clam chowder
as shown in Figure 1, our goal is to extract a series
of tuples representing the procedure, e.g. (heat, cast
iron skillet), (fry, bacon, with heated skillet), etc.
We created a manually annotated, large test dataset
for evaluation of the task, including over 350 in-
structional cooking videos along with over 15,000
English sentences in the transcripts spanning over
89 recipe types. This verb-argument structure us-
ing arbitrary textual phrases is motivated by open
information extraction (Schmitz et al., 2012; Fader
et al., 2011), but focuses on procedures rather than
entity-entity relations.

This task is challenging with respect to both
video and language understanding. For video, it re-
quires understanding of video contents, with a spe-

https://github.com/frankxu2004/cooking-procedural-extraction
https://github.com/frankxu2004/cooking-procedural-extraction
https://arxiv.org/abs/2005.00706
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cial focus on actions and procedures. For language,
it requires understanding of oral narratives, includ-
ing understanding of predicate-argument structure
and coreference. In many cases it is necessary for
both modalities to work together, such as when
resolving null arguments necessitates the use of
objects or actions detected from video contents
in addition to transcripts. For example, the cook-
ing video host may say “just a pinch of salt in”,
while adding some salt into a boiling pot of soup,
in which case inferring the action “add” and its
argument “pot” requires visual understanding.

Along with the novel task and dataset, we pro-
pose several baseline approaches that extract struc-
ture in a pipelined fashion. These methods first
identify key clips/sentences using video and tran-
script information with unsupervised and super-
vised multimodal methods, then extract procedure
tuples from the utterances and/or video of these key
clips. On the utterances side, we utilize an existing
state-of-the-art semantic role labeling model (Shi
and Lin, 2019), with the intuition that semantic role
labeling captures the verb-argument structures of a
sentence, which would be directly related to proce-
dures and actions. On the video side, similarly, we
utilize existing state-of-the-art video action/object
recognition model trained in kitchen settings to fur-
ther augment utterance-only extraction results. The
results are far from perfect, demonstrating that the
proposed task is challenging and that structuring
procedures requires more than just state-of-the-art
semantic parsing or video action recognition.

2 Problem Definition

We show a concrete example of our procedural
knowledge extraction task in Figure 1. Our ulti-
mate goal is to automatically map unstructured
instructional video (clip and utterances) to struc-
tured procedures, defining what actions should be
performed on which objects, with what arguments
and in what order. We define the input to such an
extraction system:

• Task R, e.g. “Create Chicken Parmesan” and
instructional video VR describing the procedure
to achieve task R, e.g. a video titled “Chicken
Parmesan - Let’s Cook with ModernMom”.1

• A sequence of n sentences TR = {t0, t1, ..., tn}
representing video VR’s corresponding tran-
script. According to the time stamps of the

1https://www.youtube.com/watch?v=
nWGpCmDlNU4

Ours AR YC2 CT COIN How2 HAKE TACOS

General domain? X X X X
Multimodal input? X X X X
Use transcript? X X
Use noisy text? X X
Open extraction? X X
Structured format? X X X X X

Table 1: Comparison to current datasets.

transcript sentences, the video is also segmented
into n clips VR = {v0, v1, ..., vn} accordingly
to align with the sentences in the transcript TR.

The output will be:

• A sequence of m procedure tuples SR =
{s0, s1, ..., sm} describing the key steps to
achieve task R according to instructional video
VR.
• An identified list of key video clips and corre-

sponding sentences V ′R ⊆ VR, to which proce-
dures in SR are grounded.

Each procedural tuple sj = (verb, arg1, ..., argk) ∈
SR consists of a verb phrase and its arguments.
Only the “verb” field is required, and thus the tuple
size ranges from 1 to k+1. All fields can be either
a word or a phrase.

Not every clip/sentence describes procedures,
as most videos include an intro, an outro, non-
procedural narration, or off-topic chit-chat. Key
clips V ′R are clips associated with one or more pro-
cedures in PR, with some clips/sentences associ-
ated with multiple procedure tuples. Conversely,
each procedure tuple will be associated with only a
single clip/sentence.

3 Dataset & Analysis

While others have created related datasets, they
fall short on key dimensions which we rem-
edy in our work. Specifically, In Table 1 we
compare to AllRecipes (Kiddon et al., 2015)
(AR), YouCook2 (Zhou et al., 2018b) (YC2),
CrossTask (Zhukov et al., 2019) (CT), COIN (Tang
et al., 2019), How2 (Sanabria et al., 2018),
HAKE (Li et al., 2019) and TACOS (Regneri et al.,
2013). Additional details about datasets are in-
cluded in the Appendix A.2 In summary, none
have both structured and open extraction anno-
tations for the procedural knowledge extraction
task, since most focus on either video summariza-
tion/captioning or action localization/classification.

2A common dataset we do not include here is HowTo100M
(Miech et al., 2019) as it does not contain any annotations.

https://www.youtube.com/watch?v=nWGpCmDlNU4
https://www.youtube.com/watch?v=nWGpCmDlNU4
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Figure 2: Annotation interface.

Verbs Arguments
Total # 4004 6070
Average # per key clip 1.12 1.70
Average #words 1.07 1.43
% directly from transcript 69.8 75.0
% coreference (pronouns) N/A 14.4
% ellipsis 30.2 10.6

Table 2: Statistics of annotated verbs and arguments in
procedures.

3.1 Dataset Creation

To address the limitations of existing datasets, we
created our own evaluation dataset by annotating
structured procedure knowledge given the video
and transcript. Native English-speakers annotated
four videos per recipe type (e.g. clam chowder,
pizza margherita, etc.) in the YouCook2 dataset
into the structured form presented in §2 (totaling
356 videos). Annotators selected key clips as im-
portant steps and extracted corresponding fields to
fill in verbs and arguments. Filling in the fields
with the original tokens was preferred but not re-
quired (e.g., in cases of coreference and ellipsis).
The result is a series of video clips labeled with
procedural structured knowledge as a sequence of
steps sj and series of short sentences describing
the procedure.

Figure 2 shows the user interface of annotation
tool. The process is divided into 3 questions per
clip: Q1: Determine if the video clip is a key step
if: (1) the clip or transcript contains at least one
action; (2) the action is required for accomplish-
ing the task (i.e. not a self introduction); and (3)
for if a clip duplicates a previous key clip, choose
the one with clearer visual and textual signals (e.g.
without coreference, etc.). Q2: For each key video
clip, annotate the key procedural tuples. We have
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Figure 3: Most frequent verbs (upper) and arguments
(lower).

annotators indicate which actions are both seen and
mentioned by the instructor in the video. The ac-
tions should correspond to a verb and its arguments
from the original transcript except in the case of
ellipsis or coreference where they have to refer to
earlier phrases based on the visual scene. Q3: Con-
struct a short fluent sentence from the annotated
tuples for the given video clip.

We have two expert annotators and a profes-
sional labeling supervisor for quality control and
deciding the final annotations. To improve the data
quality, the supervisor reviewed all labeling results,
and applied several heuristic rules to find anoma-
lous records for further correction. The heuristic
is to check the annotated verb/arguments that are
not found in corresponding transcript text. Among
these anomalies, the supervisor checks the conflicts
between the two annotators. 25% of all annotations
were modified as a result. On average annotators
completed task Q1 at 240 sentences (clips) per hour
and task Q2 and Q3 combined at 40 sentences per
hour. For Q1, we observe an inter-annotator agree-
ment with Cohen’s Kappa of 0.83.3 Examples are
shown in Table 3.

3.2 Dataset Analysis
Overall, the dataset contains 356 videos with
15,523 video clips/sentences, among which 3,569
clips are labeled as key steps. Sentences average
16.3 tokens, and the language style is oral English.
For structured procedural annotations, there are 347
unique verbs and 1,237 unique objects in all. Statis-
tics are shown in Table 2. Figure 3 lists the most
commonly appearing verbs and entities. The action
add is most frequently performed, and the entities
salt and onions are the most popular ingredients.

3We use the Jaccard ratio between the annotated tokens of
two annotators for Q2’s agreement. Verb annotations have a
higher agreement at 0.77 than that of arguments at 0.72.
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Transcript sentence Procedure summary Verb Arguments
so we’ve placed the dough directly into the
caputo flour that we import from italy.

place dough in caputo flour place dough caputo flour

we just give (ellipsis) a squish with our palm
and make it flat in the center.

squish dough with palm squish dough with palm
flatten center of dough flatten center of dough

so will have to rotate it every thirty to forty
five seconds ...

rotate pizza every 30-45 seconds rotate pizza every 30-45 sec-
onds

Table 3: Annotations of structured procedures and summaries. Coreference and ellipsis are marked with italics and
are resolved into referred phrases also linked back in the annotations. See Appendix (Table 6) for more examples.

You are good to go, 
thanks for watching!

𝑣𝑛

𝑡𝑛

Put some bacon in 
there and fry it up …

𝑣2

𝑡2

Hello everyone, 
today i am going to ...

𝑣1

𝑡1

...

Key Clip 
Prediction

Is key clip?
If yes:

Input

Procedural 
Knowledge 
Extraction

𝑣2 𝑡2 <put, bacon, …>

𝑣2 𝑡2 <fry, bacon, …>

𝑣𝑚 𝑡𝑚 <remove, bacon, …>

...

Stage 1

Output

Stage 2
Extract tuples 
from key clips

Figure 4: Extraction pipeline.

In nearly 30% of annotations, some verbs and ar-
guments cannot be directly found in the transcript.
An example is “(add) some salt into the pot”, and
we refer to this variety of absence as ellipsis. Ar-
guments not mentioned explicitly are mainly due
to (1) pronoun references, e.g. “put it (fish) in the
pan”; (2) ellipsis, where the arguments are absent
from the oral language, e.g. “put the mixture inside”
where the argument “oven” is omitted. The details
can be found in Table 2. The coreferences and
ellipsis phenomena add difficulty to our task, and
indicate the utility of using multimodal information
from the video signal and contextual procedural
knowledge for inference.

4 Extraction Stage 1: Key Clip Selection

In this and the following section, we describe our
two-step pipeline for procedural knowledge ex-
traction (also in Figure 4). This section describes
the first stage of determining which clips are “key
clips” that contribute to the description of the pro-
cedure. We describe several key clip selection mod-
els, which consume the transcript and/or the video
within the clip and decide whether it is a key clip.

4.1 Parsing-Based Heuristic Baselines

Given our unsupervised setting, we first examine
two heuristic parsing-based methods that focus on
the transcript only, one based on semantic role la-
beling (SRL) and the other based on an unsuper-
vised segmentation model Kiddon et al. (2015).

Before introducing heuristic baselines, we note
that having a lexicon of domain-specific actions
will be useful, e.g., for filtering pretrained model
outputs, or providing priors to the unsupervised
model described later. In our cooking domain,
these actions can be expected to consist mostly
of verbs related to cooking actions and procedures.
Observing recipe datasets such as AllRecipes (Kid-
don et al., 2015) or WikiHow (Miech et al., 2019;
Zhukov et al., 2019), we find that they usually use
imperative and concise sentences for procedures
and the first word is usually the action verb like

“add”, e.g., add some salt into the pot. We thus
construct a cooking lexicon by aggregating the fre-
quently appearing verbs as the first word from All-
Recipes, with frequency over a threshold of 5. We
further filter out words that have no verb synsets
in WordNet (Miller, 1995). Finally we manually
filter out noisy or too general verbs like “go”. Note
that when applying to other domains, the lexicon
can be built following a similar process of first
finding a domain-specific corpus with simple and
formal instructions, and then obtaining the lexicon
by aggregation and filtering.
Semantic role labeling baselines. One intuitive
trigger in the transcript for deciding whether the
sentence is a key step should be the action words,
i.e. the verbs. In order to identify these action
words we use semantic role labeling (Gildea and
Jurafsky, 2002), which analyzes natural language
sentences to extract information about “who did
what to whom, when, where and how?” The output
is in the form of predicates and their respective ar-
guments that acts as semantic roles, where the verb
acts as the root (head) of the parse. We run a strong
semantic role labeling model (Shi and Lin, 2019)
included in the AllenNLP toolkit (Gardner et al.,
2018) on each sentence in the transcript. From
the output we get a set of verbs for each of the
sentences.4 Because not all verbs in all sentences
represent actual key actions for the procedure, we

4The SRL model is used in this stage only as a verb identi-
fier, with other output information used in stage 2.
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additionally filter the verbs with the heuristically
created cooking lexicon above, counting a clip as
a key clip only if at least one of the SRL-detected
verbs is included in the lexicon.
Unsupervised recipe segmentation base-
line (Kiddon et al., 2015). The second baseline is
based on the outputs of the unsupervised recipe
sentence segmentation model in Kiddon et al.
(2015). Briefly speaking, the model is a generative
probabilistic model where verbs and arguments,
together with their numbers, are modeled as
latent variables. It uses a bigram model for string
selection. It is trained on the whole transcript
corpus of YouCook2 videos iteratively for 15
epochs using a hard EM approach before the
performance starts to converge. The count of verbs
in the lexicon created in §4.1 is provided as a prior
through initialization. We then do inference to
parse the transcripts in our dataset using the trained
model. Following the same heuristics as the SRL
outputs, we treat sentences with non-empty parsed
predicates after lexical filtering as key sentences,
and those without as negatives.

4.2 Neural Selection Baseline

Next, we implement a supervised neural network
model that incorporates visual information, which
we have posited before may be useful in the face
of incomplete verbal utterances. We extract the
features of the sentence and each video frame us-
ing pretrained feature extractors respectively. Then
we perform attention (Bahdanau et al., 2014) over
each frame feature, using the sentence as a query,
in order to acquire the representation of the video
clip. Finally, we combine the visual and textual
features to predict whether the input is a key clip.
The model is trained on a general domain instruc-
tional key clip selection dataset with no overlap
with ours, and our annotated dataset is used for
evaluation only. Additional details about the model
and training dataset are included in Appendix B.

5 Extraction Stage 2: Structured
Knowledge Extraction

With the identified key clips and corresponding
transcript sentences, we proceed to the second stage
that performs clip/sentence-level procedural knowl-
edge extraction from key clips. In this stage, the
extraction is done from clips that are identified at
first as “key clips”.

5.1 Extraction From Utterances

We first present two baselines to extract structured
procedures using transcripts only, similarly to the
key-clip identification methods described in §4.1.
Semantic role labeling. For the first baseline, we
use the same pretrained SRL model introduced in
§4.1 to conduct inference on the sentences in key
clips identified from stage 1. Because they consist
of verb-argument structures, the outputs of the SRL
model are well aligned with the task of extracting
procedural tuples that identify actions and their ar-
guments. However, not all outputs from the SRL
model are the structured procedural knowledge we
aim to extract. For example, in the sentence “you

’re ready to add a variety of bell peppers” from
the transcript, the outputs from SRL model con-
tains two parses with two predicates, “are” and

“add”, where only the latter is actually part of the
procedure. To deal with this issue we first per-
form filtering similar to that used in stage 1, re-
moving parses with predicates (verbs) outside of
the domain-specific action lexicon we created in
§4.1. Next, we filter out irrelevant arguments in
the parse. For example, the parse from the SRL
model for sentence “I add a lot of pepper because
I love it.” after filtering out irrelevant verb “love”
is “[ARG0: I] [V: add] [ARG1: a lot of pepper]
[ARGM-CAU: because I love it]”, some arguments
such as ARG0 and ARGM-CAU are clearly not con-
tributing to the procedure. We provide a complete
list of the filtered argument types in Appendix C.
Unsupervised recipe segmentation (Kiddon
et al., 2015). The second baseline is to use the
same trained segmentation model as in §4.1 to seg-
ment selected key transcript sentences into verbs
and arguments. We treat segmented predicates
in the key sentence as procedural verbs, and seg-
mented predicate arguments plus preposition argu-
ments as procedural arguments.

5.2 Extraction From Video

We also examine a baseline that utilizes two forms
of visual information in videos: actions and objects.
We predict both verbs and nouns of a given video
clip via a state-of-the-art action detection model
TSM (Lin et al., 2019),5 trained on the EpicK-
itchen (Damen et al., 2018a) dataset.6 For each
video, we extract 5-sec video segments and feed

5https://github.com/epic-kitchens/
action-models

6https://epic-kitchens.github.io/2019

https://github.com/epic-kitchens/action-models
https://github.com/epic-kitchens/action-models
https://epic-kitchens.github.io/2019
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Acc P R F1
Parsing-based Heuristics

SRL w/o heur. 25.9 23.4 97.6 37.7
SRL w/ heur. 61.2 35.2 81.4 49.1

Kiddon et al. (2015) 67.3 33.5 42.7 37.6
Neural Model

Visual Only 43.8 27.2 85.9 41.3
Text Only 76.3 49.0 78.1 60.2

V+T (Full Model) 77.7 51.0 75.3 60.8

Table 4: Key clip selection results.

into the action detection model. The outputs of the
models are in a predefined set of labels of verbs
(actions) and nouns (objects).7 We directly com-
bine the outputs from the model on each video
segment, aggregate and temporally align them with
key clips/sentences, forming the final output.

5.3 Utterance and Video Fusion
Finally, to take advantage of the fact that utterance
and video provide complementary views, we per-
form multimodal fusion of the results of both of
these model varieties. We adopt a simple method
of fusion by taking the union of the verbs/actions
and arguments/objects respectively from the best
performing utterance-only model and the visual
detection model.

6 Evaluation
We propose evaluation metrics and provide evalu-
ation results on our annotated dataset for both of
the two stages: key clip selection and structured
procedural extraction. Detailed reproducibility in-
formation about the experiments are in Appendix F.
Besides quantitative evaluation and qualitative eval-
uations, we also analyze the key challenges of this
task.

6.1 Extraction Stage 1: Key Clip Selection
In this section, we evaluate results of the key clip
selection described in §4. We evaluate using the ac-
curacy, precision, recall and F1 score for the binary
classification problem of whether a given clip in the
video is a key clip. The results are shown in Table
4. We compare parsing-based heuristic models and
supervised neural models, with ablations (model
details in Appendix B). From the experimental re-
sults in Table 4, we can see that:

1. Unsupervised heuristic methods perform worse
than neural models with training data. This is

7Notably, this contrasts to our setting of attempting to
recognize into an open label set, which upper-bounds the
accuracy of any model with a limited label set.

despite the fact that the dataset used for training
neural models has a different data distribution
and domain from the test set.

2. Among heuristic methods, pretrained SRL is
better than Kiddon et al. (2015) even though
the second is trained on transcript text from
YouCook2 videos. One possible reason is
that the unsupervised segmentation method was
specially designed for recipe texts, which are
mostly simple, concise and imperative sen-
tences found in recipe books, while the tran-
script is full of noise and tends to have longer,
more complicated, and oral-style English.

3. Post-processing significantly improves the SRL
model, showing that filtering unrelated argu-
ments and incorporating the cooking lexicon
helps, especially with reducing false positives.

4. Among neural method ablations, the model us-
ing only visual features performs worse than
that using only text features. The best model
for identifying key clips among proposed base-
lines uses both visual and text information in
the neural model.

Besides quantitative evaluation, we analyzed key
clip identification results and found a number of
observations. First, background introductions, ad-
vertisements for the YouTube channel, etc. can be
relatively well classified due to major differences
both visually and textually from procedural clips.
Second, alignment and grounding between the vi-
sual and textual domains is crucial for key clip
prediction, yet challenging. For example, the clip
with the transcript sentence “add more pepper ac-
cording to your liking” is identified as a key clip.
However, it is in fact merely a suggestion made
by the speaker about an imaginary scenario, rather
than a real action performed and thus should not be
regarded as a key procedure.

6.2 Extraction Stage 2: Structured
Procedure Extraction

In this stage, we perform key clip-level evalua-
tion for structured procedural knowledge extrac-
tion by matching the ground truth and predicted
structures with both exact match and two fuzzy
scoring strategies. To better show how stage 1 per-
formance affects the whole pipeline, we evaluate on
both ground truth (oracle) and predicted key clips.
Similarly to the evaluation of key clip selection,
we compare the parsing-based methods (§5.1), as
well as purposing the action detection results from
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Model
Verbs Arguments

Exact Match Fuzzy Partial Fuzzy Exact Match Fuzzy Partial Fuzzy
P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

Using oracle key clips
Kiddon et al. (2015) 12.0 10.9 11.4 18.8 17.2 18.0 20.2 18.4 19.3 0.4 0.9 0.5 10.4 19.3 13.5 16.4 30.2 21.3

SRL w/o heur. 19.4 54.7 28.6 25.3 70.1 37.2 26.6 73.8 39.1 1.3 5.4 2.0 14.1 53.6 22.3 22.0 81.8 34.6
SRL w/ heur. 38.7 51.6 44.3 45.2 60.3 51.7 46.9 62.6 53.6 1.6 3.3 2.2 21.2 39.8 27.7 32.3 59.5 41.9

Visual 4.1 6.7 5.1 17.9 27.8 21.7 19.3 30.1 23.5 0.9 1.1 1.0 17.8 25.8 21.1 24.2 36.2 29.0
Fusion 19.9 55.2 29.3 28.6 73.3 41.2 31.2 78.6 44.7 1.1 3.8 1.6 16.9 50.0 25.2 24.4 72.5 36.5

Using predicted key clips
Kiddon et al. (2015) 7.0 6.3 6.6 10.9 10.0 10.4 11.7 10.7 11.2 0.2 0.5 0.3 6.1 11.2 7.9 9.5 17.5 12.3

SRL w/o heur. 11.2 31.7 16.6 14.7 40.7 21.6 15.4 42.8 22.6 0.7 3.1 1.2 8.2 31.1 13.0 12.7 47.4 20.1
SRL w/ heur. 22.5 29.9 25.7 26.2 35.0 30.0 27.2 36.3 31.1 0.9 1.9 1.3 12.3 23.1 16.1 18.8 34.5 24.3

Visual 2.4 3.9 3.0 10.4 16.1 12.6 11.2 17.5 13.7 0.5 0.6 0.6 10.3 15.0 12.2 14.1 21.0 16.8
Fusion 11.5 32.0 17.0 16.6 42.5 23.9 18.1 45.6 25.9 0.6 2.2 1.0 9.8 29.0 14.6 14.1 42.1 21.2

Table 5: Clip/sentence-level structured procedure extraction results for verbs and arguments.

video signals for our task. Besides, we compare
utterance-only and video-only baselines with our
naive multi-modal fusion method.

We evaluate with respect to precision, recall
and the F1 measure. Similarly to the evalua-
tion method used for SRL (Carreras and Màrquez,
2004), precision (P) is the proportion of verbs or
arguments predicted by a model which are correct,
i.e. TP/#predicted where TP is the number of
true positives. Recall (R) is the proportion of cor-
rect verbs or arguments which are predicted by a
model, i.e. TP/#gold. The key here is how to
calculate TP and we propose 3 methods: exact
match, fuzzy matching, and partial fuzzy matching.
The first is straight forward, we count true posi-
tives if and only if the predicted phrase is an exact
string match in the gold phrases. However, because
our task lies in the realm of open phrase extrac-
tion without predefined labels, it is unfairly strict to
count only the exact string matches as TP . Also by
design, the gold extraction results cannot always be
found in the original transcript sentence (refer to
§3.2), so we are also unable to use token-based met-
rics as in sequence tagging (Sang and De Meulder,
2003), or span-based metrics as in some question
answering tasks (Rajpurkar et al., 2016). Thus for
the second metric we call “fuzzy”, we leverage
edit distance to enable fuzzy matching and assign a
“soft” score for TP . In some cases, the two strings
of quite different lengths will hurt the fuzzy score
due to the nature of edit distance, even though one
string is a substring of another. To get around this,
we propose a third metric, “partial fuzzy” to get
the score of the best matching substring with the
length of the shorter string in comparison. Note
that this third metric will bias towards shorter, cor-
rect phrases and thus we should have a holistic
view of all 3 metrics during the evaluation. Details
of two fuzzy metrics are described in Appendix D.

Table 5 illustrates evaluation results:

1. Argument extraction is much more challenging
compared to verb extraction, according the re-
sults: arguments contain more complex types of
phrases (e.g. objects, location, time, etc.) and
are longer in length. It is hard to identify com-
plex arguments with our current heuristic or
unsupervised baselines and thus the need for
better supervised or semi-supervised models.

2. Heuristic SRL methods perform better than the
unsupervised segmentation model even though
the second is trained on our corpus. This demon-
strates the generality of SRL models, but the
heuristics applied at the output of SRL models
still improve the performance by reducing false
positives.

3. The visual-only method performs the worst,
mainly because of the domain gap between vi-
sual detection model outputs and our annotated
verbs and arguments. Other reasons include:
the closed label set predefined in EpicKitchen;
challenges in domain transferring from closed
to open extraction; different video data distribu-
tion between EpicKitchen (for training) and our
dataset (YouCook2, for testing); limited perfor-
mance of video detection model itself.

4. Naive multimodal fusion leads to an overall
performance drop to below the utterance-only
model, partly due to the differences in video
data distribution and domain, as well as the lim-
itation of the predefined set of verbs and nouns
in the EpicKitchen dataset, implying the need
for better multimodal fusion method. Unsur-
prisingly, the recall for verb extraction raises
after the fusion, suggesting that action detection
in videos helps with the coverage. The drop
in argument extraction suggests the complexity
of arguments in our open extraction setting: it
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should be more than mere object detection.

Besides quantitative results, we also showcase qual-
itative analysis of example extraction outputs in
Appendix E. From both, we suggest that there are
two key challenges moving forward:
Verb extraction: We find that verb ellipsis is com-
mon in transcripts. The transcript text contains
sentences where key action “verbs” do not have
verb part-of-speech in the sentence. For example,
in the sentence “give it a flip ...” with the annota-
tion (“flip”, “pancake”), the model detects “give”
as the verb rather than “flip”. Currently all our
baselines are highly reliant on a curated lexicon
for verb selection and thus such cases will get fil-
tered out. How to deal with such cases with general
verbs like make, give, do remains challenging and
requires extracting from the contexts.
Argument extraction: Speech-to-text errors are
intrinsic in automatically acquired transcripts and
cause problems during parsing that cascade. Exam-
ples are that “add flour” being recognized as “add
flower” and “sriracha sauce” being recognized as
“sarrah cha sauce” causing wrong extraction out-
puts. Coreference and ellipsis are also challenging
and hurting current benchmark performance, as our
baselines do not tackle any of these explicitly. Vi-
sual co-reference and language grounding (Huang
et al., 2018, 2017) provides a feasible method for
us to tackle these cases in the future.

7 Related Work
Text-based procedural knowledge extraction.
Procedural text understanding and knowledge
extraction (Chu et al., 2017; Park and Mota-
hari Nezhad, 2018; Kiddon et al., 2015; Jermsura-
wong and Habash, 2015; Liu et al., 2016; Long
et al., 2016; Maeta et al., 2015; Malmaud et al.,
2014; Artzi and Zettlemoyer, 2013; Kuehne et al.,
2017) has been studied for years on step-wise tex-
tual data such as WikiHow. Chu et al. (2017) ex-
tracted open-domain knowledge from how-to com-
munities. Recently Zhukov et al. (2019) also stud-
ied to adopt the well-written how-to data as weak
supervision for instructional video understanding.
Unlike existing work on action graph/dependency
extraction (Kiddon et al., 2015; Jermsurawong and
Habash, 2015), our approach differs as we extract
knowledge from the visual signals and transcripts
directly, not from imperative recipe texts.
Instructional video understanding. Beyond im-
age semantics (Yatskar et al., 2016), unlike existing
tasks for learning from instructional video (Zhou

et al., 2018c; Tang et al., 2019; Alayrac et al., 2016;
Song et al., 2015; Sener et al., 2015; Huang et al.,
2016; Sun et al., 2019b,a; Plummer et al., 2017;
Palaskar et al., 2019), combining video & text in-
formation in procedures (Yagcioglu et al., 2018;
Fried et al., 2020), visual-linguistic reference res-
olution (Huang et al., 2018, 2017), visual plan-
ning (Chang et al., 2019), joint learning of object
and actions (Zhukov et al., 2019; Richard et al.,
2018; Gao et al., 2017; Damen et al., 2018b), pre-
training joint embedding of high level sentence
with video clips (Sun et al., 2019b; Miech et al.,
2019), our task proposal requires explicit structured
knowledge tuple extraction.

In addition to closely related work (§3) there
is a wide literature (Malmaud et al., 2015; Zhou
et al., 2018b; Ushiku et al., 2017; Nishimura et al.,
2019; Tang et al., 2019; Huang et al., 2016; Shi
et al., 2019; Ushiku et al., 2017) that aims to
predict/align dense procedural captions given the
video, which are the most similar works to ours.
Zhou et al. (2018c) extracted temporal procedures
and then generated captioning for each procedure.
Sanabria et al. (2018) proposes a multimodal ab-
stractive summarization for how-to videos with
either human labeled or speech-to-text transcript.
Alayrac et al. (2016) also introduces an unsu-
pervised step learning method from instructional
videos. Inspired by cross-task sharing (Zhukov
et al., 2019), which is a weakly supervised method
to learn shared actions between tasks, fine grained
action and entity are important for sharing simi-
lar knowledge between various tasks. We focus
on structured knowledge of fine-grained actions
and entities.Visual-linguistic coreference resolu-
tion (Huang et al., 2018, 2017) is among one of the
open challenges for our proposed task.

8 Conclusions & Open Challenges

We propose a multimodal open procedural knowl-
edge extraction task, present a new evaluation
dataset, produce benchmarks with various meth-
ods, and analyze the difficulties in the task. Mean-
while we investigate the limit of existing methods
and many open challenges for procedural knowl-
edge acquisition, including: to better deal with
cases of coreference and ellipsis in visual-grounded
languages; exploit cross-modalities of information
with more robust, semi/un-supervised models; po-
tential improvement from structured knowledge in
downstream tasks (e.g., video captioning).
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