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Abstract

Real world scenarios present a challenge for
text classification, since labels are usually ex-
pensive and the data is often characterized by
class imbalance. Active Learning (AL) is a
ubiquitous paradigm to cope with data scarcity.
Recently, pre-trained NLP models, and BERT
in particular, are receiving massive attention
due to their outstanding performance in var-
ious NLP tasks. However, the use of AL
with deep pre-trained models has so far re-
ceived little consideration. Here, we present
a large-scale empirical study on active learn-
ing techniques for BERT-based classification,
addressing a diverse set of AL strategies and
datasets. We focus on practical scenarios of
binary text classification, where the annota-
tion budget is very small, and the data is of-
ten skewed. Our results demonstrate that AL
can boost BERT performance, especially in
the most realistic scenario in which the ini-
tial set of labeled examples is created using
keyword-based queries, resulting in a biased
sample of the minority class. We release our
research framework, aiming to facilitate future
research along the lines explored here.

1 Introduction

Automatic text classification is a well studied prob-
lem in Natural Language Processing (NLP), with
great practical importance and numerous real world
applications (Aggarwal and Zhai, 2012). There are
two major hurdles to developing effective text clas-
sifiers in practice, as well as to developing classi-
fiers in other domains – the lack of labeled data, and
class imbalance (Japkowicz and Stephen, 2002).
Text classifiers often require high quantities of la-
beled data for model training. However, collecting
such labeled data is a notoriously expensive and
time-consuming process, and shortage of labeled
data is exacerbated when the desired class has a

∗These authors equally contributed to this work.

relatively low prior in the data. In such a scenario,
even going through the burden of labeling a ran-
dom sample may yield an insufficient number of
positive instances to properly train a classifier. Our
focus in this work is on this challenging coupled
setup, frequently encountered by real-world users
– where labeled data is scarce and the prior of the
desired class is small.

A classical approach for coping with limited an-
notation resources is Active Learning (AL) (Cohn
et al., 1996). In this paradigm, one assumes that un-
labeled data are abundant, and the goal is to focus
the expensive labeling process on the most infor-
mative instances. Many AL strategies have been
proposed, aiming to minimize the labeling burden,
or if taken from a different perspective – maximize
the value of labeling a small set of examples. Im-
portantly, the usefulness of an AL strategy naturally
depends on the classification scheme with which it
is coupled. A successful AL approach for a Naive
Bayes classifier may not be that effective for a mod-
ern deep-learning algorithm such as CNN, and vice
versa.

A more recent relevant development is the in-
troduction of pre-trained NLP models (cf. Qiu
et al., 2020), which have been shown to substan-
tially improve state-of-the-art results in numerous
NLP tasks. A prominent example is the BERT
model (Devlin et al., 2018), which has received
massive attention from the NLP research commu-
nity since its inception. However, the use of AL
with deep pre-trained models for text classification
– and BERT in particular – has so far received sur-
prisingly little consideration. Thus, while recent
papers have demonstrated the value of AL for vari-
ous deep-learning text classification schemes (Shen
et al., 2017; Zhang et al., 2017; Siddhant and Lip-
ton, 2018; Prabhu et al., 2019), the potential of AL
combined with BERT is yet to be explored. First,
given the unique properties of pre-trained models,
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and the expectation that such models will yield ad-
equate performance even with small amounts of
training data, it is unclear a priori whether – and
to what extent – established AL paradigms can
further enhance their classification performance.
Moreover, more recent Deep AL strategies, such as
Core-Set (Sener and Savarese, 2017) and Dropout
(Gal and Ghahramani, 2016), were developed in the
vision domain for CNNs. The value of these strate-
gies on top of the BERT transformer architecture
remains unclear.

Our goal in this work is threefold. We study the
potential of (i) various AL strategies; (ii) in con-
junction with BERT, an arguably outstanding text
classification scheme; (iii) within a highly chal-
lenging – yet common – real-world scenario of
class imbalance and scarce labeled data. To address
this goal, we conduct a systematic study, consider-
ing traditional and advanced AL strategies coupled
with BERT for a wide range of datasets. We focus
on three scenarios: A balanced setting, serving as a
reference, where the prior of the class of interest is
not too small; the more challenging imbalanced set-
ting, where the class prior is≤ 15% but we assume
a way to obtain an unbiased set of positive sam-
ples to be used for initial training; and finally, the
imbalanced-practical setting, which is similar to
the imbalanced one, but takes a step further towards
a truly practical setup, in which there is no access
to an unbiased positive sample. Instead, we assume
the user has access to a biased sample, hopefully
enriched with positive examples, obtained by issu-
ing simple queries of keywords associated with the
positive class.

Our results convey that AL strategies can boost
BERT performance, under the challenging setting
of a small annotation budget and highly skewed
data, especially in the more practical real-world
settings. We release our research framework1 , in-
cluding access to all datasets, an implementation of
multiple AL strategies, and an associated automatic
evaluation framework, aiming to facilitate further
research along the lines explored here.

2 Related Work

AL has been widely used in many fields to suc-
cessfully decrease the labeling effort involved in
the training process. A good summary of active
learning works prior to the advances in deep learn-

1https://github.com/IBM/
low-resource-text-classification-framework

ing can be found in Settles (2009). Advances in
deep learning have given rise to extensive research
into deep active learning, which aims to adapt the
classic AL framework to the special properties of
DNNs. Deep AL presents some specific challenges.
Since DNNs are computationally heavy, training
a new model whenever a single training sample is
added is highly impractical. This requires a shift
to batch mode active learning, where a batch of ex-
amples is queried at every iteration. Moreover, the
tendency of the softmax layer to over-confidence
has led to the development of various uncertainty-
based strategies tailored to the special properties of
DNNs (Gal and Ghahramani, 2016).

Most of the works in deep active learning fo-
cus on image classification with convolutional neu-
ral networks (Sener and Savarese, 2017; Gal and
Ghahramani, 2016; Gissin and Shalev-Shwartz,
2019). Recent papers have demonstrated the
value of deep active learning for text classification
(Zhang et al., 2017; Siddhant and Lipton, 2018;
Prabhu et al., 2019; Lowell et al., 2018), but in gen-
eral did not study AL for BERT. One exception is
Zhang and Zhang (2019) who applied an ensemble
of AL strategies to BERT for the task of intent clas-
sification. However, this work focuses on a single
task, and does not address the effect of small and
imbalanced data. Additionally, Shelmanov et al.
(2019) and Liu et al. (2020) focused on particu-
lar variants of BERT (BioBERT and BERT-CRF)
and studied a single or two specific tasks, with a
small collection of AL strategies. To the best of our
knowledge, this work is the first to systematically
explore advanced strategies like Core-Set (Sener
and Savarese, 2017), Dropout (Gal and Ghahra-
mani, 2016), Expected Gradient Length (Huang
et al., 2016) and Discriminative Active Learning
(Gissin and Shalev-Shwartz, 2019) for BERT, in
various settings and a diversity of tasks.

3 Empirical Evaluation

3.1 Data

We consider 10 datasets (see Table 1) that cover
a variety of domains, and for each we select one
target class as our classification goal, thus creating
a set of binary classification tasks. Three datasets
are originally skewed, i.e., the target class prior is
≤ 15%: Wiki Attack (Wulczyn et al., 2017), which
annotates Wikipedia discussions for offensive con-

https://github.com/IBM/low-resource-text-classification-framework
https://github.com/IBM/low-resource-text-classification-framework
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No. Dataset Size Class Prior

1 Subjectivity-imb 5,556 subjective 10%
2 Polarity-imb 5,923 positive 10%
3 AG’s News-imb 17,538 world 10%
4 Wiki attack 21,000 general 12%
5 ISEAR 7,666 fear 14%
6 TREC 5,952 location 15%

7 AG’s News 21,000 world 25%
8 CoLA 9,594 unacceptable 30%
9 Subjectivity 10,000 subjective 50%

10 Polarity 10,662 positive 50%

Table 1: Dataset details: size, target (positive) class,
and its prior in the dataset.

tent;2 ISEAR (Shao et al., 2015), which annotates
personal reports for emotion; and TREC (Li and
Roth, 2002) which considers the answer type of
questions. In four datasets the target class prior
is 20% − 50%: AG’s News (Zhang et al., 2015),
which categorizes news articles; CoLA (Warstadt
et al., 2018), which annotates sentences for gram-
matical acceptability; Subjectivity (Pang and Lee,
2004), which classifies movie snippets into sub-
jective or objective; and Polarity (Pang and Lee,
2005), which includes sentiment analysis on movie
reviews. In addition, we enriched the imbalanced
datasets by creating imbalanced versions of three
balanced datasets via sub-sampling the target class
instances towards a prior of 10% (Table 1, rows
1–3).

Each dataset was split into train, dev, and test
sets, keeping the original split, if exists, and oth-
erwise applying a 70%/10%/20% split, respec-
tively. For large datasets, we limit the sizes to
15K/3K/3K respectively by randomly sampling
from each set. The complete details along with
links to all datasets are provided in Appendix A.

3.2 Experimental setup

We apply pool-based active learning (Settles, 2009)
in batch mode, using BERT as the classifica-
tion model. Seven selection strategies are exam-
ined over the 10 fully labeled binary classification
datasets described above. The use of fully labeled
datasets enables simulating manual labeling (Yang
and Loog, 2018). Per dataset, we use its train set as
the initial pool of examples from which instances
are selected for labeling.

We assume an initial annotation budget that en-
ables labeling 100 examples, used to create an ini-

2This data set contains offensive language. IBM abhors
use of such language and any form of discrimination.

tial seed L. In some setups, L may contain addi-
tional instances without their ground truth labels,
and in general the way L is selected depends on
the experimental scenario, as described below. We
denote by U the instances in the pool that do not
belong to L.

For a given AL strategy, a single experiment
starts with the seed L, used to train BERT as the
initial classifier (iteration 0). Next, we conduct
5 iterations. In each, the AL strategy selects a
batch of 50 unlabeled instances from U that are
added to L along with their true labels, and BERT is
trained over these expanded data. Note, the BERT
fine-tuning in each iteration is done from scratch,
to avoid overfitting data from previous rounds, as
suggested in Hu et al. (2018). In each experiment,
all AL strategies start with the same initial seed.
The reported results are the average over 5 different
experiments, i.e., 5 different initial seeds.

For each AL strategy, we consider the following
three scenarios:
Balanced: Here, the positive class prior is not very
low, hence a randomly selected sample is expected
to have a sufficient number of positive examples.
Correspondingly, the seed L is simply defined as
100 instances sampled at random from the pool.
We apply this scenario to datasets with 20%−50%
of positive labels.3

For datasets with a positive class label ≤ 15%, a
random seed of 100 instances led to unstable BERT
runs (data not shown), presumably due to the com-
bination of small and highly skewed training data
resulting from such random selection. Hence, for
these imbalanced datasets, we consider the two sce-
narios described below. In both cases, we expand
the initial set of 100 labeled examples with another
set of 100 instances, selected at random from the
remaining data, which are all added to L with a
negative label. In other words, the low prior of
the positive class naturally implies high prior of
the negative class, enabling to expand the fully la-
beled 100 instances with an additional set of 100
instances that are – weakly – labeled as negative
examples (without the need for additional annota-
tion budget). Hence, in both scenarios described
below, L contains a total of 200 examples.
Imbalanced: Here, the 100 fully labeled examples
are drawn at random from the positive examples in
the dataset, hence all 100 are indeed positive, and

3Although not all these datasets are strictly balanced, we
chose this name for brevity of presentation.
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are further an unbiased sample of the positive class.
In this setting we assume high-precision heuristics
that enable generating a relatively unbiased sample;
but in many real-world cases such heuristics may
not exist, or are expected to have limited coverage
and would not enable sampling at will4. Thus, such
heuristics cannot be assumed to yield a large train-
ing set, but may nevertheless be used for obtaining
a small initial seed in an active learning setting.
Imbalanced-practical: In this scenario, we simu-
late a more realistic setting in which a user attempts
to obtain as many positive examples as possible us-
ing the budget of 100 annotations. To this end,
we design a simple keyword-based query for each
dataset, which aims to retrieve a set of instances
enriched with positive examples, using words as-
sumed to be associated with the positive class. We
opted for keyword-based queries as they are of-
ten used in practice in real-world scenarios. We
apply the query to the pool, and randomly draw
100 instances from the query result, which are then
added to the seed with their ground truth labels.
Note that these 100 examples are expected to be
enriched with positive examples, yet in a biased
manner, since by construction, all examples match
the query we started with. Specifically, this sce-
nario was tested on four datasets for which a simple
string (or sub-string) match query with enough hits
could be defined: (i) for the fear class in ISEAR the
query is [fear or afraid or scared or scary] (fear,
for example, can also capture fearsome); (ii) for
the TREC location class, [Where or countr or cit]
(matching cit captures both the singular and plural
of city); (iii) for the Wiki attack class, [[A-Z]!]
(capturing a word ending with an upper case letter
which is immediately followed by an exclamation
mark, e.g., IDIOT!), and (iv) for the AG’s News-
imb world class the query is a list of countries and
territories separated by ‘or’. It is likely that better
queries could be defined. However, our goal here
was to simulate a realistic setting in which a user
relies on a relatively simple heuristic, and to exam-
ine the behavior of AL with BERT when initiated
with a potentially biased seed.

3.3 Active Learning Strategies

We consider several AL strategies for choosing the
batch of 50 instances to label in each iteration. In

4For instance, for the task of classifying emotional sit-
uations, the prefix “This is a situation where I felt afraid:”
indicates that the following sentence belongs to the fear class,
but is expected to be rare within the corpus.

addition, as a baseline, we consider a Random
strategy, where batch instances are chosen at ran-
dom from the unlabeled set.
•Least Confidence (LC, Lewis and Gale, 1994):
selects instances for which the model is least cer-
tain according to the max-entropy decision rule.
•Monte Carlo Dropout (Dropout, Gal and
Ghahramani, 2016): Similar to LC, but instance un-
certainty is calculated using Monte Carlo Dropout
on 10 inference cycles, with the max-entropy ac-
quisition function5.
•Perceptron Ensemble (PE): Selects instances
with highest uncertainty – similarly to LC – but av-
eraging over an ensemble of models. Here, we use
a light-weight ensemble strategy to overcome the
unrealistic computational cost required for training
an ensemble of BERT models. PE is composed
of 10 perceptrons which are trained to solve the
original task using L, where the perceptron inputs
are the CLS vectors of the fine-tuned BERT model.
•Expected Gradient Length (EGL, Huang et al.,
2016): selects instances with the largest expected
gradient norm, as they are expected to wield a
large influence on the model. The expectation is
computed over the posterior distribution of labels
for the example according to the trained model.
•Core-Set (Sener and Savarese, 2017): selects in-
stances that best cover the dataset in the learned
representation space (CLS), using the greedy
method described in Sener and Savarese (2017).
•Discriminative Active Learning (DAL, Gissin
and Shalev-Shwartz, 2019): This approach aims to
select instances that make L most representative of
the entire pool. We follow the exact method used
in Gissin and Shalev-Shwartz (2019).

We chose these strategies as spanning the lead-
ing state-of-the-art approaches in the AL do-
main: uncertainty-sampling (LC and Dropout),
uncertainty-sampling using ensemble methods
(PE), expected model change (EGL), and diversity
sampling (DAL and Core-Set).

3.4 Implementation Details

Overall, the results presented here consist of 2,520
fine-tuning experiments (14 dataset-scenario com-
binations × 5 initial seeds × (1 base model + (7
selection strategies × 5 iterations)). In order to
run multiple experiments in parallel, experiments
were performed on Intel R© Xeon CPU E5-2699 v4

5other functions were shown to yield similar results (Gissin
and Shalev-Shwartz, 2019)
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Random LC Dropout EGL Core-Set DAL PE
< 1 84 840 1106 98 167 370

Table 2: Runtimes (in seconds) for a single iteration
for different AL strategies, assuming 7,000 unlabeled
examples.

@ 2.20GHz, with 88 CPUs and 748 GB of RAM.
BERT training and inference were performed on
Nvidia R© Tesla K80 GPUs (single GPU per run).

Table 2 lists AL batch selection runtimes for dif-
ferent AL strategies. Runtimes for all strategies
except Random are dominated by BERT inference,
as BERT model outputs are used in selecting batch
instances. Notably, two strategies demand longer
inference times: EGL due to the gradient calcu-
lation, and Dropout due to the larger number of
inference cycles (×10).

3.5 BERT Training Details

In each fine-tuning run, BERTBASE (110M para-
maters) was trained for 5 epochs, using a learning
rate of 5× 10−5, and keeping the best model based
on its performance on the dev set. In practice, dev
sets may be unavailable, particularly under a lim-
ited annotation budget. Using a dev set to reduce
variance and noise between runs helps stabilize
the results, but importantly, we verified that ignor-
ing the dev data and setting a constant number of
epochs yields qualitatively similar, albeit noisier,
results. Our experiments showed that increasing
the batch size had a substantial effect on improv-
ing the stability of BERT results. However, due
to memory limitations of the GPU, increasing the
batch size comes at the expense of the maximal
sequence length. We empirically determined that
setting the batch size to 50, and the maximal se-
quence length to 100 tokens (after WordPiece tok-
enization), yielded the best results. We otherwise
used the default settings in the TensorFlow imple-
mentation of BERT.

3.6 AL Research Framework

Our open-source framework allows a user to exper-
iment with the active learning strategies in (§3.3)
and evaluate their performance over the datasets in
(§3.1). The framework also supports adding new
AL strategies, making it easy to evaluate their po-
tential.

Strategy Balanced Imbalanced Imbalanced
practical

Core-Set 10−2 < 10−5 < 10−8

Dropout < 10−3 < 10−8 < 10−8

EGL −−− < 10−4 < 10−8

LC < 10−5 < 10−9 < 10−7

DAL < 10−2 < 10−5 < 10−6

PE −−− < 10−2 < 10−6

Table 3: Wilcoxon test p-values (after Bonferroni cor-
rection) for different AL strategies compared to Ran-
dom. −−− denotes insignificant results (p ≥ 0.05).

4 Results

We report results for the AL strategies (§3.3) in
three experimental scenarios (§3.2). Following the
standard in the field, we use accuracy as the classifi-
cation metric for the balanced scenario, and F16 for
the imbalanced and imbalanced-practical scenarios,
where the prior for positives is relatively low.

Figure 1 depicts the classification quality (accu-
racy or F1) per iteration for each dataset, for the
relevant scenarios. For clarity of presentation, we
only plot the Random baseline and three strategies
that represent the different approaches. As can be
seen in the full figure in the Appendix (Figure 3),
the other strategies behave similarly.

In most datasets, all AL strategies performed
better than the Random baseline, even in cases
where the baseline results were already very good,
e.g., AG’s News and Subjectivity. Interestingly,
the largest improvements were observed in the
imbalanced-practical scenario. Here, the AL strate-
gies improve the F1 of the Random baseline by a
large margin of 4− 8% on average. These results
demonstrate that AL can indeed enhance BERT
results when the annotation budget is small, espe-
cially for datasets having a low prior for positive
examples, as is the case in many real-world set-
tings.

To check the significance of the differences, we
calculate the Wilcoxon p-value7 for every AL strat-
egy compared to the Random baseline, per sce-
nario, and perform a Bonferroni correction to ad-
just for the multiple strategies examined. To cal-
culate the p-value for a strategy S per scenario,
we compare the classification metric for all pairs
(Sdik, Rdik) such that R is the Random baseline
results, d ∈ D, where D is the set of datasets in-

6computed at the default threshold of 0.5
7We chose Wilcoxon p-value because of its non-parametric

nature.
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Balanced

Imbalanced

Imbalanced-practical

Figure 1: AL strategies compared to the Random baseline in the balanced (top row), imbalanced (two middle
rows) and imbalanced-practical (bottom row) scenarios. Train size indicates the size of L, where each iteration
adds 50 samples.
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cluded in the scenario, i = (1...5) is the iteration
index, and k = (1...5) is the experiment number.
As can be seen in Table 3, all the examined AL
strategies significantly and consistently outperform
the Random baseline when the dataset is highly
skewed (imbalanced and imbalanced-practical sce-
narios). All strategies except PE and EGL also
outperform the baseline for the balanced scenario.

While AL strategies improve over the Random
baseline, apparently no single strategy consistently
outperforms all its counterparts. This finding
echoes Lowell et al. (2018), who studied AL for
text classification and sequence tagging in non-
BERT models, and demonstrated the brittleness
and inconsistency of AL results. For significance
analysis, we calculate the p-value for every pair
of strategies per scenario in a similar manner to
the one described above per strategy versus Ran-
dom, correcting for the multiple pairs examined,
and indeed find no overall significant performance
difference between any pair of AL strategies. Note,
however, that some AL strategies are more efficient
than others with respect to runtime - see Table 2.

As may be expected, using a seed with posi-
tive labels obtained by a query, which is naturally
biased towards instances that satisfy the query, typ-
ically results in an initial model with lower F1,
compared to starting with an unbiased set of pos-
itive examples (compare iteration 0 per dataset in
Figure 1 between the imbalanced-practical and im-
balanced scenarios). Interestingly, though, after
several iterations, the AL strategies seem to bridge
the gap and end up with similar classification per-
formance in both scenarios. We further examined
whether the increase in F1 for the imbalanced sce-
narios is driven by an increase in precision or recall.
We find that in the imbalanced-practical scenario,
the improvement in F1 is completely dominated by
an increase in recall, supporting the notion that the
AL strategies enable the model to extrapolate and
generalize beyond the biased sample obtained by
the query8. In contrast, in the imbalanced scenario
the increase in F1 is mostly driven by an increase
in precision. For the precision and recall curves,
see Figures 4 and 5 in the Appendix.

To conclude, our analyses suggest two results
that were not trivial to begin with. Applying AL
to BERT can further boost the performance of this
top performing model. Furthermore, even when

8The low recall of the queries can be seen in Table 5 in the
Appendix.

initiated with a biased seed of positive examples –
as may often occur in practice – AL strategies can
swiftly generalize from this seed and significantly
improve the model recall, ending up with overall
strong F1 performance.

5 Analysis

We perform a comparative analysis of the different
AL strategies, aiming to better understand their rel-
ative advantages and disadvantages, and provide
some insights that may lead to improved AL strate-
gies in future work.

To enable an appropriate comparison, this anal-
ysis is performed after the initial BERT model is
trained and each AL strategy has selected 50 exam-
ples for labeling. Correspondingly, all strategies
select examples from the same unlabeled set U
while using outputs from the same BERT model.
We measure two batch properties which are known
in the literature to impact AL effectiveness:

Diversity: Choosing a batch of diverse examples
is often better than choosing one containing very
similar and perhaps redundant examples. Follow-
ing Zhdanov (2019), we define the Diversity of a
set B as:

D(B) =

 1

|U |
∑
xi∈U

min
xj∈B

d(xi, xj)

−1 (1)

where xi denotes the representation of the [CLS]
token of example i obtained by the model which
was trained using L, and d(xi, xj) denotes the Eu-
clidean distance between xi and xj .

Representativeness: A known issue with AL
strategies, especially the uncertainty-based ones, is
their tendency to select outlier examples that do not
properly represent the overall data distribution. We
thus examine the representativeness of the selected
batches. We rely on the KNN-density measure pro-
posed by Zhu et al. (2008), in which the density of
an example is quantified by the average distance
between the example in question and its K most
similar examples (i.e., K nearest neighbors) within
U , based on the [CLS] representations as above.
An example with high density degree is less likely
to be an outlier. We define the representativeness
of a batch as one over the average KNN-density
of its instances using the Euclidean distance with
K = 10.

The diversity and representativeness of the dif-
ferent strategies are depicted in Figure 2, where for
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Figure 2: Diversity (left) and Representativeness (right) of the batches selected by the different AL strategies in
each of the three scenarios.

each scenario we average results over all datasets
and seed selections. As expected, the batch-aware
strategies, DAL and Core-Set, which were de-
signed to increase diversity, are characterized by
the most diverse batches, with DAL achieving the
highest diversity values, demonstrating the suc-
cess of using mini-queries (Gissin and Shalev-
Shwartz, 2019) to reduce redundancy of the se-
lected examples. In contrast, the other strategies
tend to select less diverse batches, i.e., they are
prone to choose redundant examples, especially in
the imbalanced-practical scenario. Thus, combin-
ing these approaches with methods that encourage
diversity (e.g., He et al., 2014; Zhdanov, 2019;
Ash et al., 2019) can potentially lead to further
improvement in their resultant prediction perfor-
mance. In terms of representativeness, DAL, which
is a representativeness-driven method, again con-
sistently leads across the scenarios. In contrast,
the tendency of the greedy core-set version to se-
lect outliers (Sener and Savarese, 2017), is indeed
reflected in its relatively low representativeness
scores. Interestingly, this is not the case for the
imbalanced-practical scenario. This result can
be attributed to the high bias of L towards query
matches, which results in poor representativeness
of L, which in turn leaves the main ”responsibility”
for representing the dataset on the batch examples
selected from U. A deeper investigation of this
result is left for further investigation. Other strate-
gies have low representativeness scores compared
to DAL, implying that they can be improved by
combining them with techniques for encouraging
representativeness and avoiding outliers.

A popular approach for improving classification
quality is combining several, preferably comple-
mentary, AL strategies. In order to find pairs of

strategies with high synergistic potential, we mea-
sured the overlap between the batches selected by
each pair of strategies. Our analysis shows that
for all pairs of strategies, the expected batch over-
lap is relatively low, and does not exceed 15%.
In general, overlap was higher in the imbalanced
scenarios, probably due to the general incentive
to select positive examples, which are rare in the
data. Also, the overlap within the uncertainty-based
strategies was generally quite high. Nevertheless,
the highest overlap between batches was between
EGL (which is not an uncertainty-based approach)
and LC. We leave for future work to try a combi-
nation of strategies with low overlap as a way to
improve classification even further.

6 Conclusions

The recent emergence of pre-trained models, with
BERT as a prominent example, is reshaping the
NLP arena (Qiu et al., 2020). The promise em-
bodied in these models is their ability to exploit
massive unlabeled textual data to learn versatile,
arguably universal language representations. These
representations, in turn, are proven to be effective
for a multitude of downstream NLP tasks.

A parallel line of research, dating back nearly
three decades, is the notion of AL, aiming to mini-
mize labeling burden within the supervised learn-
ing paradigm. The pairing of these two influential
threads raises non-trivial questions. For example,
BERT arguably attains excellent performance with
relatively little labeled data, used to fine-tune this
pre-trained model for a concrete task. It is not ob-
vious to begin with, to what extent AL strategies
can be used to outperform this already high bar.

To the best of our knowledge, the present work
provides the first systematic study in this context,
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while focusing on the prevalent problem of text
classification. Moreover, we further focus our at-
tention on a scenario well known to many practi-
tioners – and notoriously difficult from a learning
perspective – that of building a classifier when the
class of interest is scarce in the data at hand. Aim-
ing to further bridge the gap between research and
practice, in our imbalanced-practical mode we sim-
ulate a user within this challenging scenario, armed
only with simple queries to define the labeled seed
that will bootstrap the AL process. Our results
demonstrate the potential of AL on top of BERT,
especially in this latter scenario. Notably, a training
data seed resulting from a simple query is expected
to capture only limited, and perhaps somewhat ob-
vious, aspects of the class under consideration. Our
study shows that the initial BERT model indeed suf-
fers from poor prediction performance, mainly due
to low recall values. However, while the random
AL baseline is limited in its ability to help BERT
emerge from this poor initial model, AL strategies
turn out to be very helpful. Using the AL pipeline,
BERT improves its recall by a large margin, gen-
eralizing beyond the narrow data it was initially
exposed to.

This work focused on various binary classifica-
tion tasks. A natural future direction is to conduct
a similar empirical investigation of AL over BERT
in the context of multi-class classification and re-
gression tasks. It would also be interesting to inves-
tigate the realm of larger annotation budgets, and
more recent BERT variants (Liu et al., 2019; Lan
et al., 2019). Finally, the present work focused on
existing AL strategies, which were mostly devel-
oped in the vision domain for CNNs. The devel-
opment of novel AL methods, that are tailored for
pre-trained models such as BERT, seems like an
important direction for future work. We hope that
the experimental results and analyses reported here,
as well as the release of the research framework
we developed, would be instrumental for these and
other future studies.
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no. dataset class # train prior # dev prior # test prior imb.

1 AG’s News-imb world 12,569 10% 2,456 10% 2,513 10% Y
2 Subjectivity-imb subjective 3,919 10% 560 10% 1,077 10% Y
3 Polarity-imb positive 4,142 10% 588 10% 1,193 10% Y
4 Wiki attack general 15,000 12% 3,000 11% 3,000 12% Y
5 ISEAR fear 5,366 14% 766 15% 1,534 15% Y
6 TREC location 4,674 15% 778 15% 500 16% Y

7 AG’s News world 15,000 25% 3,000 26% 3,000 25% N
8 CoLA unacceptable 7,592 30% 959 30% 1,043 31% N
9 Subjectivity subjective 7,000 50% 1,000 50% 2,000 52% N
10 Polarity positive 7,463 50% 1,066 50% 2,133 50% N

Table 4: Datasets, target classes and the split for train/dev/test sets with the class prior in each set (imb.= imbal-
anced).

dataset-category query precision recall F1

ISEAR-fear fear/afraid/scared/scary 0.92 0.24 0.38
TREC-location Where/countr/cit 1.00 0.48 0.65
Wiki attack-general [A-Z]! 0.48 0.08 0.14
AG’s news-imb or over a list of countries and territories 0.32 0.42 0.36

Table 5: Queries performance on the test set

Table 4 provides details about their split into train,
dev, and test sets. For each set its size and the
prior of the target class is presented. Information
about the performance on the test set of the queries
used in the Imbalanced-practical scenario is given
in Table 5.
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Balanced

Imbalanced

Imbalanced-practical

Figure 3: AL strategies compared to the Random baseline in the balanced (top row), imbalanced (two middle
rows) and imbalanced-practical (bottom row) scenarios. Train size indicates the size of L.
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Imbalanced

Imbalanced-practical

Figure 4: Precision of AL strategies and the Random baseline in the imbalanced (two top rows) and imbalanced-
practical (bottom row) scenarios. Train size indicates the size of L.
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Imbalanced

Imbalanced-practical

Figure 5: Recall of AL strategies and the Random baseline in the imbalanced (two top rows) and imbalanced-
practical (bottom row) scenarios. Train size indicates the size of L.


