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Abstract

Existing natural language processing systems
are vulnerable to noisy inputs resulting from
misspellings. On the contrary, humans can
easily infer the corresponding correct words
from their misspellings and surrounding con-
text. Inspired by this, we address the stand-
alone spelling correction problem, which only
corrects the spelling of each token without ad-
ditional token insertion or deletion, by utiliz-
ing both spelling information and global con-
text representations. We present a simple yet
powerful solution that jointly detects and cor-
rects misspellings as a sequence labeling task
by fine-turning a pre-trained language model.
Our solution outperform the previous state-of-
the-art result by 12.8% absolute F0.5 score.

1 Introduction

A spelling corrector is an important and ubiquitous
pre-processing tool in a wide range of applications,
such as word processors, search engines and ma-
chine translation systems. Having a surprisingly
robust language processing system to denoise the
scrambled spellings, humans can relatively easily
solve spelling correction (Rawlinson, 1976). How-
ever, spelling correction is a challenging task for a
machine, because words can be misspelled in var-
ious ways, and a machine has difficulties in fully
utilizing the contextual information.

Misspellings can be categorized into non-word,
which is out-of-vocabulary, and the opposite, real-
word misspellings (Klabunde, 2002). The dictio-
nary look-up method can detect non-word mis-
spellings, while real-word spelling errors are harder
to detect, since these misspellings are in the vocab-
ulary (Mays et al., 1991; Wilcox-O’Hearn et al.,
2008). In this work, we address the stand-alone (Li
et al., 2018) spelling correction problem. It only
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Figure 1: A schematic illustration of our approach.
Left: combined word-level and character-level encoder
model. Right: subword-level model using BIO2 tag-
ging scheme (Sang and Veenstra, 1999).

corrects the spelling of each token without intro-
ducing new tokens or deleting tokens, so that the
original information is maximally preserved for the
down-stream tasks.

We formulate the stand-alone spelling correc-
tion as a sequence labeling task and jointly detect
and correct misspellings. Inspired by the human
language processing system, we propose a novel
solution on the following aspects: (1) We encode
both spelling information and global context infor-
mation in the neural network. (2) We enhance the
real-word correction performance by initializing
the model from a pre-trained language model (LM).
(3) We strengthen the model’s robustness on unseen
non-word misspellings by augmenting the training
dataset with a synthetic character-level noise. As a
result, our best model 1 outperforms the previous
state-of-the-art result (Wang et al., 2019) by 12.8%
absolute F0.5 score.
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2 Approach

We use the transformer-encoder (Vaswani et al.,
2017) to encode the input sequences and denote it
as Encoder. As illustrated in Figure 1, we present
both Word+Char encoder and Subword encoder,
because we believe the former is better in encoding
spelling information, while the latter has the benefit
of utilizing a large pre-trained LM.

Word+Char encoder. We use a word encoder to
extract global context information and a charac-
ter encoder to encode spelling information. As
shown in equation 1, in order to denoise the
noisy word sequence S∗ to the clean sequence
S, we first separately encode S∗ using a word-
level transformer-encoder Encoderword and each
noisy spelling sequence C∗

k of token k via a
character-level transformer-encoder Encoderchar.
For Encoderword, we replace non-word mis-
spellings, i.e. OOV words, with a 〈unk〉 token.
For Encoderchar, we treat each character as a to-
ken and each word as a “sentence”, so each word’s
character sequence embedding hkchar is indepen-
dent of each other. Since the transformer-encoder
(Vaswani et al., 2017) computes contextualized to-
ken representations, we take hchar, the [CLS] to-
ken representation of each character sequence as
the local character-level representation of S∗. Fi-
nally, we jointly predict S by concatenating the
local and global context representations.

hword = Encoderword(S
∗)

hkchar = Encoderchar(C
∗
k)

hchar = [CLS(h1
char), CLS(h

2
char), ..., CLS(h

n
char)]

hS = [hword;hchar]

p(S) = softmax(WhS + b))
(1)

Subword encoder. Alternatively, we use sub-
word tokenization to simultaneously address the
spelling and context information. Formally, as
shown in equation 2, given a noisy subword token
sequence S∗

sub, we encode it using a transformer-
encoderEncodersub and simply use an affine layer
to predict the sequence of each subword token’s
corresponding correct word token Ssub in BIO2
tagging scheme (Sang and Veenstra, 1999).

hsub = Encodersub(S
∗
sub)

p(Ssub) = softmax(Wsubhsub + bsub)
(2)

1https://github.com/jacklxc/
StandAloneSpellingCorrection

Furthermore, we fine-tune our Subword encoder
model with a pre-trained LM initialization to en-
hance the real-word misspelling correction perfor-
mance.

We use cross-entropy loss as our training objec-
tive. Finally, in addition to the natural misspelling
noise, we apply a synthetic character-level noise to
the training set to enhance the model’s robustness
to unseen misspelling patterns. The details will be
introduced in section 3.1.

3 Experiments

3.1 Dataset

Since we cannot find a sentence-level misspelling
dataset, we create one by using the sentences in
the 1-Billion-Word-Language-Model-Benchmark
(Chelba et al., 2013) as gold sentences and ran-
domly replacing words with misspellings from a
word-level natural misspelling list (Mitton, 1985;
Belinkov and Bisk, 2017) to generate noisy input
sentences. In a real scenario, there will always be
unseen misspellings after the model deployment,
regardless of the size of the misspelling list used
for training. Therefore, we only use 80% of our
full word-level misspelling list for train and dev set.
In order to strengthen the robustness of the model
to various noisy spellings, we also add noise from a
character-level synthetic misspelling list (Belinkov
and Bisk, 2017) to the training set. As a result,
real-word misspelling contributes to approximately
28% of the total misspellings for both dev and test
set. The details are described in Section A.1

3.2 Results

Performance Metrics We compare word-level
precision, recall and F0.5 score, which emphasizes
precision more. We also provide accuracy for refer-
ence in Table 1, because both of the baselines were
evaluated with accuracy score. Table 3 shows the
definition of true positive (TP), false positive (FP),
false negative (FN) and true negative (TN) in this
work to avoid confusions. We calculate them using
the following equations:

accuracy = (TP + TN)/(TP + FP + FN + TN)

precision = TP/(TP + FP )

recall = TP/(TP + FN)

Fβ = (1 + β2) · precision · recall
(β2 · precision) + recall

where β = 0.5 in this work.

https://github.com/jacklxc/StandAloneSpellingCorrection
https://github.com/jacklxc/StandAloneSpellingCorrection
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Models Dev Test
Acc P R F0.5 Acc P R F0.5

1 ScRNN (Sakaguchi et al., 2017) 0.958 0.823 0.890 0.836 0.946 0.755 0.865 0.775
2 MUDE (Wang et al., 2019) 0.966 0.829 0.952 0.851 0.952 0.751 0.928 0.781

3 Char Encoder 0.883 0.517 0.819 0.559 0.870 0.458 0.802 0.501

4 Word Encoder 0.932 0.565 0.949 0.615 0.924 0.521 0.903 0.570

5 Word + Char Encoder 0.988 0.959 0.959 0.959 0.974 0.882 0.929 0.891
6 + random char 0.986 0.953 0.947 0.951 0.976 0.898 0.927 0.904

7 Subword Encoder 0.986 0.934 0.972 0.941 0.968 0.831 0.950 0.852
8 + Char Encoder 0.980 0.908 0.959 0.917 0.963 0.808 0.939 0.831
9 + random char 0.985 0.931 0.966 0.938 0.973 0.866 0.950 0.881
10 + LM pre-train 0.990 0.951 0.982 0.957 0.975 0.866 0.962 0.883
11 + LM pre-train + random char 0.989 0.946 0.979 0.952 0.980 0.896 0.964 0.909

Table 1: Model performance and ablation studies measured by accuracy, precision, recall and F0.5.

Models Real-Word Non-Word
dev test dev test

P R F0.5 P R F0.5 P P
1 ScRNN (Sakaguchi et al., 2017) 0.507 0.592 0.522 0.456 0.523 0.468 0.952 0.873
2 MUDE (Wang et al., 2019) 0.595 0.825 0.630 0.533 0.747 0.566 0.945 0.855

3 Char Encoder 0.106 0.304 0.122 0.099 0.296 0.113 0.886 0.792

4 Word Encoder 0.916 0.889 0.911 0.835 0.792 0.826 0.438 0.414

5 Word + Char Encoder 0.900 0.851 0.900 0.819 0.750 0.804 0.979 0.903
6 + random char 0.902 0.807 0.881 0.819 0.741 0.802 0.969 0.924

7 Subword Encoder 0.804 0.897 0.821 0.715 0.827 0.735 0.988 0.877
8 + Char Encoder 0.740 0.848 0.759 0.664 0.786 0.685 0.978 0.867
9 + random char 0.799 0.876 0.813 0.718 0.819 0.736 0.984 0.925
10 + LM pre-train 0.850 0.935 0.866 0.771 0.870 0.789 0.988 0.877
11 + LM pre-train + random char 0.845 0.922 0.860 0.787 0.872 0.803 0.987 0.941

Table 2: Real-word and non-word performance measured by precision, recall and F0.5. All of the recall of non-
word is 1.000.

= Ground Truth? Noisy Input Prediction
True Positive 7 3

False Positive 3 7

False Negative 7 7

True Negative 3 3

Table 3: Definition of True Positive (TP), False Posi-
tive (FP), False Negative (FN) and True Negative (TN).
3means the noisy input token or prediction the same as
the ground truth, and vice versa for 7.

Baselines. Sakaguchi et al. (2017) proposed
semi-character recurrent neural network (ScRNN),
which takes the first and the last character as well
as the bag-of-word of the rest of the characters
as features for each word. Then they used an

LSTM (Hochreiter and Schmidhuber, 1997) to pre-
dict each original word. Wang et al. (2019) pro-
posed MUDE, which uses a transformer-encoder
(Vaswani et al., 2017) to encode character se-
quences as word representations and used an LSTM
(Hochreiter and Schmidhuber, 1997) for the cor-
rection of each word. They also used a Gated Re-
current Units (GRU) (Cho et al., 2014) to perform
the character-level correction as an auxiliary task
during training. We train ScRNN (Sakaguchi et al.,
2017) and MUDE (Wang et al., 2019), both of
which are stand-alone neural spelling correctors,
on our dataset as baselines.

Overview. As row 11 of Table 1 shows, fine-
tuning the Subword (WordPiece (Peters et al.,
2018)) encoder model with LM initialization



410

(ERNIE 2.0 (Sun et al., 2019)) on the augmented
dataset with synthetic character-level misspellings
yields the best performance. Without leveraging
a pre-trained LM, the Word+Char Encoder model
trained on the augmented dataset with synthetic
character-level misspellings performs the best (row
6). In fact, the differences between these ap-
proaches are small.

In Table 2, we calculate real-word and non-word
correction performance to explain the effect of each
training technique applied. Note that as shown in
Figure 1, because non-word misspellings are pre-
processed already, the detection of these non-word
misspellings can be trivially accomplished, which
results in all models having non-word recall of
1.000.

As Table 2 shows, strong models overall per-
form well on both real-word misspellings and non-
word misspellings. Although our models perform
better on non-word misspellings than real-word
misspellings, the significant improvement of our
models over the baselines comes from the real-
word misspellings, due to the usage of the pre-
trained LM. In the following paragraphs, we state
our claims and support them with our experimental
results.

Spelling correction requires both spelling and
context information. As Table 2 shows, with-
out the context information, the character encoder
model (row 3) performs poorly on real-word mis-
spellings. On the contrary, word encoder model
(row 4) performs well on real-word misspellings,
but poorly on non-word misspellings, due to the
lack of the spelling information. The combined
Word+Char encoder model (row 5) leverages both
spelling and context information and thus improves
nearly 40% absolute F0.5 in Table 1. It even outper-
forms the LM intialized model (row 10). Both of
the baseline models (row 1 and 2) perform poorly,
because they perform spelling corrections upon
character sequences, which disregards the seman-
tics of the context, as their poor real-word perfor-
mance in Table 2 row 1 and 2 suggests. On the
other hand, since subword embeddings essentially
subsume character embedding, an additional char-
acter encoder does not improve the performance of
the Subword encoder model (Table 1 row 8).

Pre-trained LM facilitates spelling correction.
As row 10 of Table 1 shows, fine-tuning the model
with a pre-trained LM weight initialization im-

proves both precision and recall score over the
Subword encoder model (row 7). The LM pre-
training mainly improves real-word recall as Table
2 row 10 suggests. Pre-trained LMs are trained
with multiple unsupervised pre-training tasks on
a much larger corpus than ours, which virtually
expands the training task and the training set.

Because most neural language models are
trained on the subword level, we are not able
to obtain a pre-trained LM initialized version of
Word+Char encoder model (row 5). Nonetheless,
we hypothesize that such a model will yield a very
promising performance given sufficient training
data and proper LM pre-training tasks.

Training on additional synthetic character-
level noise improves model robustness. As row
6, 9 and 11 of Table 1 and 2 shows, in addition
to frequently occurring natural misspellings, train-
ing models on the texts with synthetic character-
level noise improves the test performance, which
is mainly contributed by the improvement of preci-
sion on non-word misspellings. Note that the train
and dev set only cover 80% of the candidate natural
misspellings. Adding character-level noise in the
training data essentially increases the variety of the
missplelling patterns, which makes the model more
robust to unseen misspelling patterns.

4 Related Work and Background

Many approaches are proposed for spelling cor-
rection (Formiga and Fonollosa, 2012; Kukich,
1992; Whitelaw et al., 2009; Zhang et al., 2006;
Flor, 2012; Carlson and Fette, 2007; Flor and Fu-
tagi, 2012), such as edit-distance based approaches
(Damerau, 1964; Levenshtein, 1966; Bard, 2007;
Kukich, 1992; Brill and Moore, 2000; De Amorim
and Zampieri, 2013; Pande, 2017), approaches
based on statistical machine translation (Chiu
et al., 2013; Hasan et al., 2015; Liu et al., 2013),
and spelling correction for user search queries
(Cucerzan and Brill, 2004; Gao et al., 2010). Most
of them do not use contextual information, and
some use simple contextual features (Whitelaw
et al., 2009; Flor, 2012; Carlson and Fette, 2007;
Flor and Futagi, 2012).

In recent years, there are some attempts to de-
velop better spelling correction algorithms based on
neural nets (Etoori et al., 2018). Similar to our base-
lines ScRNN (Sakaguchi et al., 2017) and MUDE
(Wang et al., 2019), Li et al. (2018) proposed a
nested RNN to hierarchically encode characters to



411

word representations, then correct each word using
a nested GRU (Cho et al., 2014). However, these
previous works either only train models on natural
misspellings (Sakaguchi et al., 2017) or synthetic
misspellings (Wang et al., 2019), and only focus
on denoising the input texts from orthographic per-
spective without leveraging the retained semantics
of the noisy input.

On the other hand, Tal Weiss proposed Deep
Spelling (Weiss), which uses the sequence-to-
sequence architecture (Sutskever et al., 2014; Bah-
danau et al., 2014) to generate corrected sentences.
Note that Deep Spelling is essentially not a spelling
corrector since spelling correction must focus only
on the misspelled words, not on transforming the
whole sentences. For similar reasons, spelling cor-
rection is also different from GEC (Grammar Er-
ror Correction) (Zhang and Wang, 2014; Junczys-
Dowmunt et al., 2018).

As a background, recently pre-trained neural
LMs (Peters et al., 2018; Devlin et al., 2018; Yang
et al., 2019; Radford et al., 2019; Sun et al., 2019)
trained on large corpus on various pre-training
tasks have made an enormous success on various
benchmarks. These LMs captures the probability
of a word or a sentence given their context, which
plays a crucial role in correcting real-word mis-
spellings. However, all of the LMs mentioned are
based on subword embeddings, such as WordPiece
(Peters et al., 2018) or Byte Pair Encoding (Gage,
1994) to avoid OOV words.

5 Conclusion

We leverage novel approaches to combine spelling
and context information for stand-alone spelling
correction, and achieved state-of-the-art perfor-
mance. Our experiments gives insights on how
to build a strong stand-alone spelling corrector: (1)
combine both spelling and context information, (2)
leverage a pre-trained LM and (3) use the synthetic
character-level noise.
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A Appendices

A.1 Dataset Details
We keep the most frequent words in the 1-Billion-
Word-Language-Model-Benchmark dataset
(Chelba et al., 2013) as our word vocabulary Ψw,
and all characters in Ψw to form our character
vocabulary Ψc. After deleting sentences containing
OOV words, we randomly divide them into three
datasets Strain, Sdev and Stest. We merge the
two word-level misspelling lists (Mitton, 1985;
Belinkov and Bisk, 2017) to get a misspelling list
Ω. We randomly choose 80% of all misspellings in
Ω to form a known-misspelling-list, Ω̂.

To strengthen the robustness of the model to var-
ious noisy spellings, we also utilize the methods
in Belinkov and Bisk (2017) , namely, swap, mid-
dle random, fully random and keyboard type, to
generate character-level synthetic misspellings. To
encourage the model to learn contextual informa-
tion, we add an additional method, random gen-
erate, to generate arbitrary character sequences as
misspellings.

While replacing gold words with misspellings,
for a sentence with n words, the number of re-
placed words is m = max(bαnc, 1), where α =
min(|N (0, 0.2)|, 1.0) and N represents a Gaus-
sian distribution.

The dev set is created with misspellings from
sampled list Ω̂, and the test set is created with
misspellings from the full list Ω. We compare 2
train sets, the first has only natural misspellings
from Ω̂, and the second has natural misspellings as
well as synthetic misspellings, which is denoted as
+random char in Section 3.2. We always use the
same dev set and test set that only contain natural
misspellings for comparison.

Table 4 shows the parameters of our stand-alone
spelling correction dataset. We will release the
dataset and codes after this paper is published.

A.2 Implementation Details
We use PaddlePaddle 2 for the network implemen-
tation and keep the same configuration for the Sub-
word encoders as ERNIE 2.0 (Sun et al., 2019).
We tune the models by grid search on the dev
set according to F0.5 score. The detailed hyper-
parameters shown in Table 5. In addition, we use
Adam optimizer (Kingma and Ba, 2014) with learn-
ing rate of 5e-5 as well as linear decay. We used

2https://github.com/PaddlePaddle/
Paddle

Parameter Name Value
|Ψw| 50000

|Ψc| 130

max sent len 200

max word len 20

|S1| 17971548

|S2| 5985

|S3| 5862

Table 4: Parameters of our stand-alone spelling correc-
tion dataset.

Parameter Name Word Subword Char
max seq length 256 256 20

hidden size 512 768 256
# hidden layers 6 12 4

# attention heads 8 12 8

Table 5: Hyper-parameters of word encoders, Sub-
word(WordPiece (Wu et al., 2016)) encoders and char-
acter encoders.

10 GeForce GTX 1080 Ti or RTX 2080Ti to train
each model until convergence, which takes a few
days.

https://github.com/PaddlePaddle/Paddle
https://github.com/PaddlePaddle/Paddle

