
Findings of the Association for Computational Linguistics: EMNLP 2020, pages 2223–2236
November 16 - 20, 2020. c©2020 Association for Computational Linguistics

2223

Reinforcement Learning with Imbalanced Dataset
for Data-to-Text Medical Report Generation

Toru Nishino1

Ryuji Kano1
Ryota Ozaki1

Norihisa Nakano1

Tomoko Ohkuma1

1Fuji Xerox Co., Ltd.

Yohei Momoki2

Yuki Tagawa1

Keigo Nakamura2

2Fujifilm Corporation

Tomoki Taniguchi1

Motoki Taniguchi1

nishino.toru@fujixerox.co.jp, toru.nishino@fujifilm.com

Abstract

Automated generation of medical reports that
describe the findings in the medical images
helps radiologists by alleviating their work-
load. Medical report generation system should
generate correct and concise reports. However,
data imbalance makes it difficult to train mod-
els accurately. Medical datasets are commonly
imbalanced in their finding labels because in-
cidence rates differ among diseases; moreover,
the ratios of abnormalities to normalities are
significantly imbalanced. We propose a novel
reinforcement learning method with a recon-
structor to improve the clinical correctness of
generated reports to train the data-to-text mod-
ule with a highly imbalanced dataset. More-
over, we introduce a novel data augmentation
strategy for reinforcement learning to addition-
ally train the model on infrequent findings.
From the perspective of a practical use, we
employ a Two-Stage Medical Report Genera-
tor (TS-MRGen) for controllable report gener-
ation from input images. TS-MRGen consists
of two separated stages: an image diagnosis
module and a data-to-text module. Radiolo-
gists can modify the image diagnosis module
results to control the reports that the data-to-
text module generates. We conduct an experi-
ment with two medical datasets to assess the
data-to-text module and the entire two-stage
model. Results demonstrate that the reports
generated by our model describe the findings
in the input image more correctly.

1 Introduction

Writing medical reports manually from medical im-
ages is a time-consuming task for radiologists. To
write reports, radiologists first recognize what find-
ings are included in medical images, such as com-
puted tomography (CT) and X-ray images. Then
radiologists compose reports that describe the rec-
ognized findings correctly without omission. Doc-
tors prefer radiology reports written in natural lan-
guage. Other types of radiology reports, such as

Figure 1: Overview of our Two-Stage Medical Report
Generator (TS-MRGen) system.

Figure 2: Imbalanced distribution of the part of the find-
ing labels in the MIMIC-CXR dataset.

tabular reports, are difficult to understand because
of their complexity.

The purpose of our work is to build an auto-
mated medical report generation system to reduce
the workload of radiologists. As shown in Fig-
ure 1, the medical report generation system should
generate correct and concise reports for the input
images. However, data imbalance may reduce the
quality of automatically generated reports. Med-
ical datasets are commonly imbalanced in their
finding labels because incidence rates differ among
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diseases; moreover, the ratios of abnormalities to
normalities are also significantly imbalanced. Fig-
ure 2 shows an imbalanced distribution of find-
ing labels in the MIMIC-CXR dataset (Johnson
et al., 2019). For example, the finding label “En-
larged Cardiomediastinum.Negative” appears ap-
proximately 70 times more frequently than the find-
ing label “Atelectasis.Negative”. As a result of that
imbalance, the generation model tends to train only
the frequent finding labels, and tends to omit de-
scriptions of the infrequent labels. This tendency
increases incorrectness of generated reports.

To improve the correctness of generated reports,
we propose a novel reinforcement learning (RL)
strategy for a data-to-text generation module with a
reconstructor. We introduce a new reward, Clinical
Reconstruction Score (CRS), to quantify how much
information the generated reports retain about the
input findings. The reconstructor calculates CRS
and uses it as a reward for RL to train the model
to generate a greater number of correct reports.
Additionally, we introduce a new Reinforcement
Learning with Data Augmentation method (RL-
DA) to alleviate data imbalance problems that arise
from infrequent findings.

To replace the entire workflow of radiologists,
end-to-end image captioning approach is primarily
considered (Monshi et al., 2020). They generate
reports solely from input medical images. How-
ever, such approaches are difficult to apply to the
real medical field for the following two reasons.
First, the quality of generated reports is adversely
affected by the insufficient accuracy of image diag-
nosis systems. To generate correct reports, radiolo-
gists must be able to correct wrong image diagnosis
results. Second, end-to-end models cannot reflect
the intentions of radiologists to reports. In contrast
to abnormalities, normalities are less important but
frequently appear in the images. Radiologists some-
times deliberately omit the descriptions of some
normalities to write concise reports, especially at
return visits. To generate concise reports, radiol-
ogists should be able to select which findings the
system should include in the reports.

We employed the Two-Stage Medical Report
Generator (TS-MRGen), a novel framework for
controllable report generation. Figure 1 presents
an overview of TS-MRGen. TS-MRGen consists
of two separate stages: an image diagnosis module
and a data-to-text generation module. The image
diagnosis module recognizes the findings in the

image. Subsequently, reports are generated by the
data-to-text module. Radiologists can modify the
wrong or unintended results of the image diagnosis
module. Next, the modified findings are used as
the input to the data-to-text module. This approach
greatly improves the correctness and conciseness
of generated reports.

Overall, the main contributions of this study are
as follows:

• We introduce a reinforcement learning strat-
egy with Clinical Reconstruction Score (CRS)
to generate more clinically correct reports.

• We propose a novel Reinforcement Learning
with Data Augmentation (RL-DA) to address
data imbalance difficulties.

• We design and conduct experiments to vali-
date the effectiveness of Two-Stage Medical
Report Generator (TS-MRGen) with a modifi-
cation process.

We evaluate the proposed approach on two
datasets: the Japanese Computed Tomography
(JCT) dataset and the MIMIC-CXR dataset. Auto-
matic and manual evaluations on the JCT dataset
show that our CRS and RL-DA improve the cor-
rectness of generated reports. An experiment con-
ducted on the MIMIC-CXR dataset shows the gen-
erality of CRS and RL-DA; moreover, the experi-
ment on the MIMIC-CXR dataset demonstrates
that TS-MRGen with the modification process
generates more correct reports than the two-stage
model without a modification process.

2 Related Work

Medical Report Generation. Many end-to-end
medical report generation models have been pro-
posed (Monshi et al., 2020) to generate reports
from images. Jing et al. (2018) introduced a co-
attention mechanism to align semantic tags and
sub-regions of images. However, this model tends
to generate sentences describing normalities to an
excessively degree. This tendency results from an
imbalanced frequency of findings among the med-
ical images. Jing et al. (2019) and Harzig et al.
(2019) use different decoders to generate normal-
ities or abnormalities to address these data imbal-
ance difficulties.

Biswal et al. (2020) accepts doctors’ anchor
words for controllable medical report generation.
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This model generates reports that are more faith-
ful to doctors’ preferences by retrieving template
sentences from the word entered by the doctor.
Data-to-Text Generation. Data-to-text genera-
tion is a task to generate a fluent text that is faithful
to the input data. Wiseman et al. (2017) proposed a
data-to-text model with reconstruction-based tech-
niques. The method trains the model so that the
input data can be reconstructed from the decoder
hidden state. This reconstruction makes it more
likely that the hidden state of the decoder can cap-
ture the input data properly.

Ma et al. (2019); Moryossef et al. (2019) pro-
posed a two-step data-to-text model, comprising a
text planning module and a text realization module.
This model not only generates a text that is more
faithful to the input data than end-to-end models,
but it also allows for user control over the gener-
ated text by supplying a modified plan to the text
realization module.
Data Augmentation for Text Generation. Typi-
cal machine learning approaches that address data
imbalance, such as undersampling and oversam-
pling, are difficult to apply to this task because
the input images or finding labels are sets of mul-
tiple finding class label and the target reports are
discrete sequences. Kedzie and McKeown (2019)
applied data augmentation method to data-to-text
generation. To obtain additional training data, they
generated data-text pairs by the model itself using
the noise injection sampling method.
Text Generation with Reinforcement Learning
(RL). Text generation with Reinforcement Learn-
ing (RL) enables the model to train with indiffer-
entiable rewards, such as BLEU (Papineni et al.,
2002) and ROUGE (Lin, 2004) metrics. Zhang et al.
(2020b) improved the radiology report summariza-
tion model with RL using a factual correctness
reward. Liu et al. (2019a) applied RL for medical
report generation with Clinically Coherent Reward
(CCR) to directly optimize the model for clinical
efficacy. Both methods leverage CheXpert Labeler
(Irvin et al., 2019), a medical observation annotator,
to calculate rewards.

Our work addresses the data imbalance diffi-
culties beyond the imbalance between normalities
and abnormalities, as Jing et al. (2019) addressed.
Moreover, with our approach, the doctors can re-
flect their intentions to reports more directly to a
greater degree than Biswal et al. (2020). We extend
the factual-based RL method (Liu et al., 2019a) to

cases for which rule-based annotators are not avail-
able. Furthermore, we propose data augmentation
(Kedzie and McKeown, 2019) for RL to train the
model using only the input labels.

3 Method

Medical report generation is a task to gener-
ate reports consisting of a sequence of words
Y = {y1, y2, ...yN} from a set of images X =
{xk}Mk=1. Most cases Y include more than one
sentence. We annotated a set of finding labels
F = {f1, f2, ...fT } for each set of images. The
finding labels include abnormalities (indicated as
.Positive), normalities (indicated as .Negative) and
uncertain findings (indicated as .Uncertain) . Each
finding label can be disassembled into a sequence
of words as ft = {wt1, wt2, ...wtK}. For example,
an abnormality “Airspace Opacity.Positive” label
is divided into a sequence of {airspace, opacity,
positive}.

3.1 Two-Stage Medical Report Generator

We employ Two-Stage Medical Report Generator
(TS-MRGen), a framework that consists of two
separate stages: an image diagnosis module and a
data-to-text generation module. The image diag-
nosis module can be regarded as an image classi-
fication task that recognizes input images X and
classifies them into a set of findings F . Radiolo-
gists can modify the image diagnosis module result
F if errors are found in F . Alternatively, they can
intentionally omit or append findings labels. The
data-to-text generation module generates a report
Y from F . We consider the text generation module
as a data-to-text task.

3.2 Image Diagnosis Module

We train an image classification model that takes
as input a single-view chest X-ray and output a set
of probabilities of four types of labels (positive,
negative, uncertain, and no mention) for each pos-
sible finding label. We use EfficientNet-B4 (Tan
and Le, 2019) as a network architecture that was
initialized with the pretrained model on ImageNet
(Deng et al., 2009).

In some cases, the reports are described based on
two images: front view and lateral view. Following
Irvin et al. (2019), this module outputs the mean
probability of the model between two images.
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Figure 3: Overview of our reinforcement learning (RL) with a reconstructor. We leverage the clinical Reconstruc-
tion Score (CRS), which estimates the factual correctness of generated reports, as a reward for RL.

3.3 Text Generation Module

We adopt a table-to-text encoder-decoder model
(Liu et al., 2018) for the text generation module to
use words in the findings class labels. The encoder
of the text generation module has two layers: a
word-level encoder and a label-level layer.

hwtk = Encword(wtk, h
w
tk−1) (1)

hlt = MLPlabel([h
w
t0, h

w
tK ]) (2)

Therein, [hwt0, h
w
tK ] denotes the concatenation of

vectors hwt0 and hwtK . MLPlabel represents a multi-
layer perceptron. We use a one-layer bi-directional
gated recurrent unit (GRU) for the word level en-
coder.

For the decoder, we use one-layer GRU with an
attention mechanism (Bahdanau et al., 2015):

yn = Dec(yn−1, h
l, hdn−1, cn) (3)

where hl represents the max-pooled vector from
{hl0, ..., hlT }. The context vector cn is calculated
over the label-level hidden vectors hlt and the de-
coder hidden state hdn.

3.4 RL with Reconstructor

We use RL to train the text generation model to
improve the clinical correctness of the generated
reports. A benefit of RL is that the model can be
trained to produce sentences that maximize the re-
ward, even if the word sequence does not match
the correct answer. Many studies of text generation
with RL (Keneshloo et al., 2019) use rewards, such
as the BLEU and ROUGE metrics, to improve the
generated text. To improve the clinical correctness
of the generated reports, Liu et al. (2019a) and Irvin
et al. (2019) adopted clinically coherent rewards
for RL with CheXpert Labeler (Irvin et al., 2019),

a rule-based finding mention annotator. However,
in the medical domain, no such annotator is avail-
able in most cases other than English chest X-ray
reports.

We propose a new reward, Clinical Reconstruc-
tion Score (CRS), to quantify the factual correct-
ness of reports with a reconstructor module. Figure
3 shows an overview of our method, RL with CRS.
Contrary to the data-to-text generator, the recon-
structor reversely predicts the appropriate finding
labels from the generated reports. This reconstruc-
tor quantifies the clinical correctness of the reports.
Therefore, we can estimate the correctness of re-
ports without rule-based annotators.

We utilize BERT (Devlin et al., 2019) as a recon-
structor and reconstructed the finding labels F̂ as a
multi-label text classification task:

F̂ = FC(BERT(Ŷ )) (4)

where FC and BERT represent the fully connected
layer and the BERT layer, respectively. Ŷ denotes
a generated report. In addition, CRS is defined
as an F-score of the predicted finding labels F̂
against the input finding labels for the data-to-text
module F . This BERT reconstructor is trained with
a Class-Balanced Loss (Cui et al., 2019) to address
imbalanced datasets.

We design the overall reward as a combination
of ROUGE-L score and CRS:

R(Y ) = λrougeROUGE(Yt, Y ) +

(1− λrouge)CRS(Yt) (5)

where Yt represents a gold report regarding the
predicted report Y and λrouge is a hyperparameter.

The goal of RL is to find parameters to minimize
the negative expected reward R(Ŷ ) for Ŷ :

Lrlθ = −EŶ∼PθR(Ŷ ) (6)
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where Pθ denotes a policy network for the text
generation model.

We adopt SCST (Rennie et al., 2017) to approxi-
mate the gradient of this loss:

∇θLrlθ ≈ −∇θ logPθ(Ŷ s)(R(Ŷ s)−R(Ŷ g)) (7)

where Ŷ s is a sampled sequence with a Monte
Carlo sampling. We use the softmax function with
temperature τ for sampling sequences. R(Ŷ g) is a
baseline reward calculated from a greedily decoded
sequence Ŷ g.

To train the language model, RL with only CRS
and ROUGE as a reward is insufficient. Therefore,
we use the cross-entropy loss to generate fluent
sentences. We design an overall loss function for
training as a combination of the RL loss and cross-
entropy loss Lxent:

Lall = λrlL
rl + (1− λrl)Lxent (8)

where Lxent is the cross-entropy loss calculated
between the gold reports and generated reports,
and λrl is a hyperparameter.

3.5 Reinforcement Learning with Data
Augmentation (RL-DA)

We propose a novel method, RL with Data Aug-
mentation method (RL-DA), to encourage the
model to focus on infrequent findings. We focus
on the asymmetricity between the augmentation
cost of the input data and that of the target report
sentences. The input data, which comprise a set of
finding labels, can be augmented easily by adding
or removing a finding label automatically. How-
ever, the augmentation cost is higher for the target
reports than the input data because the target re-
ports are written in natural language. Therefore, we
introduce a semi-supervised reinforcement learn-
ing method to train the model solely by augmenting
the input data.

We conduct a data augmentation process of RL-
DA as the following steps.
Step 1: List and Filter all Candidate Find-
ing Labels. Given a set of finding labels F =
{f1, f2, ...fT }, the objective of the data augmenta-
tion is to obtain a new set of finding labels F̃ , for
which an additional finding label fT+1 is added to
F . We list all finding labels that can be appended
to F . We filter the finding labels inappropriate
for appending F according to the clinical relation
between the labels. Some pairs of finding labels
have clinically contradictory relations. We filter
the labels based on the following two rules.

a. Contradictory Relation. We exclude a pair
of contradictory finding labels. For example,
the abnormality “Pleural Effusion.Positive”
and the normality “Pleural Effusion.Negative”
must not be included in the same set F̃ .

b. Supplementary Relation. We exclude a pair
of contradicting finding labels that supple-
ment other finding labels in F . For example,
“Pleural Effusion.Mild” is excluded if “Pleu-
ral Effusion.Positive” not in F .

Step 2: Assign Sample Finding Labels. We sam-
ple an additional finding label fT+1 to append to F .
The label is extracted from a set of candidates by
random sampling. The data imbalance is mitigated
because the data augmentation process appends a
new finding label irrespective of the frequency of
this finding labels in the training data.

We use this augmented set of finding labels F̃
for RL. The overall loss function is as follows:

Lall = λrl(L
rl + λaugL

aug) + (1− λrl)Lxent (9)

where λrl and λaug are hyperparameters. Laug de-
notes the RL loss calculated using the augmented
set F̃ . Laug is calculated in the same way as
Lrl with a reward R(Y ) under the condition of
λrouge = 0. This is because no reference report is
available for the augmented set F̃ . Hence, RL-DA
method enables training of the model with more
data at a low cost.

4 Experiment

First, to evaluate the effects of our proposed CRS
and RL-DA on the data-to-text module, we con-
duct an experiment with the Japanese Computed
Tomography (JCT) dataset. Moreover, to evaluate
the generality of CRS and RL-DA and the effects
of the modification process on TS-MRGen, we con-
duct an experiment with the MIMIC-CXR dataset.

4.1 Evaluation on the JCT Dataset

Dataset and Experimental Settings. We evaluate
the data-to-text module with the JCT dataset. The
JCT dataset has pairs of input sets for finding labels
and target medical reports written in Japanese. The
JCT dataset is used only to evaluate the data-to-text
module. Therefore, we did not prepare medical
images for the JCT dataset.

We defined a system of finding labels after con-
sultation with radiologists. Annotators with fully
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sufficient knowledge in the radiology report manu-
ally annotate the finding labels to the reports. De-
scriptions that were unrelated to any finding labels
in the reports were omitted from preprocessing for
privacy reasons.

We chose all hyperparameters based on the CRS
scores of the validation data. Details of our models,
metrics, training, and dataset are included in the
Supplementary section for reproducibility.

We compare the following six text generation
models :
(1) Table-to-Text (Baseline): Table-to-text model
without RL proposed in Section 3.3
(2) 1-NN: calculates the relevance of input finding
labels using TF-IDF and selects the most relevant
reports from the training data.
(3) Rule-Based: generates reports based on manu-
ally prepared templates. We prepared one template
sentence per one finding label, and the method con-
catenates template sentences to construct the entire
reports.
(4) Seq2Seq: normal encoder-decoder model with
GRU.
(5) CNN-enc: encoder-decoder model with a CNN
encoder.
(6) Hier-Dec: encoder-decoder model with a hier-
archical decoder (Jing et al., 2019).

Additionally, we compare the following four RL
strategies to train the table-to-text text generation
model:
(7) RLR: trains the model by RL using only
ROUGE as a reward.
(8) RLCRS: trains the model by RL using only CRS
as a reward.
(9) RLCRS+R: trains the model by RL with CRS
and ROUGE as a reward.
(10) RL-DACRS+R: trains the model by RL with
CRS and ROUGE and applies RL-DA proposed in
Section 3.5.
Results. The upper part of Table 1 presents au-
tomatic evaluation results regarding the text gen-
eration models. The rule-based method obtained
the lowest ROUGE-L because it generated con-
siderably redundant reports. Table-to-Text model
achieved the best CRS, so we selected the table-to-
text model as a text generation module.

The lower part of Table 1 presents auto-
matic evaluation results regarding training strate-
gies. This result demonstrates that application
of ROUGE as a reward improves ROUGE-L
scores, whereas application of CRS as a reward

ROUGE BLEU CRS
Comparison of Text Generation Model

(1) Table-to-Text (Baseline) 66.4 39.7 78.2
(2) 1-NN 62.4 33.6 73.1
(3) Rule-Based 60.9 36.2 80.3
(4) Seq2Seq 64.6 38.7 76.3
(5) CNN-enc 62.0 37.2 74.1
(6) Hier-Dec 62.1 37.0 77.5

Comparison of Training Strategy
(7) RLR 69.6 42.0 79.3
(8) RLCRS 64.8 38.4 79.4
(9) RLCRS+R 67.2 40.5 80.7
(10) RL-DACRS+R

(Proposed) 68.2 41.1 81.3

Table 1: Automatic evaluation results of the data-
to-text module with the JCT dataset. The pro-
posed RL-DACRS+R achieved the best score on CRS,
whereas RLR achieved the best score on BLEU and
ROUGE. The CRS of the proposed model is statis-
tically significant compared with the baseline model
(p < 0.01).

Correctness Gramma-
P R F ticality

Baseline 89.7 70.2 77.8 94.0
RLR 92.9 75.1 82.2 95.5
RL-DACRS+R 95.1 75.2 83.1 95.0

Table 2: Comparison of manual evaluation results of
the data-to-text module on the JCT dataset. Correctness
and fluency scores represent an average of the scores of
two workers. P, R, and F denote the precision, recall,
and F-score of correctness, respectively. The correct-
ness scores of the proposed model are statistically sig-
nificant compared with the baseline model (p < 0.01).

improves CRS scores. This indicates that RL im-
proves the metric used as a reward. Our pro-
posed RL-DACRS+R achieved higher both CRS
and ROUGE scores than RLCRS+R.

From the automatic evaluation results, we can-
not conclude that our proposed CRS and RL-DA
improved correctness because we have no means
of deciding which metric is more appropriate for
evaluating the generated reports. To estimate the
effects of our proposed method on the data-to-text
model, we also conducted a manual evaluation. As
in previous research (Zhang et al., 2020a), two spe-
cialists who are knowledgeable in radiology reports
measured 100 randomly selected samples for each
experimental condition.

We defined the following metrics for a manual
evaluation:

• Grammaticality: The percentages of reports
that contain no grammatical errors.

• Correctness: Measure how well the reports
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describe the clinically correct information.
We define the correctness of Ŷ as an F-score
with the following precision and recall:

Precision(Ŷ ) =
NTP

NTP +NFP
(10)

Recall(Ŷ ) =
NTP

NTP +NFN
(11)

where NTP indicates the number of findings cor-
rectly noted in Ŷ , NFN indicates the number of
missing findings in Ŷ , and NFP indicates the num-
ber of findings mistakenly noted in Ŷ .

Table 2 presents manual evaluation results. Com-
pared with RLR, our proposed RL-DACRS+R also
improves the correctness of manual evaluation.
This indicates that proposed RL-DACRS+R does
not merely improve the CRS score; it improves the
clinical correctness of the generated reports.

4.2 Evaluation on the MIMIC-CXR Dataset

Datasets. We evaluated the data-to-text module
and the entire system on the MIMIC-CXR dataset,
which includes chest X-ray images and their corre-
sponding medical reports written in English. No-
tably, these reports include descriptions other than
findings, such as indications and impressions. We
omitted these descriptions other than findings be-
cause these descriptions cannot be generated from
the input images. We used the CheXpert dataset
(Irvin et al., 2019) to train the image diagnosis
module.

We annotated finding labels to the MIMIC-CXR
dataset with CheXpert Labeler (Irvin et al., 2019)
and the image diagnosis module. CheXpert Labeler
annotated findings labels for 14 categories of three
types: positive, negative, and uncertain labels. For
the training data of the data-to-text module, we
labeled the reports using CheXpert Labeler only.

In addition to BLEU metrics, we adopted CheX-
pert accuracy, precision, and F-score metrics to
quantify the correctness of generated reports. This
is because the domain-agnostic metrics (such as
BLEU) are doubtful in evaluating the quality of
reports, and CheXpert-based metrics are more reli-
able metrics, as reported by (Boag et al., 2019). We
chose all hyperparameters based on the F-scores of
the validation data. Details of our models, metrics,
training, and dataset are described in the Supple-
mentary section for reproducibility.
Experimental Settings. For evaluation, we pre-
pare the following four experimental conditions.

(a) Data-to-Text Evaluation. We provide only
the gold finding labels as inputs to the data-to-text
module, and then evaluate the generated reports.
This evaluation is intended to assess whether our
proposed method is also applicable to the MIMIC-
CXR dataset or not. Therefore, in this evaluation,
we focus only on the data-to-text module. We com-
pare our proposed model RL-DACRS+R which is
trained by RL with CRS and ROUGE, and applied
RL-DA with the baseline table-to-text model.
(b) End-to-End Evaluation. We compare our
TS-MRGen with the end-to-end models, such as
CNN-RNN (Boag et al., 2019) and CCR applied
models (Liu et al., 2019a). As shown on the left
side of Figure 1, the end-to-end model directly
generates target reports from the input images. This
evaluation setting do not use the finding labels in
any way.
(c) Two-Stage Evaluation without Modification.
We evaluate our TS-MRGen using the same inputs
and outputs as the end-to-end models. As shown
in Figure 1, TS-MRGen first predicts the finding
labels to describe the findings in the input images.
Next, it generates reports from the finding labels.
We employ RL-DACRS+R to the data-to-text mod-
ule of TS-MRGen.
(d) Two-Stage Evaluation with Modification. In
addition to (c) above, we apply the modification
process to the finding labels predicted by the image
diagnosis module. However, it is too expensive to
evaluate the model in this condition because the
cost of radiologist services is too high. Therefore,
we imitate this modification flow using CheXpert
Labeler using the following process.
(i) Obtain the output probability vector p(f̂t|X) of
the finding labels predicted by the image diagnosis
module.
(ii) Classify the predicted finding labels as con-
fident or untrustworthy according to probabil-
ity p(f̂t|X). If p(f̂t|X) is within the range of
(plowth , phighth ), then we regard the predicted result f̂t
as untrustworthy, and the result is discarded.
(iii) Apply the modification process to the predicted
finding labels. We obtain the finding labels using
CheXpert Labeler and replace all untrustworthy
labels classified in (ii).

This replacement process imitates the modifica-
tion flow of radiologists.
Results. The upper part of Table 3 presents a com-
parison related to the data-to-text module. This part
of the table shows that our proposed RL-DACRS+R
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Evaluation BLEU CheXpert
Condition 1 2 3 4 Acc Prec F (micro) F (macro)

Comparison of Data-to-Text Module
Baseline (Table-to-Text) (a) 35.2 23.0 16.1 11.9 92.2 75.9 66.3 50.5
RL-DACRS+R (a) 36.4 23.3 16.4 12.1 93.2 77.1 68.9 55.9

Comparison of Entire Report Generation System
End-to-End (CNN-RNN) (Boag et al., 2019) (b) 30.5 20.1 13.7 9.2 83.7 30.4 30.2 18.6
End-to-End (CCR+NLG) (Liu et al., 2019a) (b) 35.9 23.7 16.4 11.3 91.8 58.6 33.8 18.7
TS-MRGen w/o modification (c) 21.7 11.8 7.3 4.8 87.3 48.2 29.6 21.7
TS-MRGen with modification (d) 36.3 23.1 16.3 12.1 91.7 71.0 63.4 49.5

Table 3: Automatic evaluation of the data-to-text module using the MIMIC-CXR dataset. Acc, Prec, F (micro),
and F (macro) indicate accuracy, precision, micro F-score, and macro F-score, respectively. CheXpert scores
quantify the correctness of generated reports. For the data-to-text module, our proposed RL-DACRS+R achieved
the best result (bold) for all metrics. For the entire report generation system, TS-MRGen with the modification
process improved the correctness of the generated reports. The CheXpert scores of the proposed model and TS-
MRGen with modification were statistically significant compared with the baseline model and TS-MRGen without
modification (p < 0.05), respectively.

Figure 4: Evaluation of generated reports for each finding label. The horizontal axis shows the frequency of each
finding label in the training data. The vertical axis shows the CheXpert F-scores for each finding label. The left plot
presents a comparison between the proposed RL-DACRS+R and baseline method. Our proposed method improves
CheXpert F-scores, especially for infrequent finding labels. The right plot presents an effect of the modification
process. Our TS-MRGen presents the important benefit of improving correctness through modification processes.

improves the clinical accuracy of the generated re-
ports for the MIMIC-CXR dataset.

The lower part of Table 3 presents a compari-
son related to the entire report generation system.
Compared with the TS-MRGen without the mod-
ification process, the TS-MRGen with the modifi-
cation process achieved significantly better result
for BLEU, CheXpert precision, micro and macro
F-scores. CheXpert F-score quantifies the clinical
correctness more adequately. Therefore, this result
demonstrates that our TS-MRGen has an important
advantage because the system enables radiologists
to modify the mistakenly predicted finding labels.

5 Discussion

5.1 Effects on an Imbalanced Dataset
Figure 4 presents an evaluation of generated reports
for each finding label evaluated using CheXpert La-

beler. Both our proposed RL-DACRS+R and the
baseline method exhibit the same tendency: more
infrequent finding labels in the training data are as-
sociated with the lower correctness of the generated
reports. RL-DACRS+R outperforms the baseline
model, especially for the infrequent finding labels,
This result demonstrates that our proposed RL-DA
and CRS generate more accurate reports, especially
with infrequent labels in the training data.

5.2 Qualitative Results

The upper part of Table 4 presents an example of
a generated report for the JCT dataset. The base-
line model generated a report with an incorrect
description: “is accompanied by a pleural inden-
tation.” The data imbalance causes such an error.
“Pleural Indentation.Positive” is more frequent find-
ing label than “Pleural Indentation.Negative” in
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Example of generated reports of JCT dataset.
Input Finding Labels: Nodule.Positive, Nodule.Solid, Pleural.Indentation.Negative, (truncated) Border.Well Defined
Report Generated by the Baseline Model
There is a 20 mm dilated nodule in the lung. (truncated)
It is well-defined and is accompanied by a pleural
indentation.

Report Generated by the Proposed (RL-DACRS+R) Model
There is a 20 mm dilated nodule in the lung. (truncated)
It is well-defined and there is no pleural indentation.

Examples of generated reports of MIMIC-CXR dataset.
Gold Finding Labels:
Cardiomegaly.Positive, Enlarged Cardiomediastinum.Negative, Edema.Negative, Consolidation.Negative,
Pneumothorax.Negative, Pleural Effusion.Negative
Labels Predicted by Image Diagnosis Module
Cardiomegaly.Positive

Modified Labels
Cardiomegaly.Positive, Enlarged Cardiomediastinum.Negative,
Edema.Negative, Consolidation.Negative,
Pneumothorax.Negative, Pleural Effusion.Negative

Report generated by TS-MRGen without Modification
the heart is mildly enlarged. moderate cardiomegaly is
unchanged.

Report Generated by TS-MRGen with Modification
the lungs are clear without focal consolidation. no pleural
effusion or pneumothorax is seen. the cardiac silhouette is
mildly enlarged. the mediastinal and hilar contours are within
normal limits. there is no pulmonary edema.

Table 4: (upper) Example of a report generated from the JCT dataset. The italic part represents the fault in
the baseline model. The underlined part represents the correct description corresponding to the italic part. A
Japanese-English translation is applied. (lower) Example of a report generated from the MIMIC-CXR dataset.
The modification process compensates for the missing labels predicted by the image diagnosis module. It thereby
generates a report more faithful to the gold finding labels.

the training data. Therefore, the baseline model
mistakenly outputted a more frequently occurring
description. However, our proposed RL-DA gen-
erated a correct description: “there is no pleural
indentation”. This result demonstrates that our pro-
posed RL-DA and CRS trained the model more
accurately on infrequent finding labels.

The lower part of Table 4 presents an exam-
ple of a generated report for the MIMIC-CXR
dataset. Without modification processes, the gener-
ated report includes only the description for “Car-
diomegaly.Positive.” The image diagnosis module
has a tendency to omit normalities because the
image diagnosis module is not able to train the in-
tention of radiologists of whether normalities are
omitted or not. With modification processes, the
generated reports include the exact description of
the gold finding labels with no omissions. Modifi-
cation processes correct the missing finding labels
to the predicted labels, thereby generating more
faithful reports.

6 Conclusion

We proposed a novel Clinical Reconstruction Score
(CRS) and Reinforcement Learning and Data Aug-
mentation (RL-DA) methods to train a data-to-text
model for an imbalanced dataset. Additionally, we
employed a Two-Stage Medical Report Generator
(TS-MRGen) for controllable medical report gen-
eration from input medical images.

An evaluation of the data-to-text module re-
vealed that our proposed CRS and RL-DA methods
improved the clinical correctness of generated re-
ports, especially for infrequent finding labels. An
evaluation of the entire medical report generation
system revealed that our TS-MRGen generated
more correct reports than an end-to-end generation
model.

In future work, we would like to explore whether
our method is applicable to other domain tasks in
data-to-text generation, such as sports summary
generation and biography generation tasks.
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A Supplementary Material

A.1 Dataset and Preprocessing
the JCT Dataset. We built the JCT dataset to train
the data-to-text module of the medical report gen-
eration system. For the JCT dataset, we collected
4,454 medical reports regarding pulmonary nod-
ules from a hospital. To train an accurate medical
report generation system, we focused only on the
findings in the reports and excluded the sentences
that violated patient privacy. During a consultation
with radiologists, we defined 57 types of finding
labels. As preprocessing, all descriptions that were
not related to any findings were truncated by an-
notators. We lexicalized phrases referring to the
existence of nodules and phrases referring to the
size of the nodules to improve the stability of train-
ing of the data-to-text generation model. We used
MeCab 1 and mecab-ipadic-NEologd (Sato et al.,
2017) to tokenize the reports, and keep tokens with
2 or more occurrences.

To prevent data leakage in validation/test
datasets, we split the dataset in a way to ensure that
the same sets of finding labels are not included in
the training, validation, and test data. Additionally,
to avoid the negative influence of the imbalanced
frequency of sets of finding labels, we omitted the
samples with duplicated sets of finding labels in
the validation/test dataset. These strategies for data
splitting and duplicate input handling caused dif-
ferences in average labels and lengths, as shown in
Table 5. If samples contained shorter sentences and
fewer input labels, the validation and test datasets
tended to contain longer sentences and a greater
number of input labels.
the MIMIC-CXR Dataset. Medical reports in the
MIMIC-CXR dataset 2 contain descriptions that
are irrelevant to the findings in the input images.
Hence, we extracted the finding sections of the
reports using the scripts provided in Boag et al.
(2019) 3. In training data, we truncated the sen-
tences in the reports that were not related to any
findings using CheXpert Labeler and NegBio (Peng
et al., 2018) parser to improve the stability of train-
ing the model. We omitted the reports that did
not mention any findings or had no finding sec-
tions from the training data. Note that the reports
in the validation and test data may contain a de-
scription that does not mention any findings. We

1https://taku910.github.io/mecab/
2https://physionet.org/content/mimic-cxr/2.0.0/
3https://github.com/wboag/cxr-baselines
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Number of Average Average
Reports labels length

the JCT dataset
Training data 3,637 4.71 27.5
Validation data 418 9.46 52.7
Test data 399 9.49 51.4

the MIMIC-CXR dataset
Training data 131,016 4.92 43.6
Validation data 1,156 4.90 44.5
Test data 2,299 5.01 54.7

Table 5: Statistics of the JCT dataset and the MIMIC-
CXR dataset.

dataset JCT MIMIC-CXR
Data-to-Text Module Hyperparameters

Vocabulary size 339 2222
Number of labels 57 40
Dropout rate 0.2 0.2
Word embedding size 32 64
Label embedding size 16 16
Hidden size 32 32
Beam search width 5 5

Training Hyperparameters
Batch size 32 32
Optimizer Adam Adam
Learning rate 5.0× 10−3 2× 10−4

Learning rate decay 0.99 0.98
λrouge 0.2 0.2
λrl 0.2 0.03
λaug 0.1 0.05
τ (Softmax temperature) 0.5 0.4
Dropout 0.2 0.2
Gradient clipping 2.0 2.0

Table 6: List of hyperparameters of the data-to-text
modules.

use this approach to align our experimental condi-
tions with previous end-to-end research Boag et al.
(2019). We used the Natural Language Toolkit 4

to tokenize the reports, and keep tokens with 10 or
more occurrences. We have split the dataset into
train, validation, and test data based on the split dis-
tributed in the MIMIC-CXR-JPG (Johnson et al.,
2019) 5 dataset. Table 5 presents the statistics of
the MIMIC-CXR dataset.

A.2 Training Details

Image Diagnosis Module All images were fed
into a network with a size of 512 × 512 pixels.
We set up the loss as the sum of the multi-class
cross-entropy for each observations and used the
RAdam (Liu et al., 2019b) optimizer with a learn-
ing rate of 1.0 × 10−4. We trained the model for
5 epochs with the CheXpert dataset (Irvin et al.,
2019).

4https://www.nltk.org/
5https://physionet.org/content/mimic-cxr-jpg/2.0.0/

Subsequently, we evaluated the image diagno-
sis module with the CheXpert dataset. To evalu-
ate the accuracy of image classification correctly
for the infrequent labels, we performed a 5-fold
cross-validation. Table 7 presents F-scores for each
finding labels evaluated in 5-fold cross-validation.
Although the F-scores of the no-mention labels are
high, the F-scores of the positive, negative, and
uncertain finding labels are relatively low. This is
because the CheXpert dataset is significantly imbal-
anced, and almost all finding labels in the training
data are in the no-mention category.
Data-to-Text Module For the JCT and MIMIC-
CXR datasets, we trained the data-to-text module
for 50 and 20 epochs, respectively. We used a CRS
score of the validation data as the stopping criteria.
Finally, we reported evaluation scores that achieved
the highest CRS score on the validation data. Ta-
ble 6 presents hyperparameters used to train our
models. Before we trained the model with RL, we
pretrained the model with only cross-entropy loss
for an epoch. The number of parameters of the
data-to-text module was 127k for the JCT dataset
and 463k for the MIMIC-CXR dataset.
Reconstructor Module To train the reconstruc-
tor for the JCT dataset, we used the pretrained
Japanese BERT model 6. We have split the train-
ing data of the data-to-text module into 4:1 and
used the former part as training data and the latter
part as validation data for the reconstructor. For
fine-tuning, we used the AdamW optimizer with a
learning rate of 2.0× 10−5 for the BERT layer and
2.0× 10−3 for the fully connected layer. We used
binary cross-entropy loss to train the model, and ap-
plied Class Balanced Loss (CBL) (Cui et al., 2019)
with β = 0.999. The number of parameters of
the reconstruction module is 110M. We fine-tuned
the model with 10 epochs, and the F-score on the
validation dataset was 90.3.

To train the reconstructor for the MIMIC-CXR
dataset, we use the pretrained bert-base-uncased
model. We also verified the BioBERT model (Lee
et al., 2020), but the results showed no significant
differences with the bert-base-uncased model. For
fine-tuning, we used the AdamW optimizer with a
learning rate 2.0 × 10−5 for the BERT layer and
2.0× 10−3 for the fully connected layer. By anal-
ogy with the JCT dataset, we have split the training
data into 4:1 and used the former part as the train-
ing data and the latter part as the validation data

6https://github.com/cl-tohoku/bert-japanese
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Labels Negative Positive Uncertain No Mention
No Finding - 0.468 - 0.907
Enlarged Cardiomediastinum 0.436 0.197 0.040 0.858
Cardiomegaly 0.209 0.525 0.013 0.873
Lung Opacity 0.002 0.696 0.000 0.602
Lung Lesion 0.150 0.246 0.092 0.936
Edema 0.223 0.615 0.254 0.740
Consolidation 0.489 0.215 0.254 0.740
Pneumonia 0.008 0.163 0.278 0.883
Atelectasis 0.002 0.333 0.325 0.713
Pneumothorax 0.458 0.513 0.000 0.770
Pleural Effusion 0.524 0.759 0.036 0.639
Pleural Other 0.335 0.217 0.165 0.963
Fracture 0.234 0.207 0.007 0.890
Support Devices 0.046 0.844 0.007 0.771
Overall F1-Score 0.240 0.428 0.103 0.807

Table 7: Evaluation of the image diagnosis module for each finding label. All scores are measured by F-score in
5-fold cross validation.

Dataset JCT MIMIC-CXR
Optimizer AdamW AdamW
Learning rate
of BERT layer 2.0× 10−5 2.0× 10−5

Learning rate
of FC layer 2.0× 10−3 1.0× 10−4

CBL β (Cui et al., 2019) 0.999 0.999
Warm up steps 200 200

Table 8: List of hyperparameters of the reconstructor
modules.

for the reconstructor. We used binary cross-entropy
loss to train the model, and applied Class Balanced
Loss (CBL) (Cui et al., 2019) with β = 0.999. The
number of parameters of the reconstruction mod-
ule was 109M. We fine-tuned the model with 10
epochs, and the F-score on the validation dataset
was 97.9.

We used an Intel Core i7-6850K CPU and
NVIDIA GTX 1080Ti GPU for training on the
JCT dataset, and the training time was approxi-
mately 3 h. We used an Intel Xeon Gold 6148
CPU and NVIDIA Tesla V100 GPU for training on
the MIMIC-CXR dataset, which required approxi-
mately 12 hours.

A.3 Evaluation Settings.

We use an approximate randomization test 7 to
evaluate the statistical significance.
Evaluation Metrics on the JCT Dataset. For au-
tomatic evaluation on the JCT dataset, we used
BLEU (Papineni et al., 2002), F-scores of ROUGE-
L (Lin, 2004), and CRS as metrics. We used
Natural Language Toolkit 8 to calculate BLEU

7https://github.com/smartschat/art
8https://www.nltk.org/

scores, and the ROUGE Python library 9 to cal-
culate ROUGE-L scores.
Evaluation Metrics on the MIMIC-CXR
Dataset. For comparison with the previous image
captioning approaches, we used BLEU-1, BLEU-2,
BLEU-3, and BLEU-4 metrics calculated by the
nlg-eval 10 library. However, word-overlap based
metrics, such as BLEU, fail to assume the factual
correctness of generated reports. We compared the
labels assigned in CheXpert Labeler between the
generated reports and gold reports to calculate the
CheXpert accuracy, precision, micro F-score, and
macro F-score. The micro F-score was obtained
by the overall numbers of true positives, false
positives, and false negatives. The macro F-score
was obtained by the average of F-scores per
class label. Although the micro F-score neglects
infrequent labels, the score is significantly biased
by the imbalanced distribution of the test dataset.

Note that precision and F-score are preferred to
evaluate the clinical correctness of the reports in
CheXpert. In contrast, CheXpert accuracy does not
quantify the clinical correctness of the generated
reports adequately. The imbalanced dataset results
in an excessive number of true negatives rather than
true positives. Hence, CheXpert accuracy overesti-
mates the clinical correctness of generated reports
if the reports comprise many descriptions that are
not related to the findings.
Modification Flow We apply the modification pro-
cess to the image diagnosis module result with the
parameters of (plowth , phighth ) = (0.1, 0.9) for the
positive finding labels. However, we regard all neg-

9https://github.com/pltrdy/rouge
10https://github.com/Maluuba/nlg-eval
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ative and uncertain labels predicted by the image
diagnosis module as unreliable. This is because
negative or uncertain findings are highly dependent
on the radiologist’s judgment.


