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Abstract

The training process of scientific NER models
is commonly performed in two steps: i) Pre-
training a language model by self-supervised
tasks on huge data and ii) fine-tune training
with small labelled data. The success of the
strategy depends on the relevance between the
data domains and between the tasks. However,
gaps are found in practice when the target do-
mains are specific and small. We propose a
novel framework to introduce a “pre-fine tun-
ing” step between pre-training and fine-tuning.
It constructs a corpus by selecting sentences
from unlabeled documents that are the most
relevant with the labelled training data. Instead
of predicting tokens in random spans, the pre-
fine tuning task is to predict tokens in entity
candidates identified by text mining methods.
Pre-fine tuning is automatic and light-weight
because the corpus size can be much smaller
than pre-training data to achieve a better per-
formance. Experiments on seven benchmarks
demonstrate the effectiveness.

1 Introduction

In many scientific domains such as biomedicine
and computer science (CS), named entity recogni-
tion (NER) is a fundamental information extraction
task (Nédellec et al., 2013; Luan et al., 2018; Zeng
et al., 2019; Jiang et al., 2020). Like many other
natural language processing (NLP) tasks, language
modeling plays an essential role in learning to per-
form like a domain expert (Jiang et al., 2019; Yu
et al., 2020; Zhang et al., 2020). Two-step training
process has been widely used in NLP research, es-
pecially for domain-specific NER. Step 1: Pre-train
a language model by self-supervised task(s) such
as masked token prediction and next sentence pre-
diction on large-scale datasets of billions of tokens.
Step 2: Fine-tune the neural model on a target task
with a carefully labelled domain-specific dataset.
Here, the premises of the strategy’s success are that

i) the pre-training corpora and fine-tuning labelled
data are domain-relevant; ii) the pre-training task(s)
and fine-tuning task are also relevant.

Data relevance becomes an issue for scientific
NER (SciNER). Language models like BERT (De-
vlin et al., 2019) were pre-trained on general cor-
pora such as English Wikipedia and Books Corpus.
Therefore, SciBERT (Beltagy et al., 2019) was de-
veloped on paper corpus (3.2B tokens) in CS and
bio domains from Semantic Scholar. BioBERT
(Lee et al., 2020) added the PubMed Central (PMC)
full-text corpus (13.5B tokens). They both applied
the same pre-training tasks as the regular BERT.
The pre-training cost week(s) on 8 TPUs or V100
GPUs to win over the general-domain BERT.

However, the data relevance gap was not fully
fixed because the target data were often collected
in a very specific and small research field such as
BRCA1-related breast cancer and vision AI, while
the pre-training corpora were too broad to adapt the
model effectively to the target task. Moreover, the
pre-training aimed at predicting random masked
tokens or tokens in random masked spans (Joshi
et al., 2020), which could be too weakly associated
with the target task of entity recognition and typing.
It is important to bridge the gaps of data and tasks
for accurate SciNER.

In this work, we propose a novel framework
called Tri-Train that introduces a training step be-
tween heavy pre-training (PT) and small-data fine
tuning (FT). We name it “pre-fine tuning” (PFT).
The framework is illustrated in Figure 1. First, it
constructs a corpus by selecting a set of sentences
relevant with the labelled training data (the specific
research field) from unlabeled auxiliary corpora
(like those used for pre-training). The PFT corpus
is of a medium size compared to those in PT and
FT (300K tokens). Second, we optimize the pre-
trained model parameters on two tasks. Instead of
random masked tokens or tokens in random masked
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Figure 1: In the proposed Tri-Train framework, we introduce a training step called pre-fine tuning between pre-
training and fine tuning. It includes i) corpus construction DPFT by filtering with target data from a specific field
and ii) two novel tasks, MLMCAND and ECB, supported by automatic entity candidate recognition methods. The
pre-fine tuning is light-weight compared to pre-training and improves the performance in many SciNER datasets.

spans, the first task is to predict tokens in masked
entity candidates. The entity candidates in the PFT
corpus were automatically identified by text min-
ing methods (Adar and Datta, 2015; Shang et al.,
2018). The second task is to predict the candi-
date’s boundary tokens using the entity candidates
themselves. These two tasks are designed based on
regular pre-training tasks and bringing the knowl-
edge that SciNER in the target domain needs into
consideration. When practitioners found the perfor-
mance of two-step framework was unsatisfactory
and they were not able to re-train the heavy BERTs,
our framework would be an effective solution.

We evaluate our framework based on four kinds
of BERT models: regular BERT, SpanBERT (Joshi
et al., 2020), BioBERT, and SciBERT. Experiments
on seven SciNER benchmarks demonstrate the ef-
fectiveness of the proposed framework.

2 Preliminaries

2.1 Problem Definition

Input Given a SciNER corpus DFT, we derive a
set of word sequence spans (up to length L) in the
corpus S . DFT was labelled by a schema of entity
types Y . And suppose we have an auxiliary corpus
DAUX which is much bigger than DFT.

Output Predict whether a span S 2 S is an en-
tity, and if it is, predict the entity type y 2 Y .

2.2 Pre-training: SpanBERT

SpanBERT (Joshi et al., 2020) is a self-supervised
pre-training language model inspired by BERT (De-
vlin et al., 2019). It extends BERT by (1) mask-

ing contiguous random spans instead of random
tokens, and (2) training span boundary representa-
tions to predict the entire masked span, without re-
lying on the individual token representations. Span-
BERT has two objectives: span mask prediction
(MLMSPAN) and span boundary objective (SBO).

2.2.1 Span mask prediction (MLMSPAN)

Pre-training models require large pre-training cor-
pora DPT. Span masking iteratively samples spans
of text. In each iteration, it randomly selects a
starting point for a span to be masked and the
length of span is determined by a geometric dis-
tribution l ⇠ Geo(p). Given a sentence X =
(x1, . . . , xn) 2 DPT, a masked span of tokens can
be represented as (xs, ..., xe), where (s, e) indi-
cates its start and end positions. For each token
xi 2 (xs, ..., xe), the embedding can be designated
as xi. The loss of span mask prediction can be
seen as a standard masked language model loss on
a continuous span, which can be represented as:

LMLM SPAN = � log

 
eY

i=s

P (xi|xi)

!
.

2.2.2 Span boundary objective (SBO)

In span selection models, boundary tokens play a
crucial role in span representation. SpanBERT in-
troduces an objective that involves predicting each
token of a masked span using only the representa-
tions of the observed tokens at the boundaries. For
each token xi, it is encoded by the external bound-
ary tokens’ embedding xs�1, xe+1 and the position
embedding of target token pi�s+1:

yi = f(xs�1, xe+1, pi�s+1),
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where f(·) is a two-layer feed forward neural net-
work. The SBO loss is

LSBO = � log

 
eY

i=s

P (xi|yi)

!
.

SpanBERT sums the loss from both MLMSPAN

and SBO for each token xi:

LPT = LMLM SPAN(xi,xi) + LSBO(xi,yi).

2.3 Fine-tuning: SciNER

Pre-trained models can be fine tuned for SciNER.
They first encode a span’s tokens to contextualized
representations, then reduce into a single vector
through a non-parameterized function, and finally
put it into a reader layer to predict the entity type.

2.3.1 Span embedding encoder

Token embedding layer The encoder of BERT
based models generates contextualized embeddings
for each token x in sentence X:

x = BERT⇥(X)[x] 2 Rd,

where ⇥ are model parameters and d = 768.

Span representation layer The embedding of
each span S is a concatenation of the max-pooling
results of token embeddings and span width fea-
tures. The width feature vector swidth is learned by
back propagation. The embedding of span S is:

s = MaxPoolingx2S(x)� swidth.

2.3.2 Prediction layer

We use the span embeddings to predict the entity
type for each span S using a softmax classifier:

ŷ = argmax(softmax(W · s+ b)),

where W and b are learnable parameters.

2.3.3 Objective function

We define the loss function of the SciNER model
as the negative log-likelihood loss:

LFT = � log

 
Y

S2S
P (y|ŷ)

!
,

where y 2 Y is the ground-truth entity type of span
candidate S.

3 Proposed Tri-Train Framework

3.1 Overview

The framework has three steps (see Figure 1):
• Pre-training: Train transformer models by

self-supervised tasks on large corpora;
• Pre-fine tuning: Use the pre-trained models as

initialization. Construct a medium-size corpus
relevant with the target domain. Optimize
model parameters by two new tasks.

• Fine tuning: Use the pre-fine tuned models
as initialization. Optimize model parameters
with the labelled data on the target task.

In later sections, we focus on the second step. We
will first introduce the two tasks for pre-fine tuning.
And then we discuss the task settings and corpus
construction.

3.2 Pre-Fine Tuning

It has two objectives. The first is to predict the to-
kens in masked entity candidates using span bound-
aries and token position as contexts of entity. The
second is to predict the span boundaries using the
entity candidates as contexts of boundaries. These
two tasks are designed based on BERT and Span-
BERT (i.e., predicting masked tokens). And they
focus on learning the relationship between entity
candidates (not random spans) and their boundaries,
which is important for SciNER.

3.2.1 Entity-candidate mask prediction

(MLMCAND)

Suppose we have a corpus DPFT of unlabelled
documents. (The construction will be introduced
in Section 3.3.) We apply text mining methods
(in Section 3.2.3), most of which are phrase min-
ing and concept discovery algorithms, to find a
set of entity candidates C. An entity candidate
is denoted by c = (xs, . . . , xe) 2 C. Instead of
randomly masking spans in the corpus, we mask
spans that can be matched with the entity candi-
dates. The model’s encoder generates token-level
representations xi for token xi 2 c. The loss of
entity-candidate mask prediction is written as:

LMLM CAND = � log

 
eY

i=s

P (xi|xi)

!
.

3.2.2 Entity-candidate boundary prediction

(ECB)

Besides predicting entity candidate spans with their
boundary words, another task for learning the rela-



4781

tionship between entity candidates and their bound-
aries is predicting the boundary words with the
entity candidate as a context. The left and right
boundary words are denoted as xs�1 and xe+1. The
model generates contextualized token embeddings
of the two boundary words: xs�1 and xe+1 if avail-
able. The loss function is defined as:

LMLM ECB =� log (P (xs�1|xs�1))

� log (P (xe+1|xe+1)) .

This training step sums losses from MLMCAND

and ECB for each entity candidate:

LPFT = LMLM CAND + LECB.

3.2.3 Identifying entity candidates

There are three text mining methods to automati-
cally identify entity candidates. We merge the set
of entity candidates produced by each method. We
use them as “labels” to match the new corpus DPFT

and support the MLMCAND and ECB tasks.

Existing dictionaries We build a dictionary of
entity candidates. First, it has all the labelled enti-
ties in the training data. Second, we add the entities
on the MeSH and UMLS ontologies for BioNER.
We use the dictionary to match with spans in the
PFT corpus. To avoid noise, only when the span
and its boundary words are all matched, we con-
sider it as an entity candidate in DPFT. The dictio-
nary is denoted by Cexist.

Syntactic patterns Pattern-based methods such
as SCHBase (Adar and Datta, 2015) aimed at dis-
covering scientific entities (and their acronyms)
with no need of human annotation. SCHBase uti-
lized writing habits of scientific papers, such as
using parentheses to link the acronyms of the sci-
entific entities and their full name.

“... In this work, we use Support Vector
Machine ( SVM ) as a classifier ...”

Results of pattern-based methods are reliable. How-
ever, like most pattern-based methods, SCHBase
makes low coverage: A great number of entities do
not follow the patterns. The set of entity candidates
discovered by patterns is denoted as Cpattern.

Phrase mining We use AutoPhrase (Shang et al.,
2018), a statistical learning-based phrase mining
method to extract interesting phrases as entity can-
didates from the PFT corpus. This method cal-
culates the features of phrase candidates such as

Table 1: Statistics of seven SciNER benchmarks.

# Sentences # Typestrain dev test

BioNLP09 7,462 1,448 2,446 2
BioNLP11EPI 5,698 1,955 4,122 2
BioNLP11ID 2,496 721 1,961 4
BioNLP13CG 3,033 1,003 1,906 16
BioNLP13GE 2,499 2,737 3,391 2
BioNLP13PC 2,499 857 1,695 4

SCIERC 1,861 455 551 6

frequency, concordance, completeness, and infor-
mativeness to evaluate their quality. The set of
entity candidates discovered by phrase mining is
denoted as Cphrase.

Eventually, we have the set of entity candidates
from DPFT: C = Cexist [ Cpattern [ Cphrase.

3.3 PFT corpus construction

When applied the proposed framework to scientific
NER, as described in Figure 1 and the introduction
section, we are interested in the questions such as
what, where, and which. We have various options
of using pre-fine-tuning for the task.

Sentence content selection Intuitively, if the
PFT corpus is strongly related to the SciNER
dataset, the domain relevance can support a good
performance. For example, PubMed corpus may
have more contextual information than Amazon
Review corpus for the BioNER tasks; sentences
about breast cancer research, a subfield of cancer
research of biology and biomedicine, should be col-
lected for pre-fine tuning when the target domain
is on BRCA1, a gene relevant with breast cancer.

Sentence quality selection If a sentence had too
few entity candidates, it would not support the
learning step significantly. So when we collect
the sentence to construct the corpus, we sort the
sentences by the number of entity candidates. Then
we take the top 30,000 sentences as DPFT.

4 Experiment

4.1 Data Sets

We describe seven SciNER benchmarks and three
auxiliary corpora for pre-fine tuning.

4.1.1 Seven SciNER benchmarks

We conduct experiments on SCIERC (AI domain)
and six BioNER benchmarks. Descriptions can be
found in Appendix. Statistics are in Table 1.
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Table 2: Our framework outperforms the state-of-the-art SciNER model. PFT stands for pre-fine tuning.

Dataset
SOTA (SpERT) Best Pre- PFT on MLMSPAN PFT on MLMCAND

P R F1 Training P R F1 P R F1

BioNLP09 90.66 87.15 88.87 SciBERT 90.44 86.82 88.61 91.52 88.05 89.77

BioNLP11EPI 84.58 83.99 84.28 BioBERT 83.94 84.52 84.23 85.70 86.11 85.90

BioNLP11ID 84.40 83.30 83.35 SciBERT 85.20 83.18 84.18 85.91 85.06 85.48

BioNLP13CG 86.46 85.38 85.92 BioBERT 85.79 86.03 85.91 88.33 86.42 87.37

BioNLP13GE 73.49 78.94 76.12 BioBERT 73.15 78.82 76.12 77.95 83.37 80.57

BioNLP13PC 90.09 91.30 90.69 BioBERT 88.37 89.14 88.75 91.08 91.43 91.25

SciERC 67.36 67.72 67.53 SciBERT 68.36 67.77 68.08 69.91 68.25 69.07

4.1.2 Three auxiliary corpora for DPFT

Machine learning (ML) corpus. It is collected
by FTS (Zha et al., 2018) which includes the title
and abstract of 1.2 million computer science papers
downloaded from DBLP and Semantic Scholar.
PubMed corpus. It has 140.9 million sentences
from the abstracts of 15.5 million articles on MED-
LINE (a life science database) (Lee et al., 2020).
Amazon review corpus. It has 233.1 million prod-
uct reviews (ratings, text, helpfulness votes) rang-
ing from 05/1996 to 10/2018 (Ni et al., 2019).

4.2 Competitive Models

SpERT (Eberts and Ulges, 2019). It is a span-
based joint entity and relation extraction method.
It leads the board using multi-task fine-tuning on
the labelled data with entity relation information
which is NOT used in our Tri-Train models. So it
is not easy to win over this baseline. Our models
perform pre-fine tuning and single-task fine-tuning.
PFT on MLM. Based on our framework, we im-
plement two models. One applies random span
mask prediction. The other uses our proposed task
of predicting tokens in masked entity-candidates.

4.3 Implementation Details

All language models we use have a maximum 512
input token sequence and consist of a 12-layer
transformer network with 12 attention heads and
768 word dimensions. For model fine tuning, we
use Adam optimizer (Kingma and Ba, 2014) with
learning rate of 5e-5. The maximum length of span
candidates is 8. All these experiments are trained
on one RTX 2080ti GPU whose memory is 11GB.

4.4 Experimental Results

In this section, we examine multiple aspects of the
proposed Tri-Train framework. We first compare it

with SOTA and see whether it is adaptive to mul-
tiple kinds of BERT models. Then we investigate
the strategies of choosing auxiliary corpus, choos-
ing sentences, identifying entity candidates, and
choosing dictionary size.

4.4.1 Comparing with SOTA

Table 2 presents the performance comparisons.
Compared with the state-of-the-art SpERT, PFT on
MLMSPAN does not improve much. So predicting
random masked spans would not be able to bridge
the pre-training model and the target NER task.
Our proposed PFT on MLMCAND outperforms
SpERT on all the seven benchmarks. It improves
precision, recall and F1 by +1.80%, +1.73%, and
+1.85% (average) on the six BioNER benchmarks.
It improves precision, recall and F1 by +1.55%,
+0.48%, and +0.99% on SciERC. So, masking en-
tity candidates can effectively extract useful infor-
mation from the auxiliary corpus.

4.4.2 Adapting PFT on four BERTs

We applied the proposed framework (with the
pre-fine tuning middle step) on four kinds of
pre-trained BERTS. BERT and SpanBERT are
pre-trained with general domain corpus (English
Wikipedia and Books Corpus). SciBERT is pre-
trained with CS and Bio corpora from Semantic
Scholar. BioBERT is pre-trained with the gen-
eral corpora and PubMed/PMC data. As shown
in Table 3, we observe that all kinds of BERTs
can benefit from the pre-fine tuning process. Com-
pared with their original performance, BERT, Span-
BERT, BioBERT, and SciBERT improve F1 score
by +1.42%, +1.78%, +1.52%, and +1.02% (aver-
age) on six BioNER benchmarks. They also im-
prove F1 by +1.0%, +0.6%, +0.6%, and +1.6% on
SciERC, respectively.

Since SciBERT and BioBERT were pre-trained
on scientific corpora, they demonstrate superior im-
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Table 3: PFT stands for pre-fine tuning. It can consistently improves the performance on 7 SciNER benchmarks.
The best performances were achieved on BioBERT and SciBERT with the proposed PFT.

BERT SpanBERT

No PFT With PFT No PFT With PFT

P R F1 P R F1 � F1 P R F1 P R F1 � F1

BioNLP09 88.5 83.5 85.9 89.6 84.5 87.1 +1.2 87.6 85.2 86.4 88.6 86.0 87.3 +0.9
BioNLP11EPI 81.1 78.0 79.5 80.9 79.7 80.3 +0.8 78.6 81.0 79.6 81.8 80.6 81.2 +1.6
BioNLP11ID 86.6 80.6 83.5 88.2 80.4 84.0 +0.6 84.0 80.7 82.3 85.4 81.9 83.6 +1.3
BioNLP13CG 83.3 81.1 82.1 84.6 82.4 83.4 +1.3 82.3 80.8 81.6 83.9 83.3 83.6 +2.0
BioNLP13GE 70.0 70.7 70.4 73.3 74.6 73.9 +3.5 71.2 75.8 73.4 76.34 77.3 76.8 +3.4
BioNLP13PC 86.3 87.1 86.7 87.6 88.0 87.8 +1.1 86.7 87.6 87.1 88.3 88.8 88.6 +1.5
SciERC 67.8 65.2 66.5 68.7 66.3 67.5 +1.0 66.1 67.8 66.8 67.2 67.6 67.4 +0.6

BioBERT SciBERT

No PFT With PFT No PFT With PFT

P R F1 P R F1 � F1 P R F1 P R F1 � F1

BioNLP09 89.1 88.3 88.7 92.0 86.9 89.4 +0.7 90.1 87.1 88.9 91.5 88.1 89.8 +0.9
BioNLP11EPI 85.6 84.6 85.1 85.7 86.1 85.9 +0.8 84.6 84.0 84.3 86.3 83.3 84.8 +0.5
BioNLP11ID 84.7 83.6 84.2 85.6 83.7 84.6 +0.4 84.4 83.3 83.4 85.9 85.1 85.5 +2.1
BioNLP13CG 87.8 85.6 86.7 88.3 86.4 87.4 +0.7 86.5 85.4 85.9 86.4 87.0 86.7 +0.8
BioNLP13GE 72.6 76.8 74.7 78.0 83.4 80.6 +5.9 73.5 78.9 76.1 76.0 79.6 77.7 +1.6
BioNLP13PC 90.4 91.1 90.7 91.1 91.4 91.3 +0.6 90.1 91.3 90.7 90.5 91.3 90.9 +0.2
SciERC 68.4 67.8 68.1 70.0 67.5 68.7 +0.6 67.4 67.7 67.5 69.9 68.3 69.1 +1.6

Table 4: The relevance of domains of auxiliary corpus with training data matters in pre-fine tuning.

Amazon (top 30K) PubMed (top 30K) ML (top 30K) bottom 30K

P R F1 P R F1 P R F1 P R F1
BioNLP09 86.7 81.2 83.9 91.5 88.1 89.8 88.9 86.7 87.8 90.8 87.1 88.9
BioNLP11EPI 84.6 84.9 84.7 85.7 86.1 85.9 86.4 83.5 84.9 85.5 85.2 85.4
BioNLP11ID 83.9 83.4 83.7 85.9 85.1 85.5 85.4 85.1 85.2 85.4 84.7 85.1
BioNLP13CG 86.2 85.3 85.8 88.3 86.4 87.4 88.2 84.9 86.5 88.2 86.3 87.2
BioNLP13GE 71.2 71.2 71.2 78.0 83.4 80.6 73.2 77.0 75.1 76.8 81.8 79.3
BioNLP13PC 86.0 86.1 86.1 91.1 91.4 91.3 90.7 89.8 90.3 90.6 90.0 90.3
SciERC 66.5 67.4 67.0 68.5 67.1 67.8 69.9 68.3 69.1 68.7 68.3 68.5

provements than BERT and SpanBERT. Enhancing
data relevance is an effective way to achieve good
performance. Besides, SciBERT presents the best
performance on two of the BioNER benchmarks,
which indicates that SciBERT obtained knowledge
in the biological domain.

4.4.3 Choosing auxiliary corpus

Intuitively, highly relevant auxiliary corpus with
the labelled training data would help the model ob-
tain useful knowledge during the pre-fine tuning
(PFT) process. We compare model performances
on using three different domain corpora for PFT.
They are Machine Learning (AI domain), PubMed
(biology domain), and Amazon (shopping domain).
Table 4 presents the performance of using different
auxiliary corpora on the benchmarks. We observe

that model performances are correlated with the do-
main relevance between auxiliary corpus and target
corpus. First, using PubMed as auxiliary corpus
performs better than using other domain corpus
on all BioNER benchmarks. Similarly, using ML
corpus achieves the best performance on SciERC,
which improves precision, recall, and F1 by +1.4%,
+1.2%, and +1.3%, respectively. Using Amazon
corpus cannot provide satisfactory performances
on all seven benchmarks. It indicates that irrelevant
domain corpus may hurt the model training.

4.4.4 Choosing sentences

In Table 4, we know top 30K sentences in PubMed
helps BioNER via pre-fine tuning; top 30K sen-
tences in ML helps on SciERC. We also show
the performance when choose the bottom 30K
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Table 5: The merged set of entity candidates (combining existing dictionaries, pattern mining, and phrase mining
results) perform the best to support the MLMCAND and ECB tasks.

Cexist only Cpattern only Cphrase only C (merged)

P R F1 P R F1 P R F1 P R F1

BioNLP09 90.5 86.2 88.3 91.9 87.3 89.6 90.2 88.9 89.6 91.5 88.1 89.8

BioNLP11EPI 84.9 84.1 84.5 85.7 84.5 85.1 85.3 85.2 85.2 85.7 86.1 85.9

BioNLP11ID 85.2 83.4 84.3 86.3 84.4 85.4 85.1 84.8 85.0 85.9 85.1 85.5

BioNLP13CG 87.4 85.7 86.5 88.6 84.3 86.4 87.4 87.0 87.2 88.3 86.4 87.4

BioNLP13GE 74.5 77.7 76.1 79.2 80.0 79.6 77.3 81.5 79.4 78.0 83.4 80.6

BioNLP13PC 90.3 90.8 90.6 90.9 90.0 90.9 90.5 91.9 91.2 91.1 91.4 91.3

SciERC 67.4 67.9 67.7 69.7 67.6 68.6 68.6 68.3 68.4 69.9 68.3 69.1

sentences for the best matched auxiliary corpus.
The performances are still better than using irrele-
vant domain corpus; however, they are consistently
worse than using the top 30K sentences. This obser-
vation demonstrate that choosing highly relevant
sentences is as important as choosing a corpus.

4.4.5 Choosing methods to identify entity

candidates

Table 5 presents interesting results. If we identify
only the entity candidates that were in some ex-
isting dictionaries (Cexist), our models make tiny
improvements on four of the seven benchmarks.
This is because the size of dictionaries is limited.
Few entity candidates were identified in auxiliary
corpus. This leads to insufficient pre-fine tuning.

First, both pattern-based method (SCHBase) and
phrase mining method (AutoPhrase) demonstrate
their effectiveness on labelling entity candidates
and using them to predict tokens in masked spans
for pre-fine tuning. The effectiveness can be ob-
served on all the BioNER and SciNER bench-
marks. Compared with the phrase mining method,
the pattern-based method makes a higher preci-
sion because entity candidates identified by tex-
tual patterns are more reliable than noun or verbal
phrases. The pattern-based method improves pre-
cision by +1.31% (average) on all benchmarks. In
contrast, the phrase mining method improves re-
call by +1.35% compared with the pattern-based
method. The pattern-based method and phrase min-
ing method are complementary for masking entity
candidates. By merging the set of identified en-
tity candidates and matching the auxiliary corpus
with their names, we try to maximize the labelling
accuracy. Table 5 shows that our merged entity can-
didate dictionaries can support PFT to achieve the
state-of-the-art performance in terms of F1 score
on all benchmarks.

4.4.6 All entity candidates or frequent only

In proposed method of building dictionary, the size
of dictionary is usually proportional to the scale of
auxiliary text data. To obtain a big dictionary, we
expect to have a large auxiliary corpus. However,
the frequency of entities in the dictionary forms
a long tail – very few entities have very high fre-
quency while most entities are infrequent. Does
the long tail, or only the frequent head, improve or
hurt the pre-fine tuning? Figures 2 and 3 present
results to answer this question. Briefly, the answer
is the long tail matters – it is useful to have a large
dictionary from a large-scale auxiliary corpus.

We sort the entities in the merged dictionary
from the highest density to the lowest. We use the
top l% frequent entities (called “remained labels”
on the horizontal axis of the figures) in the dictio-
naries for pre-fine-tuning (l is from 5 to 100). We
observed that: (1) In all benchmarks, 100% achieve
the best F1-score. (2) In some benchmarks, when
the dictionary size is smaller than 50%, pre-fine
tuning hurts the performance on F1 score. The rea-
son is that even though compared with corpus used
in pre-training, auxiliary corpus is a small, it still
needs amount of diverse information to ensure the
ability of generalization.

5 Related Work

5.1 SciNER: Scientific Entity Recognition

NER is typically cast as a sequence labeling prob-
lem by integrating LSTMs, CRF, and language
models (Lample et al., 2016; Ma and Hovy, 2016;
Liu et al., 2018). Another idea is to generate span
candidates and predict their type. Span-based mod-
els have been proposed with multi-task learning
strategies (Luan et al., 2018, 2019). The multiple
tasks include concept recognition, relation extrac-
tion, and co-reference resolution. With the popular-
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Figure 2: Overall, a bigger size of dictionaries consistently improves the performance on six BioNER benchmarks.
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Figure 3: On SCIERC, leaving half of the entity candi-
dates un-masked in pre-fine tuning may cause a more
desired precision but a much lower recall and F1 score.
We still recommend to fully use the dictionaries.

ity of self-supervised learning, pre-trained models
are widely used in NER (Peters et al., 2018; Devlin
et al., 2019). They improved the performance with
contextual information from massive data.

5.2 Contextualized Language Representation

ELMo (Peters et al., 2018) proposed bi-directional
LSTMs based language models. OpenAI proposed
GPT (Radford et al.) used a multi-layer transformer
as decoder to predict text sequence one-by-one.

BERT (Devlin et al., 2019) employs a bidirec-
tional Transformer encoder (Vaswani et al., 2017)
to fuse both the left and the right contexts. It in-
cludes two novel pre-training tasks: masked lan-

guage model (MLM) and next sentence prediction
(NSP). To augment the semantic information in cor-
pus, pre-training with some variants of a masked
language model objective is used in many BERT-
based models. These models improve the perfor-
mance by span prediction (Joshi et al., 2020), in-
cluding entity embeddings (Zhang et al., 2019; Sun
et al., 2019), autoregressive pretraining (Yang et al.,
2019; Dai et al., 2018), and sentence ordering ob-
jective (Wang et al., 2019). Influenced by BERT’s
great success on multiple natural language process-
ing (NLU) tasks, researchers proposed BERT-like
models in scientific domain (Beltagy et al., 2019;
Lee et al., 2020). They still need related corpora
and computing resources for training.

6 Conclusion

In this work, we proposed a novel framework to
introduce a “pre-fine tuning” step between pre-
training and fine-tuning. It constructed a corpus
by selecting sentences from unlabeled documents
that were the most relevant with the labelled train-
ing data. Instead of predicting tokens in random
spans, the pre-fine tuning task was to predict to-
kens in entity candidates identified. Pre-fine tuning
was automatic and light-weight because the corpus
size could be much smaller than pre-training data
to achieve a better performance. Experiments on
seven benchmarks demonstrate the effectiveness.
We further investigated settings of pre-fine tuning.
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