Pseudo-Bidirectional Decoding for Local Sequence Transduction

Wangchunshu Zhou'* Tao Ge?

Ke Xu!

'Beihang University, Beijing, China
2Microsoft Research Asia, Beijing, China

zhouwangchunshul@buaa.edu.cn,

kexu@nlsde.buaa.edu.cn

tage@microsoft.com

Abstract

Local sequence transduction (LST) tasks are
sequence transduction tasks where there ex-
ists massive overlapping between the source
and target sequences, such as grammatical er-
ror correction and spell or OCR correction.
Motivated by this characteristic of LST tasks,
we propose Pseudo-Bidirectional Decoding
(PBD), a simple but versatile approach for LST
tasks. PBD copies the representation of source
tokens to the decoder as pseudo future con-
text that enables the decoder self-attention to
attends to its bi-directional context. In addi-
tion, the bidirectional decoding scheme and
the characteristic of LST tasks motivate us to
share the encoder and the decoder of LST mod-
els. Our approach provides right-side context
information for the decoder, reduces the num-
ber of parameters by half, and provides good
regularization effects. Experimental results on
several benchmark datasets show that our ap-
proach consistently improves the performance
of standard seq2seq models on LST tasks.

1 Introduction

As illustrated in Figure 1, in local sequence trans-
duction (LST) tasks, a model is trained to map an
input sequence z1, ..., Ty to an output sequence
Y1, .-, Ym, Where the input and output sequences
are of similar length and differ only in a few po-
sitions. Many important NLP tasks can be formu-
lated as LST tasks, including automatic grammati-
cal error correction (GEC) (Lee and Seneff, 2006),
OCR error correction (Tong and Evans, 1996) and
spell checking (Fossati and Di Eugenio, 2007).
With the recent success of sequence-to-sequence
(seq2seq) learning (Sutskever et al., 2014) and the
transformer model (Vaswani et al., 2017), most
LST tasks have been tackled by directly training
the transformer-based models in a seq2seq fashion.

*This work was done during the first author’s internship
at Microsoft Research Asia.
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Figure 1: Illustration of the characteristic of local
transduction tasks versus general sequence transduc-
tion tasks. Words and letters in red are those different
from that in the input sequences.
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While the conventional seq2seq paradigm suits
well for general sequence transduction problems
such as machine translation, their left-to-right auto-
regressive decoding scheme cannot access the fu-
ture predictions on the right side, which does not
fully utilize the characteristic of LST tasks and has
been demonstrated to degrade the performance of
seq2seq modes (Zhang et al., 2018, 2019a).

In this work, motivated by the characteristic of
LST tasks, we propose a Pseudo Bidirectional De-
coding (PBD) approach to tackle LST tasks. Our
approach copies the input tokens on the right side
of the current decoding position as a proxy for the
future tokens. In this way, we augment the decoder
of the conventional transformer by allowing it to at-
tend to the representation of “pseudo” future tokens
in the decoder, making the decoding self-attention
module bidirectional without introducing any com-
putational overhead during inference. To retain the
parallelizability of the training transformer models,
we propose a novel masking strategy that enables
the decoder to attend to copied future token repre-
sentations during training in a parallelizable fash-
ion. Also, we incorporate a segment embedding
mechanism to make the decoder aware of whether
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Figure 2: Illustration of the proposed pseudo future modeling approach and the pseudo-bidirectional attention

mask used for parallel training.

a token is directly copied from the encoder and rep-
resent them differently from the generated tokens.

With the proposed approach, the encoder and
the decoder in transformer models for LST tasks
receive similar input sequences and both attend
to their bidirectional context information, which
motivates us to share all their parameters (except
encoder-decoder attention). The parameter sharing
mechanism allows us to roughly reduce the total
number of parameters of the model by half, which
is beneficial for real-world applications and makes
the training more efficient. It also explicitly models
the characteristic of LST tasks and leads to good
regularization effects, enhancing the performance
of transformer models on LST tasks and allowing
us to train deeper models for further improvements.

We conduct extensive experiments on three LST
tasks including grammatical error correction, spell
correction, and OCR correction. Experimental re-
sults demonstrate that the proposed PBD approach
is able to substantially and consistently improve
over competitive transformer baselines across all
three LST tasks and yield state-of-the-art results on
both spell and OCR correction tasks.

2 Pseudo-Bidirectional Decoding

2.1 Pseudo Future Modeling

In contrast to recent works on bidirectional decod-
ing (Zhang et al., 2018, 2019a) that employs a right-
to-left model at the same time and combines their
predictions in a post-hoc fashion with sophisticated
algorithms, our approach enables the decoder of
the seq2seq model to exploit the future context of
the generated sequence without having to predict
them in the first place.

Concretely, our method copies the representa-
tion of tokens from the N + 1 th position to the
end of the input sequence in the encoder layer to
the corresponding decoder layer as pseudo future
information when predicting the N th output to-
ken. For instance, for grammatical error correction,
given an input text “He go to school yesterday.”,
a conventional left-to-right decoder would proba-
bly generate “goes” at the second decoding step,
as the decoder state is “He _”, which is likely to
be continued with the third person singular form
of the verb “go”. In contrast, with the proposed
pseudo-bidirectional decoding scheme, the decoder
state becomes “He _ to school yesterday.”, which
facilitates the decoder to correctly generate “went”.

While ideally the encoder-decoder attention may
capture this information, our method makes the
decoder self-attention more effective by allowing it
to directly attend to future information, which may
be complementary to the information captured by
the encoder-decoder attention module, leading to
better empirical performance.

Pseudo-bidirectional Attention Mask A naive
implementation of the PBD approach requires us
to change the decoder input for each decoding step
instead of feeding the entire output sequence into
the decoder and use a causal attention mask to
ensure the causality of the decoder. This would
hinder the transformer model from being trained in
parallel, thus makes the training much less efficient.

To address this problem, we propose a novel
masking strategy. As illustrated in Figure 2, we con-
catenate the representation of the input sequences
to that of the output sequences to form the key and
the value in the decoder self-attention module. The
pseudo-bidirectional attention mask makes the de-
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coder self-attention bidirectional by allowing the
query tokens to attend to pseudo future tokens
copied from the encoder, retaining the causality
of the decoder and enabling parallel training.

Segment Embedding While the characteristic of
LST tasks ensures the copied pseudo future tokens
to be similar to the expected output tokens, the
simple position-wise alignment method may make
the pseudo future information contain some noise.
Therefore, we propose a simple segment embed-
ding method that enables the decoder to distinguish
the copied tokens from the tokens generated by the
decoder and represent them differently.

Similar to BERT (Devlin et al., 2018), we add
a learned embedding, which indicates whether the
token is generated or copied, to each token repre-
sentation in each decoder layer. Hopefully, this
would make the decoder able to distinguish the
copied tokens from the tokens generated by the de-
coder and represent them differently, thus improve
its robustness to the noise in the copied future token
representations.

2.2 Parameter sharing

The encoder and the decoder in conventional trans-
former models are independently parameterized
for two main reasons. First, the inputs for the
encoder and the decoder are usually different for
general sequence transduction tasks such as ma-
chine translation and text summarization. Second,
the encoder self-attention module is bidirectional
whereas the decoder self-attention is causal (i.e.
uni-directional).

The characteristic of LST tasks ensures the in-
puts for the encoder and the decoder to be roughly
the same, and the proposed pseudo-bidirectional
decoding method makes both the encoder and the
decoder self-attention module to be bidirectional.
This motivates us to share all parameters, except
that in the encoder-decoder attention module, be-
tween the encoder and the decoder. This roughly
reduces the number of parameters by half and also
provide some regularization effects.

3 Experiments

In this section, we conduct experiments on LST
benchmarks to validate the effectiveness of our ap-
proach. We mainly focus on the grammatical error
correction task and also report results on two other
LST tasks including spell and OCR corrections.

3.1 Grammatical Error Correction

Datasets Following the recent work (Grund-
kiewicz et al., 2019; Kiyono et al., 2019; Zhou
et al.,, 2019a) in GEC, the GEC training data
we use is the public Lang-8 (Mizumoto et al.,
2011), NUCLE (Dahlmeier et al., 2013), FCE (Yan-
nakoudakis et al., 2011) and W&I+LOCNESS
datasets (Bryant et al., 2019; Granger, 1998). To
investigate whether our approaches can yield con-
sistent improvement in this setting, we pretrain our
models with 30M sentence pairs obtained by the
corruption-based approach and 30M pairs by the
fluency boost back-translation approach (Ge et al.,
2018) for GEC pre-training.

Models We use the “transformer-big” architec-
ture as our baseline model, denoted by Trans-
former. For throughout comparison, we train two
model variants with our approach. The first model
(Ours) consists of the same number (i.e. 6) of trans-
former blocks with the baseline model, thus has
the same inference latency while containing only
half the number of parameters. The second model
is denoted by Ours-12 layers, which consists of
12 transformer blocks, thus has approximately the
same number of parameters but the inference la-
tency is 1.7 x longer. For comparison, we also train
a variant of the “transformer-big” architecture with
12 blocks, which is denoted by Transformer-12
layers. For reference, we also compare with a re-
cent model specifically designed for local sequence
transduction tasks, denoted by PIE.

We use synthetic data for pre-training and then
use the GEC training data to fine-tune the pre-
trained models. The details of model training are
provided in the Appendix due to space constraints.

Evaluation We evaluate the performance of
GEC models on the BEA-19 and the CoNLL-14
benchmark datasets. Following the latest work in
GEC (Grundkiewicz et al., 2019; Kiyono et al.,
2019; Zhou et al., 2019a; Zhang et al., 2019b), we
evaluate the performance of trained GEC models
using Fy 5 on test sets using official scripts' in both
datasets.

Results The performance of different compared
models on the GEC task is shown in Table 1. Note
that we only compare against transformer models
with the same pretraining/fine-tuning data in our
setting for fair comparison as our contribution is

"M2scorer for CONLL-14; Errant for BEA-19.
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Method # Parameters BEA-19 CoNLL-14
PIE (with pretraining) 345M - 59.7
w/o Pretraining
Transformer 210M 57.1 51.5
Transformer-12 layers 383M 56.3 51.3
Ours 132M 58.6 53.7
-w/o future modeling 57.6 51.8
-w/o parameter sharing 58.2 529
Ours-12 layers 232M 59.5 54.4
-w/o future modeling 58.6 52.1
-w/o parameter sharing 58.8 53.8
w/ pretraining
Transformer 210M 61.2 57.1
Transformer-12 layers 383M 61.9 57.5
Ours 132M 63.2 58.9
-w/o future modeling 61.5 57.4
-w/o parameter sharing 61.7 579
Ours-12 layers 232M 63.9 60.1
-w/o future modeling 61.8 57.7
-w/o parameter sharing 62.1 58.2

Table 1: The performance of different compared mod-
els on two test sets of GEC task.

orthogonal to better data synthesis method.

We can see that for the same configuration of
the “transformer-big” baseline, our approach out-
performs the baseline by a large margin in both
settings with and without pretraining with synthetic
data. This suggests that our approach is able to im-
prove the performance of transformer-based LST
models while reducing the number of parameters
by half. In addition, we can see that by doubling
the number of transformer blocks, our model is
able to yield substantial further improvement. In
contrast, we can see that simply increasing the num-
ber of transformer blocks (i.e. Transformers-12
layers) fails to improve the performance. This im-
plies that our approach may be able to facilitate the
training of deeper transformer models by providing
regularization effects.

We then conduct an ablation study where either
the pseudo future context modeling approach or the
parameter sharing mechanism is disabled to better
understand their relative importance. The results
are shown in Table 1. We can see that the proposed
pseudo future modeling approach method is very
important in both the default and the deeper config-
uration of our transformer-based models, demon-
strating its effectiveness on LST tasks. We also
find that the parameter sharing mechanism is more
effective in deeper models. This suggests that the
parameter sharing mechanism may provide strong
regularization effects and make it easier to train
deeper transformer models.

Method Spell OCR
LSTM-soft 463 799
LSTM-hard 522 584
Ribeiro et al. (2018) 54.1 818
PIE 67.0 87.6
2 Layers
Transformer 67.6 845
Ours 69.2 88.7
4 Layers
Transformer-4 layers 67.1 85.4
Ours-4 layers 704 89.6

Table 2: The performance (accuracy) of different com-
pared models on the spell and OCR correction tasks.

3.2 More Sequence Transduction Tasks

Following previous work (Ribeiro et al., 2018;
Awasthi et al., 2019), we demonstrate the effec-
tiveness of the proposed approaches on two ad-
ditional local sequence transduction tasks includ-
ing spell and OCR correction. We employ a two-
layer transformer and a four-layer transformer as
the backbone model for comparison and evaluate
the compared models on the twitter spell correction
datasetand the Finnish OCR dataset described as
follows:

Spell correction We use the twitter spell cor-
rection dataset (Aramaki, 2010) which con-
sists of 39172 pairs of original and corrected
words obtained from twitter. We use the same
train-dev-valid split as (Ribeiro et al., 2018)
(31172/4000/4000). We tokenize on characters and
our vocabulary comprises the 26 lower cased letters
of English.

OCR correction We use the Finnish OCR data
set3 by (Silfverberg et al., 2016) comprising words
extracted from Early Modern Finnish corpus of
OCR processed newspaper text. We use the same
train-dev-test splits as provided by (Silfverberg
et al., 2016). We tokenize on characters and our
vocabulary comprises all the characters seen in the
training data.

Results The result is shown in Table 2. We can
see that the proposed method is able to significantly
outperform the vanilla transformer-based models,
as well as the LSTM and sequence labeling based
LST baselines in both settings where either the
number of parameters in the model is the same or
the inference latency is the same, which is consis-
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tent with the result in the GEC task. Our deeper
model variant yields the state-of-the-art results in
both tasks. This demonstrates the effectiveness of
the proposed approach and suggests that our ap-
proach is versatile for different LST tasks.

4 Related work

Local Sequence Transduction Ribeiro et al.
(2018) proposed to formulate LST tasks as se-
quence labeling problems by first predicting insert
slots in the input sequences using learned inser-
tion patterns and then using a sequence labeling
task to output tokens in the input sequences or
a special “delete” token. Awasthi et al. (2019);
Malmi et al. (2019) propose to predict output edit
operations including word transformations and fur-
ther improve the performance of sequence labeling
based LST models. Their approaches require mas-
sive engineering efforts to design an appropriate
set of word transformations, which makes it non-
trivial to generalize to other LST tasks. Also, the
sequence labeling formulation lacks the flexibility
of seq2seq models because it can only make lo-
cal edits, which is demonstrated by their inferior
performance. More recently, Li et al. (2020) use
BERT to perform local sequence transduction with
the method proposed by Zhou et al. (2019b). How-
ever, their method mainly suits for the cases where
the length of the output sentence is unchanged.

Bidirectional Decoding and Future Modeling
Previous work (Sennrich et al., 2016; Deng et al.,
2018) investigate using right-to-left models to re-
rank the generated sentences. More recently, Xia
etal. (2017) and Zheng et al. (2018) propose two-
pass decoding to model the right-side information,
while Zhang et al. (2018, 2019a) use bidirectional
beam search algorithms to generate the output se-
quences. These approaches integrate the right side
context indirectly and introduce substantial compu-
tational overhead during inference, which is unde-
sirable for real-world applications.

Parameter Sharing in Transformer Several pa-
rameter sharing mechanisms have been explored
in transformer-based models. ALBERT (Lan et al.,
2019) shares all encoder layers to reduce the num-
ber of parameters in the pretrained language model.
Xia et al. (2019) propose to share the encoder and
the decoder in transformer-based machine transla-
tion models. The performance gain in their setting
is relatively small, which may be due to the dis-

crepancy in the input sequences and the attention
direction in the encoder and the decoder.

5 Conclusion

In this paper, motivated by the characteristic of
local sequence transduction tasks, we propose
pseudo-bidirectional decoding (PBD) to provide
approximated future information for transformer-
based LST models and share the parameters be-
tween the encoder and the decoder of LST models
to provide regularization effects while reducing the
number of parameters. Our experiments on three
LST tasks shows that our approach is able to yield
consistent improvements upon strong transformer
baselines while significantly reducing the number
of parameters in the model.

Acknowledgments

We thank the anonymous reviewers for their valu-
able comments.

References

Eiji Aramaki. 2010. Typo corpus.

Abhijeet Awasthi, Sunita Sarawagi, Rasna Goyal,
Sabyasachi Ghosh, and Vihari Piratla. 2019. Parallel
iterative edit models for local sequence transduction.
arXiv preprint arXiv:1910.02893.

Christopher Bryant, Mariano Felice, @Qistein E Ander-
sen, and Ted Briscoe. 2019. The bea-2019 shared
task on grammatical error correction. In BEA.

Daniel Dahlmeier, Hwee Tou Ng, and Siew Mei Wu.
2013. Building a large annotated corpus of learner
english: The nus corpus of learner english. In BEA.

Yongchao Deng, Shanbo Cheng, Jun Lu, Kai Song,
Jingang Wang, Shenglan Wu, Liang Yao, Guchun
Zhang, Haibo Zhang, Pei Zhang, et al. 2018.
Alibaba’s neural machine translation systems for
wmtl8. In Proceedings of the Third Conference on
Machine Translation, pages 368-376.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Davide Fossati and Barbara Di Eugenio. 2007. A
mixed trigrams approach for context sensitive spell
checking. In International conference on intelligent
text processing and computational linguistics.

Tao Ge, Furu Wei, and Ming Zhou. 2018. Fluency
boost learning and inference for neural grammatical
error correction. In ACL.

1510



Sylviane Granger. 1998. The computer learner corpus:
a versatile new source of data for SLA research. na.

Roman Grundkiewicz, Marcin Junczys-Dowmunt, and
Kenneth Heafield. 2019. Neural grammatical error
correction systems with unsupervised pre-training
on synthetic data. In Proceedings of BEA, pages
252-263.

Shun Kiyono, Jun Suzuki, Masato Mita, Tomoya Mizu-
moto, and Kentaro Inui. 2019. An empirical study
of incorporating pseudo data into grammatical error
correction. In EMNLP-IJCNLP.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

John Lee and Stephanie Seneff. 2006. Automatic gram-
mar correction for second-language learners. In IC-
SLP.

Yiyuan Li, Antonios Anastasopoulos, and Alan W
Black. 2020. Towards minimal supervision bert-
based grammar error correction. arXiv preprint
arXiv:2001.03521.

Eric Malmi, Sebastian Krause, Sascha Rothe, Daniil
Mirylenka, and Aliaksei Severyn. 2019. Encode,
tag, realize: High-precision text editing. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-1JCNLP), pages 5054-5065, Hong
Kong, China. Association for Computational Lin-
guistics.

Tomoya Mizumoto, Mamoru Komachi, Masaaki Na-
gata, and Yuji Matsumoto. 2011. Mining revision
log of language learning sns for automated japanese
error correction of second language learners. In In
IJCNLP.

Joana Ribeiro, Shashi Narayan, Shay B Cohen, and
Xavier Carreras. 2018. Local string transduction as
sequence labeling. In Proceedings of ICCL, pages
1360-1371.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Edinburgh neural machine translation sys-
tems for wmt 16. arXiv preprint arXiv:1606.02891.

Miikka Silfverberg, Pekka Kauppinen, Krister Lindén,
et al. 2016. Data-driven spelling correction using
weighted finite-state methods. In SIGFSM Work-
shop on Statistical NLP and Weighted Automata,
ACL. ACL.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In NIPS, pages 3104-3112.

Xiang Tong and David A Evans. 1996. A statistical
approach to automatic ocr error correction in context.
In Fourth Workshop on Very Large Corpora.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS, pages 5998-6008.

Yingce Xia, Tianyu He, Xu Tan, Fei Tian, Di He, and
Tao Qin. 2019. Tied transformers: Neural machine
translation with shared encoder and decoder. In
AAAL

Yingce Xia, Fei Tian, Lijun Wu, Jianxin Lin, Tao Qin,
Nenghai Yu, and Tie-Yan Liu. 2017. Deliberation
networks: Sequence generation beyond one-pass de-
coding. In Advances in Neural Information Process-
ing Systems, pages 1784—1794.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. A new dataset and method for automatically
grading esol texts. In ACL.

Jiajun Zhang, Long Zhou, Yang Zhao, and Chengqing
Zong. 2019a. Synchronous bidirectional inference
for neural sequence generation. arXiv preprint
arXiv:1902.08955.

Xiangwen Zhang, Jinsong Su, Yue Qin, Yang Liu, Ron-
grong Ji, and Hongji Wang. 2018. Asynchronous
bidirectional decoding for neural machine transla-
tion. In AAAL

Yi Zhang, Tao Ge, Furu Wei, Ming Zhou, and Xu Sun.
2019b. Sequence-to-sequence pre-training with data
augmentation for sentence rewriting. arXiv preprint
arXiv:1909.06002.

Zaixiang Zheng, Hao Zhou, Shujian Huang, Lili Mou,
Xinyu Dai, Jiajun Chen, and Zhaopeng Tu. 2018.
Modeling past and future for neural machine trans-
lation. Transactions of the Association for Computa-
tional Linguistics, 6:145-157.

Wangchunshu Zhou, Tao Ge, Chang Mu, Ke Xu, Furu
Wei, and Ming Zhou. 2019a. Improving grammat-
ical error correction with machine translation pairs.
arXiv preprint arXiv:1911.02825.

Wangchunshu Zhou, Tao Ge, Ke Xu, Furu Wei, and
Ming Zhou. 2019b. Bert-based lexical substitution.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
3368-3373.

1511



