On the Sparsity of Neural Machine Translation Models

Yong Wang*
The University of Hong Kong
wangyong@eee.hku.hk

Victor O.K. Li
The University of Hong Kong
vli@eee.hku.hk

Abstract

Modern neural machine translation (NMT)
models employ a large number of parameters,
which leads to serious over-parameterization
and typically causes the underutilization of
computational resources. In response to this
problem, we empirically investigate whether
the redundant parameters can be reused to
achieve better performance. Experiments and
analyses are systematically conducted on dif-
ferent datasets and NMT architectures. We
show that: 1) the pruned parameters can be re-
juvenated to improve the baseline model by up
to +0.8 BLEU points; 2) the rejuvenated pa-
rameters are reallocated to enhance the ability
of modeling low-level lexical information.

1 Introduction

Modern neural machine translation (NMT) (Bah-
danau et al., 2015; Gehring et al., 2017; Vaswani
et al., 2017) models employ sufficient capacity to
fit the massive data well by utilizing a large number
of parameters, and suffer from the widely recog-
nized issue, namely, over-parameterization. For
example, See et al. (2016) showed that over 40% of
the parameters in an RNN-based NMT model can
be pruned with negligible performance loss. How-
ever, the low utilization efficiency of parameters
results in a waste of computational resources (Qiao
et al., 2019), as well as renders the model stuck in
a local optimum (Han et al., 2017; Yu et al., 2019).

In response to the over-parameterization issue,
network pruning has been widely investigated for
both computer vision (CV) (Han et al., 2016; Luo
et al., 2017) and natural language processing (NLP)
tasks (See et al., 2016; Lan et al., 2020). Recent
work has proven that such spare parameters can be
reused to maximize the utilization of models in CV
tasks such as image classification (Han et al., 2017;

*Work was done when interning at Tencent Al Lab.

Longyue Wang
Tencent Al Lab
vinnylywang@tencent.com

Zhaopeng Tu
Tencent Al Lab
zptu@tencent.com

Qiao et al., 2019). The leverage of parameter re-
juvenation in sequence-to-sequence learning, how-
ever, has received relatively little attention from the
research community. In this paper, we empirically
study the efficiency issue for NMT models.

Specifically, we first investigate the effects of
weight pruning on advanced Transformer mod-
els, showing that 20% parameters can be directly
pruned, and by continuously training the sparse
networks, we can prune 50% with no performance
loss. Starting from this observation, we then exploit
whether these redundant parameters are able to be
re-utilized for improving the performance of NMT
models. Experiments are systematically conducted
on different datasets (i.e. Zh=En, De=En and
En=-Fr) and NMT architectures (i.e. Transformer,
RNNSearch and LightConv). Results demonstrate
that the rejuvenation approach can significantly and
consistently improve the translation quality by up
to +0.8 BLEU points. Further analyses reveal that
the rejuvenated parameters are reallocated to en-
hance the ability to model the source-side low-level
information, lacking of which leads to a number
of problems in NMT models (Tu et al., 2016; Dou
et al., 2018; Emelin et al., 2019).

Contributions Our key contributions are:

e We try early attempts to empirically investi-
gate parameter rejuvenation for NMT models
across different datasets and architectures.

e We explore to interpret where the gains come
from in two perspectives: learning dynamics
and linguistic insights.

2 Approach

A standard NMT model directly optimizes the
conditional probability of a target sentence y =
Y1,--.,Yg given its corresponding source sen-
tence x = x1,...,2x7, namely P(y|x;6) =

1060

Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 1060-1066,
November 16-20, 2020. (©)2020 Association for Computational Linguistics

30
25

20

15

BLEU

10

‘O En-De Prune ‘\“‘
** En-De PruTrain U
5 ‘O Zh-En Prune s
0 ** Zh-En PruTrain o‘\‘
*0——0——0—0

0 10 20 30 40 50 60 70 80 90

Pruning Ratio (%)

Figure 1: Effects of different pruning ratios on Trans-
former. “Prune” denotes directly pruning parameters
while “PruTrain” indicates adding continuous training
after the pruning phase.

szl P(y;ly<j,x;6), where 6 is a set of model
parameters and y .; denotes the partial translation.
The parameters of the NMT model are trained to
maximize the likelihood of a set of training exam-
ples. Given a well-trained NMT model, we first
prune its inactive parameters, and then rejuvenate
them. Our implementation details are as follows.

Pruning The redundant parameters in neural net-
works can be pruned according to a certain criterion
while the left ones are significant to preserve the ac-
curacy of the model. Specifically, we mask weight
connections with low magnitudes in the forward
pass and these weights are not updated during op-
timization. Given the weight matrix W with N
parameters, we rank the parameters according to
their absolute values. Supposed that the pruning
ratio is v (i.e. 7% of parameters should be pruned),
we keep the top n parameters (n = N x (1 — 7)),
and remove the others with a binary mask matrix,
which is the same size of W. We denote the pruned
parameters as 0, subject to ¢, C 6. There are
two pruning strategies (Liu et al., 2019): 1) local
pruning, which prunes % of parameters in each
layer; and 2) global pruning, which compares the
importance of parameters across layers. Following
See et al. (2016), we retrain the pruned networks
after the pruning phase. Specifically, we continue
to train the remaining parameters, but maintain the
sparse structure, that is we optimize P(y|x;) with
the constraint: a = 0,Va € 0,,.

Rejuvenation After the pruning and retraining
phases, we aim to restore the model capacity by
rejuvenating the pruned parameters. This is a com-
mon method in optimization to avoid useless com-
putations and further improve performances (Han

Pruning Rejuvenation BLEU
local global | zero external
v X v X 28.12
X v v X 28.08
v x| v x| 2812
v X X v 28.14

Table 1: Effects of different strategies on Transformer
on WMT14 En=-De. “zero” denotes using zero as ini-
tialization, while “external” denotes using correspond-
ing parameters in the baseline model as initialization.

et al., 2017; Qiao et al., 2019). Thus, we release
the sparsity constraint (¢ = 0,Va € 6,), which
inversely recovers the pruned connections, and re-
dense the whole networks. The recovered weight
connections are then initialized by some strategy
(e.g. zero or external). The entire networks are re-
trained with one order of magnitude lower learning
rate since the sparse network is already at a good
local optimum. As seen, the rejuvenation method
contains three phases: 1) training a baseline model
(BASE); 2) pruning v% parameters and then retrain-
ing remaining ones (PruTrain); 3) restoring pruned
parameters and training entire networks (RejTrain).

3 Experiments

3.1 Setup

Data We conduct experiments on English=
German (En=-De), Chinese=-English (Zh=-En),
German=>-English (De=-En) and English=-French
(En=-Fr) translation tasks. For En=-De task, we
use WMT14 corpus which contains 4 million sen-
tence pairs. The Zh=-En task is conducted on
WMT17 corpus, consisting of 21 million sentence
pairs. We follow Dou et al. (2018) to select the de-
velopment and test sets. Furthermore, we evaluate
low-resourced translation on IWSLT14 De=-En
and IWSLT17 En=-Fr corpora. We preprocess
our data using byte-pair encoding (Sennrich et al.,
2016) with 40K merge operations for En=-De, 32K
for Zh=-En, and 10K for De=-En and En=-Fr, and
keep all tokens in the vocabulary. We use 4-gram
BLEU score (Papineni et al., 2002) as the evalua-
tion metric and sign-test (Koehn, 2004) for statisti-
cal significance.

Models We implement our approach on top
of three popular architectures, namely Trans-
former (Vaswani et al., 2017), RNNSearch (Luong
et al., 2015) and LightConv (Wu et al., 2019) with

1061

| Model # Para. | BLEU A
1 | BASE 108.6M | 27.54 -

2 + ConTrain | 108.6M | 27.74 +0.20
3| +RejTrain | 108.6M | 28.12% +0.58
4 + RejTrain | 108.6M | 28.33" +0.79

5| BIG 305.3M | 28.55 -
6 | +ConTrain | 305.3M | 28.81 +0.26
7| +RejTrain | 3053M | 29.12" +0.57

Table 2: Translation quality of Transformer model on
WMT14 En=-De. “# Para.” denotes the trainable pa-
rameter size of each model. “+” denotes appending
new features to the above row. “1/4” indicates statisti-
cal significance (p < 0.05/0.01) over the baseline.

the open-source toolkit — fairseq (Ott et al., 2019).
For Transformer, we investigate big, base and small
settings. About RNNSearch and LightConv, we em-
ploy corresponding configurations in fairseq. The
implementation is detailed in Appendix §A.1. All
baseline models are trained for 100K updates using
Adam optimizer (Kingma and Ba, 2015). Based
on the baselines, the proposed pruning and rejuve-
nation methods are trained with additional 100K
updates (i.e. SOK for each one). To rule out the
circumstance that more training steps may bring
improvements, we also conduct continuous train-
ing (ConTrain) as strong baselines and they employ
the same training steps as our approach.

3.2 Results of Pruning

To study the effect of sparsity, we investigate
the effects of different pruning ratios on Trans-
former base models. Experiments are conducted on
WMT14 En=-De and WMT17 Zh=-En tasks. As
shown in Figure 1, over 20% of parameters can be
directly pruned without degrading the translation
performance. When adding a simple continuous
training phase after pruning, we are able to prune
50% with no performance loss. Compared with
findings in See et al. (2016), Transformer is less
over-parameterized than RNN-based NMT models
(20% vs. 40% and 50% vs. 80%). This provides
the evidence that different NMT models are over-
parameterized to a different extent. Accordingly,
we set the pruning threshold of 50% as a default in
the following experiments (i.e. Tables 1—4).

3.3 Results of Rejuvenation

Ablation Study As shown in Table 1, we system-
atically compare different pruning and rejuvenation

Data Model BLEU A
BASE 24.18 -
QiM) | _+ConTrin | 2435 4017
+RejTrain | 24.60" +0.42
De-En SMALL 30.50 -
(0.16M) | _ +ConTrain | 30.50 +0.00
+RejTrain | 30.87" +0.37
SMALL 38.43 -
©22M) | _+ ConTrain | 3843 +0.00
+RejTrain | 38.97" +0.54

Table 3: Translation quality of Transformer model on
different datasets varied in language pair and size.

strategies on the translation task. As seen, the local
pruning strategy performs better than the global
one, especially with the rejuvenation counterpart
(28.12 vs. 28.08 BLEU). However, See et al. (2016)
found that the global pruning outperforms the local
one without considering rejuvenation factors. Re-
garding the rejuvenation strategy, zero and external
initialization perform similarly in terms of BLEU
score. Therefore, we use local pruning and zero ini-
tialization strategies for the rest of the experiments
(i.e. Tables 2—4).

Main Results We evaluate the rejuvenation ap-
proach on the Transformer using En=-De dataset.
As shown in Table 2 (Rows 1—4), our model (Re-
jTrain) outperforms the baseline model and con-
tinuous training method (ConTrain) by +0.58 and
+0.38 BLEU points, respectively. In addition, iter-
ative rejuvenation can incrementally improve the
baseline model up to 28.33 BLEU points (+0.79
and +0.59 over BASE and ConTrain). The results
clearly demonstrate the effectiveness of rejuvenat-
ing redundant parameters for NMT models.

To verify the robustness, we evaluate different
model sizes. As shown in Table 2 (Rows 5—7),
the Transformer BIG model performs better than
the base with an increase of 196.7M parameters.
Surprisingly, the performance can be further im-
proved by +0.57 BLEU points by our method. As
seen, the continuous training can only slightly gain
+0.2 BLEU over BIG, and RejTrain outperforms
the strong baseline. This confirms that the rejuvena-
tion method can consistently improve NMT models
by alleviating the over-parameterization issue.

Different Datasets Table 3 shows results on
three datasets: Zh—=En, De=En and En=-Fr, cov-

1062

| Model Para. | BLEU A

1 | Transformer | 108.6M | 27.54 -

2 + ConTrain | 108.6M | 27.74 +0.20
3| +RejTrain | 108.6M | 28.12" +0.58

4 | RNNSearch 197.0M | 22.98 -

5 + ConTrain | 197.0M | 22.98 +0.00
6| +RejTrain | 197.0M | 23.30 +0.32

7 | LightConv 304.2M | 28.01 -

8 + ConTrain | 304.2M | 28.32 +0.31
9| +RejTrain | 3042M | 28.52T +0.51

Table 4: Translation quality of different NMT models
on WMT14 En=-De.

ering large-scale and small-scale training data (i.e.
21M, 0.16M and 0.22M). Trained with large-scale
data (Zh=-En), the continuous training achieves
+0.17 BLEU point over the baseline while the re-
juvenation approach obtains +0.42 improvement.
For low-resource translation (De=-En and En=-Fr),
ConTrain can not further improve the performance
since it is easy to get stuck in a local optimum.
However, RejTrain can jump out of local opti-
mum with improved performances (+0.37 and
+0.54 over De=-En and En=-Fr baselines, respec-
tively). Compared with continuous training, the
proposed method significantly and incrementally
improves the translation quality in all cases. This
again demonstrates the effectiveness of our method
across different datasets varied in aspects of lan-
guage and size.

Different Model Architectures As shown in Ta-
ble 4, we conduct the experiments on WMT14
En=-De translation task with RNNSearch, Light-
Conv, Transformer models. Our approach achieves
consistent and significant improvements over the
baseline and ConTrain models across three archi-
tectures. For RNNSearch, continuous training can-
not further improve the performance while our
model achieves better performance (+0.32 over
ConTrain). Furthermore, LightConv works bet-
ter than the Transformer BASE model since it has
3x more parameters. However, RejTrain still out-
performs the ConTrain model and achieves 28.52
BLEU scores. This demonstrates the effectiveness
and universality of our approach.

4 Analysis

To better understand the effectiveness of the pro-
posed method, the analyses are carried out in two

0.30

A Baseline

V ConTrain
0.21 O PruTrain

O RejTrain
0.12
0.03 .

o©
-0.06 /V
.
-0.15
0.95 1.05 1.15 1.25 1.35 1.45 1.55 1.65

Figure 2: Visualization of encoder representations in
different training phases. For each phase, we select se-
quentially three models. The solid arrow represents the
changes in each phase. The dotted arrow represents the
changes from the baseline to the pruning phase.

ways: representation visualization and linguistic
probing. Furthermore, we study the translation
outputs in terms of adequacy and fluency.

Escaping from Local Optimum To study how
our method help models to escape from local op-
timum, we analyze the change of source repre-
sentations during different training phases. The
analysis is conducted on the Transformer BASE
model and En=-De. Following Zeng et al. (2018),
we feed source sentences in the development set
into a checkpoint and output an element-wise aver-
aged vector from representations of the last encoder
layer. With the dimension-reduction technique of
TruncatedSVD (Du et al., 2017), we can plot the
dimensionally reduced values in Figure 2. Among
the training phases (i.e. Baseline, ConTrain, Pru-
Train, RejTrain), we select checkpoints at which
interval training updates are equal. As seen, within
each phase, the representations change smoothly
in direction and quantity. The continuous training
still transforms the representations in the same di-
rection as the baseline phase (i.e. grey vs. green
lines). However, the pruning training dramatically
changes the representations (i.e. blue vs. grey
lines). Finally, the rejuvenation training jumps to
a different place compared with the ConTrain (i.e.
red vs. green lines). This demonstrates that our
method can efficiently change the direction of op-
timization, thus providing more chances for the
model to escape from the local optimum.

Linguistic Insights We follow Conneau et al.
(2018) to conduct the linguistic probing task, which
aims to measure the linguistic knowledge embed-
ded in the encoder representations learned by the

1063

0.6%

B ConTrain

0,
0.5% B RejTrain

0.4%
0.3%
0.2%
0.1%

0.0% -

Relative Change of Accuracy

-0.1%

Lexical Syntactic Semantic

Figure 3: Relative change of performance on linguistic
probing tasks compared with the baseline. “Lexical”,
“Syntactic”, “Semantic” denote the averaged accuracy
over corresponding tasks in each category.

model. Specifically, it contains 10 classification
subtasks with 3 linguistic categories, including lex-
ical, syntactic and semantic ones. We average the
predicted accuracies of subtasks in the same cate-
gory and calculate the relative changes of ConTrain
and RejTrain over the baseline model. The analysis
is conducted on the Transformer BASE model and
En=-De translation task. As shown in Figure 3,
the RejTrain model performs better on the lower
level of linguistic subtasks, especially on lexical
ones (i.e. 0.6%). The details are listed in Appendix
§A.2. The improvements are significant compared
with those in Wang et al. (2019a). We hypothe-
size that better capturing lexical knowledge can
improve the adequacy and fluency of translation,
which is verified in next part.

Adequacy and Fluency Table 5 shows an ex-
ample randomly selected from the test set in the
Zh=-En task. As seen, incorporating the rejuvena-
tion approach into NMT can generate more fluent
translation with higher adequacy. For instance, the
Chinese word “B2iZ 4> is under-translated by the
baseline model, while the RejTrain model can cor-
rectly translate it into “olympics”. Besides, the
nominal modifier “21%7) is mistranslated into a
simple number by the baseline while RejTrain can
fix the error. This confirms that the rejuvenation
improves the adequacy of translation by enhancing
the ability to understand the lexical information.
To better evaluate the fluency of our models, we
calculate the perplexity on the WMT14 En-De test
set. As shown in Table 6, the RejTrain model can
achieve lower perplexity than baseline and Contrain
models (5.08 vs. 5.14/5.15). An interesting find-
ing is that PruTrain increases the perplexity, which

2000 F B Rz , 04 21
% XGE 2% kB T BEh
A EE /) AR -

Reference | at the 2000 sydney olympic
games , the already 21-year-old
liu xuan came to the end of his

athlete career .

Baseline | in sydney in 2000, liu xuan , now
21 , has reached the end of his

career as an athlete .

RejTrain | at the 2000 sydney olympics , the
21-year-old liu xuan has reached
the end of his career .

Table 5: Example of Zh=-En translation. Phrases col-
ored in red and blue respectively denote adequacy and
fluency problems in baseline but fixed by rejuvenation.

| Model PPL

1 | BASE 5.14

2 + ConTrain | 5.15
3| +PruTrain | 525

4 + RejTrain | 5.08

Table 6: The perplexity of Transformer model on
WMT14 En=-De. “PruTrain” indicates retraining the
remaining parameters after the pruning phase. ‘“Rej-
Train” denotes using the rejuvenation approach.

may harm the fluency of translation outputs (5.25
vs. 5.14). This demonstrates that our rejuvenation
approach improves the fluency of translation.

5 Conclusion

In this paper, we prove that existing NMT systems
are over-parameterized and propose to improve the
utilization efficiency of parameters in NMT models
by introducing a rejuvenation approach. Empirical
results on a variety of language pairs and architec-
tures demonstrate the effectiveness and universal-
ity of the presented method. We also analyze the
gains from perspectives of learning dynamics and
linguistic probing, which give insightful research
directions for future work.

Future directions include continuing the explo-
ration of this research topic for large sequence-
to-sequence pre-training models (Liu et al., 2020)
and multi-domain translation models (Wang et al.,
2019b). We will employ recent analysis methods
to better understand the behaviors of rejuvenated
models (He et al., 2019; Yang et al., 2020).

1064

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR.

Alexis Conneau, German Kruszewski, Guillaume Lam-
ple, Loic Barrault, and Marco Baroni. 2018. What
you can cram into a single vector: Probing sentence
embeddings for linguistic properties. In ACL.

Zi-Yi Dou, Zhaopeng Tu, Xing Wang, Shuming Shi,
and Tong Zhang. 2018. Exploiting deep representa-
tions for neural machine translation. In EMNLP.

Simon S Du, Yining Wang, and Aarti Singh. 2017. On
the power of truncated svd for general high-rank ma-
trix estimation problems. In NIPS.

Denis Emelin, Ivan Titov, and Rico Sennrich. 2019.
Widening the representation bottleneck in neural ma-
chine translation with lexical shortcuts. In WMT.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N Dauphin. 2017. Convolutional
sequence to sequence learning. In /ICML.

Song Han, Huizi Mao, and William J Dally. 2016.
Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huff-
man coding. In ICLR.

Song Han, Jeff Pool, Sharan Narang, Huizi Mao, En-
hao Gong, Shijian Tang, Erich Elsen, Peter Vajda,
Manohar Paluri, and John Tran. 2017. Dsd: Dense-
sparse-dense training for deep neural networks. In
ICLR.

Shilin He, Zhaopeng Tu, Xing Wang, Longyue Wang,
Michael R Lyu, and Shuming Shi. 2019. Towards
understanding neural machine translation with word
importance. In EMNLP.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. /CLR.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In EMNLP.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learn-
ing of language representations. In /ICLR.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising
pre-training for neural machine translation. arXiv
preprint arXiv:2001.08210.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang,
and Trevor Darrell. 2019. Rethinking the value of
network pruning. In /CLR.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. 2017.
Thinet: A filter level pruning method for deep neural
network compression. In ICCV.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In EMNLP.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In NAACL-HLT:
Demonstrations.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In ACL.

Siyuan Qiao, Zhe Lin, Jianming Zhang, and Alan
Yuille. 2019. Neural rejuvenation: Improving deep
network training by enhancing computational re-
source utilization. In CVPR.

Abigail See, Minh-Thang Luong, and Christopher D
Manning. 2016. Compression of neural machine
translation models via pruning. In CoNLL.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In ACL.

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu,
and Hang Li. 2016. Modeling coverage for neural
machine translation. In ACL.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS.

Xing Wang, Zhaopeng Tu, Longyue Wang, and Shum-
ing Shi. 2019a. Self-attention with structural posi-
tion representations. In EMNLP.

Yong Wang, Longyue Wang, Shuming Shi, Victor OK
Li, and Zhaopeng Tu. 2019b. Go from the general
to the particular: Multi-domain translation with do-
main transformation networks. In AAAIL

Felix Wu, Angela Fan, Alexei Baevski, Yann Dauphin,
and Michael Auli. 2019. Pay less attention with
lightweight and dynamic convolutions. In /CLR.

Yilin Yang, Longyue Wang, Shuming Shi, Prasad Tade-
palli, Stefan Lee, and Zhaopeng Tu. 2020. On the
sub-layer functionalities of transformer decoder. In
EMNLP.

Hongfei Yu, Xiaoqing Zhou, Xiangyu Duan, and Min
Zhang. 2019. Layer-wise de-training and re-training
for convs2s machine translation. In TALLIP.

Jiali Zeng, Jinsong Su, Huating Wen, Yang Liu, Jun
Xie, Yongjing Yin, and Jiangiang Zhao. 2018. Multi-
domain neural machine translation with word-level
domain context discrimination. In EMNLP.

1065

A Supplemental Material
A.1 Experimental Setup

In the model configuration of Transformer, the
BASE and BIG models differ in the hidden layer
size (512 vs. 1024), filter size (2048 vs. 4096)
and the number of attention heads (8 vs. 16). The
encoder and decoder are composed of a stack of 6
layers. The best model parameters are determined
based on the model performance on the develop-
ment set. All the models are trained on 8§ NVIDIA
P40 GPUs where each is allocated with a batch
size of 4,096 tokens. For IWSLT14 De=-En and
IWSLT17 En=-Fr tasks, we use the SMALL model,
where the encoder and decoder are composed of a
stack of 2 layers respectively and which is trained
on 1 GPU with a batch size of 4,096 tokens.

Model H BASE ‘ ConTrain | RejTrain
= | SeLen || 9135% | 91.40% | 91.54%
g | WC_ | 7596% | 7598% | 76.85%
= [Avg. | 83.66% | 83.69% | 84.20%

o | TeDep || 44.58% | 44.61% | 44.67%
g | ToCo | 76.89% | 76.71% | 77.25%
E | BShif || 72.18% | 7211% | 72.20%
N[TAve | 6455% | 64.48% | 64.71%
Tense || 87.61% | 87.77% | 88.04%
o | SUbN | 8525% | 85.18% | 85.03%
£ | ObN | 84.79% | 84.67% | 84.57%
£ | SoMo || 53.60% | 5330% | 53.26%
% | Coln || 60.85% | 61.58% | 61.62%
| Avg. || 74.42% | 74.50% | 74.50%

Table 7: Performance on the linguistic probing tasks
of evaluating linguistics embedded in the encoder out-
puts. “BASE”, “ConTrain” and “RejTrain” respectively
denote the baseline model, continuous training and re-
juvenation training. “Avg.” denotes the average accu-
racy of each category.

A.2 Probing Task

In order to gain linguistic insights into the learned
representations when carrying out the rejuvenation
method, we conducted 10 probing tasks (Conneau
et al., 2018) to evaluate linguistics knowledge em-
bedded in the final encoding representation learned
by the model, as shown in Table 7. From the table,
we can see that RejTrain can capture more lexi-
cal (84.20% vs. 83.66%) and syntactic (64.71% vs.
64.55%) information.

1066

