
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 7732–7739,
November 16–20, 2020. c©2020 Association for Computational Linguistics

7732

Fortifying Toxic Speech Detectors Against Veiled Toxicity

Xiaochuang Han
Carnegie Mellon University
xiaochuh@cs.cmu.edu

Yulia Tsvetkov
Carnegie Mellon University
ytsvetko@cs.cmu.edu

Abstract

Modern toxic speech detectors are incompe-
tent in recognizing disguised offensive lan-
guage, such as adversarial attacks that delib-
erately avoid known toxic lexicons, or mani-
festations of implicit bias. Building a large
annotated dataset for such veiled toxicity can
be very expensive. In this work, we propose
a framework aimed at fortifying existing toxic
speech detectors without a large labeled cor-
pus of veiled toxicity. Just a handful of prob-
ing examples are used to surface orders of mag-
nitude more disguised offenses. We augment
the toxic speech detector’s training data with
these discovered offensive examples, thereby
making it more robust to veiled toxicity while
preserving its utility in detecting overt toxic-
ity.1

Warning: this paper contains examples that
may be offensive or upsetting.

1 Toxic Language in Disguise

Toxic language has been recognized as a severe
problem in the online social communities. While
great efforts have been made to detect and prevent
the spread of overt trolling, hate speech, abusive
language, and toxic comments (Schmidt and Wie-
gand, 2017; Fortuna and Nunes, 2018), they often
build upon lexicon-based approaches (Waseem and
Hovy, 2016; Davidson et al., 2017) and thus are
ineffective at detecting forms of veiled toxicity;
e.g., codewords (Taylor et al., 2017), novel forms
of offense (Jain et al., 2018), and subtle and often
unintentional manifestations of social bias such as
microaggressions and condescension (Breitfeller
et al., 2019; Wang and Potts, 2019).

In this work, we focus on disguised toxic lan-
guage that is often undetected by existing tools.2 It

1Our code is available at https://github.com/
xhan77/veiled-toxicity-detection.

2We use the terms veiled and disguised toxicity inter-
changeably in this work.

can be innocuous on the surface lexicon-level, but
as offensive as hate speech and lastingly harmful
(Sue et al., 2007; Sue, 2010; Nadal et al., 2014;
Jurgens et al., 2019).3

Detecting veiled toxicity is hard: deep seman-
tic analysis and large datasets are needed. But
veiled offenses are not represented in existing toxi-
city datasets (Waseem and Hovy, 2016; Davidson
et al., 2017; Founta et al., 2018) and building a
new dataset is expensive: candidates for annotation
cannot be filtered through lexicons and random
sampling of social media posts will surface only a
tiny fraction of relevant examples (Breitfeller et al.,
2019). Moreover, since biased text is often uncon-
scious and subjective, untrained annotators might
mislabel it due to their own biases (Breitfeller et al.,
2019; Field and Tsvetkov, 2020).

We propose a framework to surface veiled of-
fenses and improve toxicity classifiers that are com-
promised in detecting them. It requires a small
set of labeled probing examples to surface orders
of magnitude more disguised offenses missed by
the classifier, through interpretable ML techniques
tracking the influence of training examples on clas-
sifier’s predictions (Koh and Liang, 2017; Pruthi
et al., 2020). From an original classifier that de-
tects veiled toxicity with an accuracy of 1%, we
achieve up-to 51% accuracy in detecting veiled
offenses while preserving the utility of the classi-
fier in detecting overt offenses. To the best of our
knowledge, our work is the first in making toxic
speech detectors robust against veiled toxicity with
almost no annotated data.

3To demonstrate, an offensive example from the Social
Bias Inference Corpus (Sap et al., 2020) “What is the differ-
ence between a bench and an African? A bench can support a
family.” is determined as non-toxic by a popular toxic speech
detector Perspective API, https://perspectiveapi.
com/; the example gets a toxicity score of 0.1 out of 1. It is
originally from Reddit’s r/darkJokes.

https://github.com/xhan77/veiled-toxicity-detection
https://github.com/xhan77/veiled-toxicity-detection
https://perspectiveapi.com/
https://perspectiveapi.com/


7733

2 Identifying Veiled Toxicity

A typical toxicity classifier C might fail to identify
veiled offenses because they are not well repre-
sented among toxic examples in its training data
D. Moreover, the non-toxic portion of D might be
polluted with (mislabeled) disguised offenses. At
inference time, C might thus mislabel, for exam-
ple, microaggressions as well as adversarial attacks
deliberately avoiding known toxic lexicons.

To make such compromised classifier C more
robust, we propose a framework that does not re-
quire access to D.4 We start with a dataset D′
comprising examples that can be labeled as of-
fensive or non-offensive.5 We build a student
model C ′ on D′ that approximates the behavior
of C: C ′ = argminθ L(θ, x, C(x)), where x are
instances from D′.

An effective C ′ would mimic the behavior of
C, including mislabeling disguised toxic examples
xveiled as non-offensive. To address this issue, we
surface the unknown xveiled out of the training set
by probing the C ′ with a small labeled held-out set
of veiled offenses P ,6 and tracing the model’s deci-
sions back to training examples in D′. We hypothe-
size the ‘influential’ training examples that lead to
C ′’s predictions on P are likely to be xveiled. One
probing example can surface multiple influential
examples in the training data. These influential ex-
amples can then be re-annotated, making the model
more robust to future veiled toxicity.

The key observation is that sampling on random
a subset of non-offensive data to annotate it for
disguised offensiveness is prohibitively expensive,
as only a tiny fraction of annotated examples will
be indeed offensive. Our proposed approach in-
creases the likelihood to identify disguised offen-
siveness by surfacing training examples that influ-
ence the decisions ofC ′ when tested on P . The key
challenge is to devise a method to track examples
influential to classifier’s predictions; we discuss
candidate approaches in the rest of this section.

4Since hate speech training data is often proprietary and
platform-specific (MacAvaney et al., 2019).

5Here we assume a binary classifier for simplicity, but our
setup is applicable to multi-class settings.

6Although it could be very expensive to create large-
scale datasets for disguised offenses, it is feasible to col-
lect a very small number (e.g., less than 100) of exemplars,
using methods like user reporting, e.g., https://www.
microaggressions.com/.

2.1 Probing for veiled toxicity
We explore several methods to define the influence
I(xtrn, xprb) of a training example xtrn ∈ D′ over
a probing example xprb ∈ P .

Embedding product Modern neural classifiers
often consist of two parts: an encoding module
fenc(·) that transforms the input to some hidden
representation, and a projection layer fproj(·) that
projects the output of the encoding module to the
label space. Our first influence measure is based on
the intuition that the training example with the clos-
est embedding to the probing example in the hidden
encoding space could be the most influential:

I(xtrn, xprb) = fenc(xtrn) · fenc(xprb).

Influence functions Koh and Liang (2017) pro-
pose influence functions for ML models, fol-
lowing the vision from robust statistics. It
first approximates how upweighting a particular
training example (xtrn, ytrn) in the training set
{(x1, y1), . . . , (xn, yn)} by an infinitesimal εtrn
would change the learned model parameters θ:

dθ

dεtrn
= −H−1θ ∇θL(θ, xtrn, ytrn),

where Hθ =
1
n

∑n
i=1∇2

θL(θ, xi, yi) is the Hessian
of the model. We can then use the chain rule to
measure how this change in the model parameters
would in turn affect the loss of the probing input:

dL(θ, xprb, ŷprb)
dεtrn

= ∇θL(θ, xprb, ŷprb) ·
dθ

dεtrn
,

where ŷprb is the wrong label for the probing ex-
ample, since we want to know which training ex-
amples lead to a wrong prediction of the prob-
ing disguised offense. The final influence of a
train example to a probing example is defined as:
I(xtrn, xprb) = −

dL(θ,xprb,ŷprb)
dεtrn

. More details of
influence functions and their applications in NLP
can be found in Koh and Liang (2017) and Han
et al. (2020).7

Gradient product Computing the inverse Hes-
sian H−1θ in the influence functions is expensive
and requires approximations if the model is non-
convex. If we ignore the inverse Hessian term, the
calculation reduces to the dot product between the
gradient of the training loss L(θ, xtrn, ytrn) and
the gradient of the probing loss L(θ, xprb, ŷprb).

7Implementation details can be found in the Appendix.

https://www.microaggressions.com/
https://www.microaggressions.com/


7734

This method is discussed in Pruthi et al. (2020).
Specifically, we adopt the TrackIn method, which
defines the influence as:

I(xtrn, xprb) =
k∑
i=1

∇θL(θi, xtrn, ytrn)

·∇θL(θi, xprb, ŷprb),

where θi is the checkpoint of the model at each
training epoch. The intuition behind this method
is to approximate the total reduction in the prob-
ing loss L(θ, xprb, ŷprb) during the training pro-
cess when the training example xtrn is used. More
details on TrackIn can be found in Pruthi et al.
(2020).8

Training loss Our last method to define the in-
fluence of training examples can be considered as
a baseline which is often used in active learning
as ‘uncertainty-based sampling’ (Lewis and Gale,
1994; Zhu et al., 2008). The intuition is that a
training example with a high loss (low confidence)
could indicate that the model struggles to predict
that example correctly. This alone can show that
the outlier training example has a dubious label,
regardless of its relationship to the probing exam-
ple. For consistency, we define the influence of a
training example to the mis-prediction of disguised
offenses as: I(xtrn) = L(θ, xtrn, ytrn).9

3 Experiments

3.1 Setup
We use a popular toxic language detection tool, Per-
spective API by Jigsaw and Google, as the compro-
mised classifier C. It builds upon a convolutional
neural network with pretrained word embeddings
and proprietary large labeled data. For the student
model C ′, we use a BERT-based model (Devlin
et al., 2019), initialized with the pretrained weights
and fine-tuned on our training set. Below we in-
stantiate our training set D′ and a probing set P of
veiled offenses.

SBIC – Social Bias Inference Corpus (Sap et al.,
2020) is a dataset containing 45K social media
posts with crowdsourced annotations of offensive-
ness, intention, and targeted group from a variety
of origins, including hate speech, offensive lan-
guage, and microaggressions, and selected dan-
gerous threads on Reddit (e.g., r/darkJokes) and

8More influence metrics can be found in Yeh et al. (2018),
Khanna et al. (2019), and Barshan et al. (2020). We leave the
exploration of them in our framework to future work.

9Note that this method does not require probing examples.

hate sites. We use SBIC as our base dataset. We
consider three attributes in SBIC posts: offensive,
target some marginalized groups, while subtly ex-
pressed. Each post’s offensiveness scores can be 0
(harmless), 0.5 (maybe offensive), or 1 (offensive).
We select the posts with an average offensiveness
> 0.5 (i.e., more than half of the annotators thought
it was offensive). SBIC also asks annotators to iden-
tify the potential groups of people that might be
offended by the post. We keep the posts with at
least one identified target group.

We first extract veiled toxicity set. We ran-
domly sample 10K general reddits from no spe-
cific domains and measure their average Perspec-
tive API toxicity score toxgeneral ≈ 0.17 on a scale
[0,1]. We then measure the Perspective API toxic-
ity scores of the posts in SBIC that are offensive to
at least one minority group. We sort these scores
from low to high in x1, x(2), · · · , x(n). We pick
the least toxic m posts as our veiled offensive lan-
guage set so that 1

m

∑m
i=1 tox(x(i)) = toxgeneral.

The extracted veiled offenses are equally non-toxic
as some random general-domain reddits according
to Perspective API.10 There are about 3K resulting
posts. We use 2K in our training set D′ (as dis-
cussed in §2.1 they are (mis)labeled as non-toxic),
1K for the test set, and reserve 100 for the probing
set P .

It is worth noting that Perspective API can mis-
classify toxic inputs for several reasons. First, al-
though it was trained on comments from online
forums such as discussions of Wikipedia and New
York Times, it could misclassify SBIC examples
due to a domain mismatch leading to different man-
ifestations of overt toxicity. In addition, as we
discuss above, misclassifications can be attributed
to novel lexicons of toxicity, to (intentional or un-
intentional) spelling variations, or to more subtly
expressed implicit offenses. Our set of veiled of-
fenses covers any of these forms, as they are hidden
from the original toxicity detection model.11

We extract all SBIC posts annotated as non-
offensive and also sort their Perspective API toxi-
city scores from low to high in x1, x(2), · · · , x(n′).
We pick the least toxic m′ posts as our non-
offensive clean set so that 1

m′
∑m′

i=1 tox(x(i)) =

10All toxicity scores are under 0.5, i.e., Perspective API
labels none of them as offensive. 12.6% of instances with more
than one annotation do not have a full annotator agreement
that the instance is offensive.

11In practice, we observe the extracted veiled offenses to be
indeed covertly toxic, as shown in a list of randomly selected
examples in the Appendix, and not a mere domain mismatch.



7735

Figure 1: Distribution of each training example’s influ-
ence rank to each probing veiled offense by the gradi-
ent product method. An influence rank towards 0(%)
means a high influence.

toxgeneral. The intuition is to create a control set
for the veiled offenses: these clean data are from
the same domain as the veiled offenses, have the
same Perspective API score as the veiled offenses
on average, while being annotated in SBIC as non-
offensive. There are about 10K posts in this cate-
gory. We use 8K in D′ and 1K for testing.

For the SBIC posts that are identified as offen-
sive, we extract those with Perspective API toxicity
score > 0.8 (a recommended threshold by Per-
spective API for determining bad language) and
consider them as our overtly offensive set. From
3K such posts, we use 2K in D′ and 1K for testing.

3.2 Student model evaluation

Would a vanilla toxicity classifier recognize veiled
offenses? We apply our student model C ′ on the
three sets in §3.1. The model attains a class recall of
99.6% and 97.2% on the non-offensive and overtly
offensive test sets, respectively. However, it fails to
recognize test veiled offenses as offensive, yielding
an 1.2% class recall. In sum, it mimics Perspective
API’s predictions accurately.

3.3 Evaluating probing and re-annotation

We hypothesized that the more influential a training
example is to a wrongly predicted example from
P , the more probable that this training example
is xveiled – an undetected veiled offense by the
original compromised classifier C. If this is indeed
true, we may surface multiple xveiled instances in
the top influential training examples, and enable
training data corrections with a high efficiency.

In Figure 1, we show a distribution of the train-
ing examples’ influence rank derived by the gradi-
ent product method (§2.1).12 The influence ranks of

12Recall that each training example xtrn has an influence
score over each probing example xprb. For each xprb, we rank

Method @ 500 1000 1500 2000

Random 100 200 300 400
Training loss 267 464 634 775
Embedding product 162 303 445 570
Influence function 259 472 647 806
Gradient product 290 563 777 961

Table 1: Number of veiled offenses found in the highest
averagely ranked (most influential) training examples
over all probing veiled offenses by different methods.

the veiled offenses are highly skewed towards the
left of the spectrum (more influential) compared to
others, confirming our hypothesis. In Table 1, we
show the number of veiled offensive training exam-
ples surfaced among the most influential examples
under different influence definitions. A random
set of examples labeled as non-offensive would
contain ≈20% veiled offenses.13 All probing meth-
ods attain 1.5–3x better results than random, with
influence function and gradient product methods
outperforming the training loss baseline that is of-
ten used in the active learning scenario.14

Does the detection and re-annotation of veiled
offenses improve the model? We retrain the origi-
nal student classifier and for each influence metric
we: (1) simulate the active learning scenario, fix-
ing the labels for veiled offenses within the top k
examples (following gold SBIC annotations), and
(2) flipping the labels for all of the top k exam-
ples, including the non-offensive clean data. The
former mimics a scenario where extra human an-
notation is available; the latter requires no extra
human labor, and is motivated by the observation
that crowdsourced annotations of veiled toxicity
are expensive and not always trustworthy. But this
setup might compromise the model performance
on non-toxic data, since we will also flip innocuous
influential training instances.

Table 2 shows the performance of the models
improved by each method. The gradient product
method achieves the best performance in recogniz-
ing the veiled offenses. Flipping the labels for all
top influential training examples helps this perfor-
mance on veiled offenses more than only correcting

the influence of all xtrn, creating an influence rank for each
xtrn in D′ w.r.t. xprb.

13Since there are 2K veiled offenses and 8K non-offensive
instances in the training set.

14We show in the Appendix that this result holds consis-
tently even when probing with only 20 examples (instead of
100).



7736

Model Operation VO NO OO

Original 1.2 99.6 97.2

Training loss fix top 500 8.9 99.5 97.0
fix top 2000 26.7 98.2 98.2
flip top 500 13.0 97.9 98.2
flip top 2000 41.5 85.2 99.4

Embedding product fix top 500 3.4 99.7 95.6
fix top 2000 16.9 98.7 98.6
flip top 500 7.3 97.1 96.3
flip top 2000 29.9 85.4 98.3

Influence function fix top 500 9.5 99.5 97.3
fix top 2000 28.0 98.7 98.0
flip top 500 12.7 98.5 98.1
flip top 2000 41.7 87.5 99.6

Gradient product fix top 500 10.4 99.0 96.9
fix top 2000 37.5 97.6 98.0
flip top 500 14.6 97.6 98.4
flip top 2000 51.1 87.6 99.5

Gold 76.0 94.8 98.2

Table 2: Class recall of the original model and the
retrained models by different influence tracking meth-
ods on the veiled offensive (VO) test set, non-offensive
(NO) test set, and overtly offensive (OO) test set.

the labels, but also compromises the performance
on non-offensive clean data. All of the updated
models still preserve the utility in recognizing the
overt toxicity. However, there remains a significant
gap between our improved models and the bench-
mark model, which has the correct information of
all veiled offenses, clean data and overtly offensive
language in the training set.

Examples Table 3 shows a probing example and
top influential training examples identified by each
influence metric. Using the training loss metric,
we get exactly the same influential examples for
every probing instance since the metric does not de-
pend on the probing examples. It surfaces a racist
comment, although Perspective API classified the
whole sentence as not toxic. For the influence func-
tion metric, although the surfaced misogynistic ex-
ample is overtly offensive, it was not recognized
as toxic by Perspective API as well. The embed-
ding product metric surfaces a post related to the
topic of sexual harassment as the probing exam-
ple, but the post is actually non-offensive, which
underscores the need for further validation of sur-
faced comments using manual annotations or more

Probing example Literally the only thing that matters
for choosing a wife - The woman’s
chastity.

Training loss What does Nike and KKK have
in common? They both make the
nigga’s run.

Embedding product Question: Can misandry be classi-
fied as sexual harassment and be
subject to the same grounds for a
lawsuit as misogyny?

Influence function I would pay money to hatefuck
some of the female users on this
sub.

Gradient product Of course I love you, I just prefer
the straight part of you to the gay
part.

Table 3: Top influential training examples to a probing
veiled offense by different influence metrics.

sophisticated toxicity detection methods. Finally,
the gradient product metric surfaces a homophobic
microaggression. Overall, although these influence
metrics can help finding candidates for veiled offen-
siveness, the discovered messages might not neces-
sarily target the same social groups as the probing
examples and also might not be toxic. Future work
should focus on incorporating knowledge about
social groups to the classifiers, and on a deeper
analysis of presuppositions encoded in the surfaced
messages to analyze toxicity in conversational and
social contexts.

4 Conclusion

We propose a framework to robustify toxicity classi-
fiers against veiled toxicity. Through a few labeled
probing examples, we can accurately surface or-
ders of magnitude more disguised toxic messages
missed by a compromised classifier, using inter-
pretable ML techniques that track the influence of
training examples on the probing examples. Our
framework, however, is not limited to toxicity de-
tection. Future work can explore how to enhance a
sub-optimal model using the teacher-student setup
for tasks that change across domains or over time,
or in scenarios where the original model and data
are restricted for privacy reasons.

Acknowledgments

We thank the anonymous EMNLP reviewers and
area chairs, Alan Black, Anjalie Field, Junxian
He, Eden Tsvetkov, Jing Wen, Michael Miller
Yoder, and members of TsvetShop at CMU for



7737

helpful discussions of this work. This ma-
terial is based upon work supported by NSF
grants IIS1812327 and SES1926043, by the
Public Interest Technology University Network
Grant No. NVF-PITU-Carnegie Mellon University-
Subgrant-009246-2019-10-01, the Okawa Grant,
and by Amazon MLRA award. We also thank Ama-
zon for providing GPU credits.

References
Naman Agarwal, Brian Bullins, and Elad Hazan. 2017.

Second-order stochastic optimization for machine
learning in linear time. Journal of Machine Learn-
ing Research (JMLR), 18:116:1–116:40.

Elnaz Barshan, Marc-Etienne Brunet, and G. Dziugaite.
2020. Relatif: Identifying explanatory training ex-
amples via relative influence. In Proc. AISTATS.

Luke Breitfeller, Emily Ahn, David Jurgens, and Yu-
lia Tsvetkov. 2019. Finding microaggressions in the
wild: A case for locating elusive phenomena in so-
cial media posts. In Proc. EMNLP.

Thomas Davidson, Dana Warmsley, Michael W. Macy,
and Ingmar Weber. 2017. Automated hate speech
detection and the problem of offensive language. In
Proc. ICWSM.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proc. NAACL-HLT.

Anjalie Field and Yulia Tsvetkov. 2020. Unsupervised
discovery of implicit gender bias. In Proc. EMNLP.

Paula Fortuna and Sérgio Nunes. 2018. A survey on au-
tomatic detection of hate speech in text. ACM Com-
puting Surveys (CSUR), 51(4):85.

Antigoni-Maria Founta, Constantinos Djouvas, De-
spoina Chatzakou, Ilias Leontiadis, Jeremy Black-
burn, Gianluca Stringhini, Athena Vakali, Michael
Sirivianos, and Nicolas Kourtellis. 2018. Large
scale crowdsourcing and characterization of twitter
abusive behavior. In Proc. ICWSM.

Xiaochuang Han, Byron C. Wallace, and Yulia
Tsvetkov. 2020. Explaining black box predictions
and unveiling data artifacts through influence func-
tions. In Proc. ACL.

Edwin Jain, Stephan Brown, Jeffery Chen, Erin Neaton,
Mohammad Baidas, Ziqian Dong, Huanying Gu,
and Nabi Sertac Artan. 2018. Adversarial text gen-
eration for google’s perspective api. In Proc. Inter-
national Conference on Computational Science and
Computational Intelligence (CSCI), pages 1136–
1141.

David Jurgens, Libby Hemphill, and Eshwar Chan-
drasekharan. 2019. A just and comprehensive strat-
egy for using NLP to address online abuse. In Proc.
ACL.

Rajiv Khanna, B. Kim, Joydeep Ghosh, and O. Koyejo.
2019. Interpreting black box predictions using fisher
kernels. In Proc. AISTATS.

Pang Wei Koh and Percy Liang. 2017. Understand-
ing black-box predictions via influence functions. In
Proc. ICML.

David D. Lewis and William A. Gale. 1994. A sequen-
tial algorithm for training text classifiers. In Proc.
SIGIR.

Sean MacAvaney, Hao-Ren Yao, Eugene Yang, Katina
Russell, Nazli Goharian, and Ophir Frieder. 2019.
Hate speech detection: Challenges and solutions.
PloS one, 14(8).

Kevin L Nadal, Katie E Griffin, Yinglee Wong, Sahran
Hamit, and Morgan Rasmus. 2014. The impact of
racial microaggressions on mental health: Counsel-
ing implications for clients of color. Journal of
Counseling & Development, 92(1):57–66.

Garima Pruthi, Frederick Liu, Mukund Sundarara-
jan, and Satyen Kale. 2020. Estimating training
data influence by tracking gradient descent. ArXiv,
abs/2002.08484.

Maarten Sap, Saadia Gabriel, Lianhui Qin, Dan Juraf-
sky, Noah A. Smith, and Yejin Choi. 2020. Social
bias frames: Reasoning about social and power im-
plications of language. In Proc. ACL.

Anna Schmidt and Michael Wiegand. 2017. A survey
on hate speech detection using natural language pro-
cessing. In Proc. SocialNLP@EACL.

Derald Wing Sue. 2010. Microaggressions in everyday
life: Race, gender, and sexual orientation. John Wi-
ley & Sons.

Derald Wing Sue, Christina M. Capodilupo, Gina C.
Torino, Jennifer M Bucceri, Aisha M. B. Holder,
Kevin L Nadal, and Marta Esquilin. 2007. Racial
microaggressions in everyday life: implications for
clinical practice. The American psychologist, 62
4:271–86.

Jherez Taylor, Melvyn Peignon, and Yi-Shin Chen.
2017. Surfacing contextual hate speech words
within social media. ArXiv, abs/1711.10093.

Zijian Wang and Christopher Potts. 2019. Talkdown:
A corpus for condescension detection in context. In
Proc. EMNLP.

Zeerak Waseem and Dirk Hovy. 2016. Hateful sym-
bols or hateful people? predictive features for hate
speech detection on twitter. In Proc. SRW@HLT-
NAACL.



7738

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, R’emi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. HuggingFace’s trans-
formers: State-of-the-art natural language process-
ing. ArXiv, abs/1910.03771.

Chih-Kuan Yeh, Joon Sik Kim, Ian En-Hsu Yen, and
Pradeep Ravikumar. 2018. Representer point selec-
tion for explaining deep neural networks. In Proc.
NeurIPS.

Jingbo Zhu, Huizhen Wang, and Eduard H. Hovy. 2008.
Learning a stopping criterion for active learning for
word sense disambiguation and text classification.
In Proc. IJCNLP.

A Implementation Details

The student classifier we used for experiments is
a BERT-Base model (Devlin et al., 2019), adapted
from Wolf et al. (2019). The model has 110 million
parameters. We used the default BERT optimizer
with default hyperparameters: a learning rate of
5e-5, a total of 3 epochs, a max sequence length of
200, and a training batch size of 24. The training
(finetuning) of the student classifier would take ap-
proximately 10 minutes on one NVIDIA GeForce
RTX 2080 Ti GPU.

For influence functions, we followed Han et al.
(2020) which adapted code from Koh and Liang
(2017) to PyTorch and used the same stochastic es-
timation trick, LiSSA (Agarwal et al., 2017). Since
our model is not convex, we used a “damping” term
of 3e-3. This value was picked so that the recur-
sive approximation to the inverse Hessian-vector
product can be finished (converged) in a reasonable
time.15 More specifically, we chose the recursion
depth to be 3000 (with a total of 12k training ex-
amples), the number of recursions to be 1, and a
scaling factor to be 1e8. In each step estimating the
Hessian-vector product, we took a batch of 8 train-
ing examples for stability. We empirically checked
that the inverse Hessian-vector product converges
after the recursive estimation for all probing exam-
ples on which we performed the analysis.

For the gradient product method, we adopted
TrackInCP (Equally Weighted) from Pruthi et al.
(2020). We used 3 checkpoints of the BERT model
(i.e., k = 3; one checkpoint after each epoch) since
we finetuned the classifier with 3 epochs.

1515 minutes for each training and probing example pair on
one NVIDIA GeForce RTX 2080 Ti GPU.

B Sample Veiled Offenses

Table 4 shows 20 random veiled offensive exam-
ples as extracted in §3.1. They got low toxicity
scores from Perspective API, but were annotated
as offensive to at least one social group according
to the SBIC dataset. Most of them are covert but
no less offensive to human readers.

C Robustness Check

In the main paper, we used 100 labeled veiled of-
fensive examples as our probing set to discover
more veiled offenses in the training set. As a ro-
bustness check, we show in Table 5 that the result
is consistent when using only 20 probing examples.



7739

Original text Targeted group annotation

Now we’ll see if this dude is everything that he’s cracked up to be. Time to get ready to bring
the Travel Ban up to the Supreme Court.

Muslim folks

How does a Rabbi get paid? He keeps the tips Jewish folks
if a man speaks and his wife is n’t around to correct him . is he still wrong ? Women
Both are important, but being Neurotypical is more important than good looks, women won’t
approach you unless you’re a 10/10 god cope all you want, if you’re decent/good-looking
(6-8/10) women won’t approach you

Women

what is the difference between a bench and an african ? a bench can support a family . Black folks
I recently have trying to eat more vegetables to lower my blood pressure. The hospital security
has really been making this impossible lately though. Guess ill have to just try the morgue.

Physically disabled folks

How do you keep your vegetables happy? Gather them on an air-conditioned room with plenty
of sunlight

Physically disabled folks

What’s the difference between boy scouts and jews? Boy scouts come back from camp. Jewish folks
What’s blue and white and red all over? A cop at a BLM rally. Black folks
I walk into the bank the other day, I’m already having a bad day, and the teller gives me the
look, I know this look. Teller:: What are you? me:: Why? teller:: Well, you look Middle-
Eastern, but then I saw your name, and I thought that, that couldn’t be right! me:: What makes
you think I’m Middle-Eastern - my beard, my scarf, my skin color? Teller:: um... This kind of
thing happens to be pretty much every single day, no matter where I (half Mexican) am.

Middle eastern

I don’t get why Black Friday is such a big deal. They already have a whole history month Black folks
There’s a lot of wildfires around us and I noticed some ashes falling down at my Jewish
friend’s house I called to make sure his family reunion was going well

Jewish folks

If Donald Glover played spiderman, he wouldn’t be called spiderman anymore. He would be
called Spidermonkey.

Black folks

But he can never be a *real* girl. Trans women
For your viewing pleasure, a full album of defending feminism in this subreddit, and then
getting banned from the feminism subreddit

Women

I want to have 13 children with a proud Aryan woman. Any non white person
What’s a preist’s favourite song Praising the lord in A minor Christian folks
Life is like a box of chocolates The ones with nuts are generally better Women
Why do deaf children not get abused Because there’s no need to give them beats. Physically disabled folks
I’m not judgemental So whenever I see someone driving slow in the fast lane, I never assume
what gender she is.

Women

Table 4: Sample veiled offenses extracted from SBIC.

Method @ 500 1000 1500 2000

Random 100 (± 0) 200 (± 0) 300 (± 0) 400 (± 0)
Training loss 267 (± 0) 464 (± 0) 634 (± 0) 775 (± 0)
Embedding product 161.2 (± 19.5) 305.8 (± 19.4) 442.8 (± 35.9) 567.0 (± 44.5)
Influence function 258.8 (± 1.6) 469.6 (± 2.9) 645.6 (± 2.1) 807.4 (± 2.7)
Gradient product 289.2 (± 4.3) 563.6 (± 3.5) 775.2 (± 1.6) 962.0 (± 4.4)

Table 5: Number of veiled offenses found in the top influential training examples to the probing veiled offenses by
different methods. We use 20 probing examples each time and repeat the experiment 5 times. The result shows
both the mean number and the 95% confidence interval under t-distributions.


