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Abstract

Mainstream computational lexical semantics
embraces the assumption that word senses can
be represented as discrete items of a prede-
fined inventory. In this paper we show this
needs not be the case, and propose a unified
model that is able to produce contextually ap-
propriate definitions. In our model, Genera-
tionary, we employ a novel span-based encod-
ing scheme which we use to fine-tune an En-
glish pre-trained Encoder-Decoder system to
generate glosses. We show that, even though
we drop the need of choosing from a prede-
fined sense inventory, our model can be em-
ployed effectively: not only does Generation-
ary outperform previous approaches in the gen-
erative task of Definition Modeling in many
settings, but it also matches or surpasses the
state of the art in discriminative tasks such
as Word Sense Disambiguation and Word-in-
Context. Finally, we show that Generationary
benefits from training on data from multiple
inventories, with strong gains on various zero-
shot benchmarks, including a novel dataset
of definitions for free adjective-noun phrases.
The software and reproduction materials are
available at http://generationary.org.

1 Introduction

Virtually all modern approaches to Word Sense
Disambiguation (WSD), i.e. the task of automat-
ically mapping a word in context to its meaning
(Navigli, 2009), use predetermined word senses
from a machine lexicon, both in supervised (Huang
et al., 2019; Bevilacqua and Navigli, 2020; Scar-
lini et al., 2020b) and in knowledge-based settings
(Tripodi and Navigli, 2019; Scarlini et al., 2020a;
Scozzafava et al., 2020). Nevertheless, researchers
in Natural Language Processing (NLP), lexical se-
mantics, and lexicography, have long been warning
the community about the cognitively inaccurate

∗These authors contributed equally.

nature of discrete sense boundaries (Rosch and
Mervis, 1975; Kilgarriff, 1997; Tyler and Evans,
2001). As Kilgarriff (2007) argued, different lan-
guage users have different understandings of words.
This fact explains why inter-annotator agreement
(ITA) estimates on WSD annotation tasks have
never exceeded the figure of 80% (Edmonds and
Kilgarriff, 2002; Navigli et al., 2007; Palmer et al.,
2007). Moreover, this casts doubt upon the reliabil-
ity of human-made inventories and “gold standard”
evaluation datasets (Ramsey, 2017). Having no
indisputable way of determining where one sense
of a word ends and another begins, together with
the fact that little consensus about how to represent
word meaning has hitherto existed (Pustejovsky,
1991; Hanks, 2000; Nosofsky, 2011), are issues
lying at the core of what makes WSD hard (Jack-
son, 2019). Moreover, while English inventories of
senses and corpora are widely available the same
cannot be said for other languages (Scarlini et al.,
2019; Barba et al., 2020; Pasini, 2020), and this lim-
its the scalability of Natural Language Understand-
ing tasks to multiple languages (Navigli, 2018).

In this paper we overcome these limitations by
proposing a unified approach to computational lexi-
cal semantics that has as its central focus Definition
Modeling (DM), i.e. the task of generating a
gloss1 from static or contextual embeddings (No-
raset et al., 2017). Generating a meaning descrip-
tion (definiens) to define a given term in context
(definiendum) avoids many of the concerns high-
lighted above, in that we are not limited to a pre-
existing list of meanings. We show that we can use
a single generation model, i.e. Generationary, not
just to compete on the DM benchmarks, but also to
achieve strong results on fully-discriminative tasks
such as WSD and the recently-proposed Word-in-
Context (Pilehvar and Camacho-Collados, 2019,

1To ensure better readability, here we will use the term
“gloss” as a synonym of the traditional dictionary “definition”.

http://generationary.org
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WiC). This, in turn, results in a more solid assess-
ment of the generation quality, a notorious problem
in Natural Language Generation (NLG) evaluation
(Gatt and Krahmer, 2018).

In contrast to previous approaches in DM (Gadet-
sky et al., 2018), we dispense with the requirement
of having the definiendum represented by a single
vector, and we condition gloss generation on a con-
text of which the definiendum is an arbitrary span.
This allows for the generation of contextual defi-
nitions for items that are rarely covered by sense
inventories, such as free word combinations (e.g.
clumsy apology or nutty complexion). Finally, the
generative formulation makes it possible to train
on several lexicographic resources at once, result-
ing in a versatile model that performs well across
inventories, datasets, and tasks.

The main contributions of our approach are as
follows:

1. We propose the use of a single conditional gen-
eration architecture to perform English DM,
WSD and WiC;

2. Our model achieves competitive to state-of-
the-art results despite dropping the need of
choosing from a predefined sense inventory;

3. Thanks to our encoding scheme, we can rep-
resent the definiendum as a span in the con-
text, thus enabling definition generation for
arbitrary-sized phrases, and seamless usage
of BART (Lewis et al., 2019), a pre-trained
Encoder-Decoder model;

4. Additionally, we release a new evaluation
dataset to rate glosses for adjective-noun
phrases.

We envision many possible applications for Gen-
erationary, such as aiding text comprehension, es-
pecially for second-language learners, or extending
the coverage of existing dictionaries.

2 Related Work

Recent years have witnessed the blossoming of
research in Definition Modeling (DM), whose orig-
inal aim was to make static word embeddings in-
tepretable by producing a natural language defini-
tion (Noraset et al., 2017).2 While subsequently re-
leased datasets have included usage examples to ac-
count for polysemy (Gadetsky et al., 2018; Chang

2With one single exception (Yang et al., 2020), DM has
only been concerned with the English language.

et al., 2018), many of the approaches to “contex-
tual” DM have nevertheless exploited the context
merely in order to select a static sense embedding
from which to generate the definition (Gadetsky
et al., 2018; Chang et al., 2018; Zhu et al., 2019).
Such embeddings, however, are non-contextual.

Other works have made a fuller use of the sen-
tence surrounding the target, with the goal of ex-
plaining the meaning of a word or phrase as embed-
ded in its local context (Ni and Wang, 2017; Mickus
et al., 2019; Ishiwatari et al., 2019). However, these
approaches have never explicitly dealt with WSD,
and have shown limits regarding the marking of
the target in the context encoder, preventing an ef-
fective exploitation of the context and making DM
overly reliant on static embeddings or surface form
information. For example, in the model of Ni and
Wang (2017), the encoder is unaware of the con-
textual target, whereas Mickus et al. (2019) use a
marker embedding to represent targets limited to
single tokens. Finally, Ishiwatari et al. (2019) re-
place the target with a placeholder, and the burden
of representing it is left to a character-level encoder
and to static embeddings. This latter approach is
interesting, in that it is the only one that can han-
dle multi-word targets; however, it combines token
embeddings via order-invariant sum, and thus it is
suboptimal for differentiating instances such as pet
house and house pet.

Recent approaches have explored the use of
large-scale pre-trained models to score definitions
with respect to a usage context. For example,
Chang and Chen (2019) proposed to recast DM
as a definition ranking problem. A similar idea was
applied in WSD by Huang et al. (2019), leading
to state-of-the-art results. However, both of these
approaches fall back on the assumption of discrete
sense boundaries, and are therefore unable to define
targets outside a predefined inventory.

With Generationary, by contrast, we are the first
to use a single Encoder-Decoder model to perform
diverse lexical-semantic tasks such as DM, WSD
and WiC. Moreover, we address the issue of en-
coding the target in context by using a simple, yet
effective, encoding scheme which makes use of
special tokens to mark the target span, producing a
complete and joint encoding of the context without
the need for other components. This allows the
effective usage of a pre-trained model, which we
fine-tune to generate a gloss given the context.
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3 Generationary

With this work we present a new approach to com-
putational lexical semantics, by means of which
we generate glosses for arbitrary-sized phrases in
context. Our work has a wider scope than its pre-
decessors, in that we put forward a unified method
that overcomes the limits of both DM and WSD.
With respect to DM, our full sequence-to-sequence
framing of the task enables us to deal with units
having different compositional complexity, from
single words to compounds and phrases. Thus,
Generationary can gloss a definiendum that is not
found in dictionaries, such as starry sky, with the
appropriate definiens, e.g.: ‘The sky as it appears
at night, especially when lit by stars’.

As regards WSD, instead, we are no longer
bound by the long-standing limits of predefined
sense inventories. Thus, it is possible to give (i)
a meaningful answer for words that are not in the
inventory, and (ii) one that fits the meaning and the
granularity required by a given context better than
any sense in the inventory. Consider the following:

(1) (a) Why cannot we teach our children to
read, write and reckon?

(b) Mark or trace on a surface.
(c) To be able to mark coherent letters.

The target word in (1 a) is associated3 with the gold
gloss (1 b) from WordNet (Fellbaum, 1998), the
most used sense inventory in WSD. However, Gen-
erationary arguably provides a better gloss (1 c). In
what follows, we detail our approach.

3.1 Gloss Generation
In this work we address the task of mapping an oc-
currence of a target word or phrase t (in a context c)
to its meaning, by reducing it to that of generating
a textual gloss g which defines 〈c, t〉. The target
t is a span in c, i.e. a pair of indices 〈i, j〉 corre-
sponding to the first and the last token which make
up the target in c. Formally, we propose to apply
the standard sequence-to-sequence conditional gen-
eration formulation, in which the probability of a
gloss, given a context-target pair, is computed by
factorising it auto-regressively:

P (g|c, t) =

|g|∏
k=1

P (gk|g0:k−1, c, t) (1)

3According to the human annotators of the Senseval-2
WSD evaluation dataset (Edmonds and Cotton, 2001).

where gk is the kth token of g and g0 is a special
start token. By means of this procedure we can
readily perform contextual DM (t 6= 〈1, |c|〉), as
well as “static” DM, i.e. when the target encom-
passes the whole context (t = 〈1, |c|〉).

To learn the function in Eq. (1) we employ a
recent Encoder-Decoder model, i.e. BART (Lewis
et al., 2019), which is pre-trained to reconstruct
text spans on massive amounts of data. The use
of a pre-trained model is particularly important in
our case, as successfully generating a gloss for a
wide range of different context-target pairs requires
a model which can wield vast amounts of seman-
tic and encyclopedic knowledge. BART can be
fine-tuned to perform specific kinds of conditional
generation by minimizing the cross-entropy loss on
new training input-output pairs. In our approach
we give as input to BART a 〈c, t〉 pair, and train
to produce the corresponding gold gloss g, with
〈c, t〉 and g being gathered from various sources
(see Section 4.1). We devise a simple encoding
scheme that allows us to make the model aware of
the target boundaries, without architectural mod-
ifications to BART. Particularly, we encode 〈c, t〉
pairs as sequences of subword tokens in which the
boundaries of the t span in c are marked by two
special tokens, i.e. <define> and </define>.
For example, the sentence I felt like the fifth wheel,
with the phrase fifth wheel as the target, will
be encoded as I felt like the <define>
fifth wheel </define>. We fine-tune
BART to generate the corresponding gloss
g: (idiomatic, informal) Anything
superfluous or unnecessary.

3.2 Discriminative Sense Scoring
In this section we introduce three distinct tech-
niques by means of which Generationary tackles
discriminative tasks without additional training.

3.2.1 Gloss Probability Scoring
With Eq. (1) we are able to compute the probabil-
ity of a certain gloss g given a pair 〈c, t〉. Thus,
we can perform classification by picking the sense
which is associated with the gloss with the highest
probability. Formally, we select:

ŝ = argmax
s∈St

P (G(s)|c, t) (2)

where St ⊂ S is the set of applicable senses for
target t from the full inventory S, and G : S → G
is a function mapping senses to glosses (G, G, S
and St are determined by the reference dictionary).
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3.2.2 Gloss Similarity Scoring
The usage of model gloss probability does not
take into account the definitions that are actually
generated. Thus, we adopt a simple best match
approach where we compute similarity scores be-
tween the system-generated gloss and the glosses
associated with the candidates, and we predict the
candidate with the highest similarity. We employ
a cosine similarity between the gloss vectors pro-
duced via the recently introduced Sentence-BERT
model (Reimers and Gurevych, 2019, SBERT), and
select a predicted sense ŝ as follows:

ŝ = argmax
s∈St

sim(ĝ,G(s)) (3)

where ĝ is the most probable output found by beam-
search decoding, and sim is the SBERT similarity.

3.2.3 Gloss Similarity Scoring with MBRR
Using just the most probable sequence in the decod-
ing process for the best match search is suboptimal,
as more probability mass might be cumulatively
assigned to a cluster of very similar outputs. To
take this into account we propose the use of a sim-
ple approach inspired by Minimum Bayes Risk
Re-Ranking (Kumar and Byrne, 2004, MBRR),
which considers the mutual (dis)similarity within
the set Ĝ of k generated outputs decoded with beam
search. This is done by rescoring each output as
the sum of the dissimilarities over all k outputs,
weighted by their conditional probability:

ĝ = argmin
ĝi∈Ĝ

∑
ĝj∈Ĝ

(1− sim(ĝi, ĝj))P (ĝj |c, t) (4)

The new prediction ĝ is then plugged into Eq. (3)
as in simple similarity-based scoring.

4 Datasets

4.1 Dictionary Gloss Datasets
We now move on to describe the datasets which we
use to train Generationary models by fine-tuning
BART. Each dataset includes 〈c, t, g〉 triples, which
are used as our input and output for training.

CHA (Chang and Chen, 2019) is an on-
line dataset4 of examples and definitions from
oxforddictionaries.com. It comes with two set-
tings, each with its own train/dev/test splits: in the
Seen setting (CHAS), definitions in the training set
are also present in the test set, while the Unseen

4github.com/MiuLab/GenDef

instances unique glosses
dataset train dev test train dev test

CHAS 555,695 78,550 151,306 78,105 32,953 37,400
CHAU 530,374 70,401 15,959 73,104 29,540 3,958
SEM 333,633 - - 116,698 - -
UNI 1,832,302 - - 947,524 - -

Table 1: Training, dev and test instances and number of
unique glosses in the datasets used.

setting (CHAU ) has a zero-shot test of lemmas not
featured in the training set.

SEM is a dataset built by exploiting the Sem-
Cor corpus (Miller et al., 1993) – which is man-
ually tagged with WordNet senses – to associate
sentence-level contexts with definitions. We filter
out NER-like sense annotations (e.g. those map-
ping proper names such as Frank Lloyd Wright
to the general sense of person). Moreover, to
improve coverage, since not all WordNet senses
appear in SemCor, we use synonymy informa-
tion to build additional contexts, e.g. <define>
separate, part, split </define> →
go one’s own way; move apart.

UNI is the concatenation of the train splits of
SEM and CHA, plus the following: (i) a cleaned-
up January 2020 dump of Wiktionary, from which
circular definitions (e.g. starting with synonym of )
have been filtered out, and (ii) the training split
containing data from the GNU Collaborative Inter-
national Dictionary of English (GCIDE), included
in the dataset of Noraset et al. (2017).

We use CHA and SEM since they were em-
ployed by state-of-the-art approaches to DM
(Chang and Chen, 2019) and WSD (Huang et al.,
2019). With UNI, instead, we bring together di-
verse sense inventories to create a dataset that is
less dependent on the idiosyncrasies of each of its
sources. We report statistics in Table 1.

4.2 The Hei++ Evaluation Dataset
As of now, there is no publicly available dataset
enabling the assessment of definition generation
quality on free phrases (e.g. exotic cuisine), which
are not commonly found in traditional dictionar-
ies and benchmarks. Thus, we present Hei++, a
dataset which associates human-made definitions
with adjective-noun phrases. With Hei++ we can
test the ability of Generationary to generate glosses,
in a zero-shot setting, for items which are not fea-
tured in the training set. We encourage the commu-
nity to use it for future evaluations.

As a first step in building Hei++ we retrieve the

http://oxforddictionaries.com
http://github.com/MiuLab/GenDef
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test split of the HeiPLAS dataset (Hartung, 2016),5

which we choose as our starting point since it con-
tains commonly used adjective-noun phrases. Af-
ter removing duplicates and discarding ill-formed
phrases, we ask an expert lexicographer to write
a single definition for each adjective-noun pair.
At the end of the annotation process we obtain
a dataset made up of 713 adjective-noun phrases
with their definitions to be used as a gold standard.

5 Quantitative Experiments

We first perform a threefold automatic evaluation
to test the strengths of Generationary in different
settings. On the one hand, we assess its ability to
produce suitable definitions by testing the genera-
tion quality on the DM setting (Section 5.1). On
the other, we aim to further appraise how well the
generated outputs describe the contextual meaning,
by evaluating the performance they bring about on
the discriminative benchmarks of WSD (Section
5.2) and WiC (Section 5.3).6

5.1 Definition Modeling
In this experiment we use different NLG measures
to automatically assess how well generated defini-
tions match gold glosses. We evaluate on the Seen
(CHAS) and Unseen (CHAU ) test splits of CHA,
which is the largest contextual DM benchmark re-
leased so far. Moreover, we report results on our
Hei++ (HEI) dataset of adjective-noun phrases. We
do not include results on the datasets of Noraset
et al. (2017) and Gadetsky et al. (2018), as the
former only includes targets with no surrounding
context, and the latter is largely included in CHA.7

5.1.1 Systems
For each evaluation dataset D we test two Genera-
tionary models: one trained on the corresponding
train split (Gen-D), and one trained on UNI (Gen-
UNI).8 We compare against (i) a random baseline
which predicts, for each test item, a random defini-
tion taken from the same test set; (ii) the model of
Ishiwatari et al. (2019), which we have re-trained
on the same data as Generationary (Ishiwatari-D),
and (iii) the state-of-the-art approach of Chang
and Chen (2019, Chang). On HEI, which has no

5www.cl.uni-heidelberg.de/˜hartung/
data

6Hyperparameters are documented in Appendix B.
7Results on these datasets are reported in Appendix C.
8To ensure a fair comparison when evaluating on the Un-

seen setting of CHA, we have removed lemmas appearing in
the CHAU test set from the UNI training set.

training split, we only evaluate Gen-UNI and the
random baseline, since Ishiwatari-UNI generates
strings consisting of mostly unknown word place-
holders (<unk>), and Chang and Chen (2019) can-
not handle multi-word targets.

5.1.2 Measures
Previous approaches have employed both per-
plexity (PPL) and string-matching measures (e.g.
BLEU) for scoring DM systems. PPL is very ap-
propriate when, as in DM, there are many possible
“good” answers.9 PPL, however, produces a score
just on the basis of a pre-existing gold definition,
by collecting teacher forcing probabilities without
taking into account any actual output generated
through beam-search decoding, and thus not as-
sessing the quality of the generation. To evaluate
this quality, BLEU and ROUGE-L (Lin, 2004) are
also reported. Note, however, that these two mea-
sures are based on simple string matches which,
in many cases, are not good indicators of output
quality. To counteract this problem, we also report
results with METEOR (Banerjee and Lavie, 2005)
– which uses stemming and WordNet synonyms –
and BERTScore (Zhang et al., 2019), which uses
vector-based contextual similarities.10 Finally, to
present a complete comparison against the ranking-
based approach of Chang and Chen (2019), we
report results (precision@k) on their retrieval task
of recovering the correct definition, for the target in
context, from the whole inventory of 79,030 unique
glosses in their dataset. We rank definitions by ap-
plying the MBRR plus cosine similarity strategy
described in Section 3.2.3.

5.1.3 Results
As shown in Table 2, Generationary models outper-
form competitors in every setting. On CHAS , our
specialized model (Gen-CHAS) shows much better
results than Gen-UNI, because NLG measures give
high scores to glosses which are lexically similar
to the gold ones, while multi-inventory training
will, instead, expose the model to many other, dif-
ferently formulated, but equally valid definitions.
Note, moreover, that our Gen-CHAS model outper-
forms both Ishiwatari et al. (2019) and Chang and
Chen (2019), even though the latter, being a rank-
ing model, is obviously at an advantage, since it
gets a perfect score when it ranks the gold definition
first. In CHAU we observe that the Gen-UNI model

9See Appendix D for details on perplexity computation.
10See Appendix E for configuration details.

http://www.cl.uni-heidelberg.de/~hartung/data
http://www.cl.uni-heidelberg.de/~hartung/data
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model ppl↓ BL↑ R-L↑ MT↑ BS↑

C
H

A
S

Random - 0.2 10.8 3.2 68.1
Chang - 74.7 78.3 - -
Ishiwatari-CHAS* - 6.2 28.2 11.1 74.2
Ishiwatari-UNI* - 3.0 23.2 8.2 72.6
Gen-CHAS 1.2 76.2 78.9 54.8 93.0
Gen-UNI 1.4 66.9 72.0 47.0 90.7

C
H

A
U

Random - 0.3 11.0 3.2 68.2
Chang - 7.1 19.3 - -
Ishiwatari-CHAU* - 2.1 19.9 7.1 71.7
Ishiwatari-UNI* - 2.1 19.7 6.7 71.5
Gen-CHAU 20.3 8.1 28.7 12.7 76.7
Gen-UNI 15.4 8.8 29.4 13.5 76.8

H
E

I Random - 1.6 12.7 0.4 73.4
Gen-UNI 16.0 6.3 26.3 15.1 78.9

Table 2: DM evaluation results. Columns: perplexity,
BLEU, Rouge-L, METEOR, BERTScore (ppl/BL/R-
L/MT/BS). Row groups are mutually comparable (bold
= best). ↑/↓: higher/lower is better. *: re-trained.

attains higher performances than Gen-CHAU , in-
dicating that, when ‘overfitting’ on the inventory
is factored out, multi-inventory training enables
the model to generalize better in a zero-shot set-
ting. Furthermore, figures for HEI are in the same
ballpark as those on CHAU , demonstrating that
Generationary can easily deal, not only with un-
seen lemmas, but also with entirely different kinds
of target.

Additionally, in Table 3 we report the results of
the precision@k evaluation when macro-averaging
on lemmas (left) and senses (right). Figures on the
two different splits of CHA show very different
trends. On the CHAS setting, the base model from
Chang and Chen (2019) achieves, in most cases, the
highest recovery rate. However, with k = 1, which
is the most realistic case, Gen-CHAS outperforms
the competitor by 4.6 points when macro-averaging
on senses, i.e. items with the same gold definition.
On the more challenging zero-shot CHAU setting,
both Generationary models strongly outperform
Chang (large), more than doubling the performance
on k = 1 and showing an improvement of more
than 75% on k = 10. Gen-UNI, which was un-
derperforming Gen-CHAS in the Seen setting, now
achieves better results across the board, since it can
exploit the supervision of a wide array of different
glosses from multiple inventories.

5.2 WSD Evaluation
We now move to the assessment of Generationary
in a traditional WSD setting. Even though our ap-
proach goes beyond fixed sense inventories, here

model P@k (lemmas) P@k (senses)
1 5 10 1 5 10

C
H

A
S

Chang (base) 74.8 83.3 85.5 63.3 74.0 77.1
Chang (large) 73.9 82.6 84.9 62.4 73.2 76.3
Gen-CHAS 73.0 77.7 79.4 67.9 72.9 74.7
Gen-UNI 63.0 70.2 72.7 55.5 63.1 65.8

C
H

A
U

Chang (base) 3.3 9.6 14.4 2.3 7.4 11.4
Chang (large) 3.5 10.5 15.6 2.5 8.2 12.4
Gen-CHAU 7.8 19.9 25.5 6.5 16.8 22.0
Gen-UNI 9.3 21.3 27.7 7.4 18.0 23.8

Table 3: Macro precision@k (lemmas and senses) on
the retrieval task of Chang and Chen (2019). Row
groups are mutually comparable (bold = best).

we want to show that this degree of freedom does
not come at the expense of performance when pre-
sented with the task of choosing a sense from a
finite predefined list.

We test on the five datasets collected in the evalu-
ation framework of Raganato et al. (2017), namely:
Senseval-2 (Edmonds and Cotton, 2001), Senseval-
3 (Snyder and Palmer, 2004), SemEval-2007 (Prad-
han et al., 2007), SemEval-2013 (Navigli et al.,
2013), SemEval-2015 (Moro and Navigli, 2015),
which are all annotated with WordNet 3.0 senses
(or converted to its inventory). We denote with
ALL and ALL− the concatenation of all evalua-
tion datasets, including or excluding, respectively,
SemEval-2007, which is our development set for
this experiment. Moreover, we test on the subset of
ALL− containing instances whose lemmas are not
covered in SemCor (0-shot).

5.2.1 Systems
To choose a possible sense from WordNet and per-
form WSD, we evaluate the techniques presented
in Section 3.2, i.e. probability scoring (Prob.), sim-
ple similarity scoring (Sim.), and similarity scoring
with MBRR. We evaluate our Gen-SEM, which is
trained on examples specifically tagged according
to the WordNet inventory, and Gen-UNI, which
includes definitions from many different invento-
ries. We compare against recent WSD approaches
which make use of gloss knowledge, i.e. LMMS
(Loureiro and Jorge, 2019) and the state-of-the-art
approach of GlossBERT (Huang et al., 2019).

5.2.2 Results
We report the results of the WSD evaluation in Ta-
ble 4. The MBRR scoring strategy proves to be the
most versatile, with Gen-SEM (MBRR) achieving
a higher F1 than Gen-SEM (Prob.) on almost every
dataset, and outperforming Gen-SEM (Sim.) on
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model S2 S3 S7 S13 S15 ALL ALL− 0-shot N V A R

LMMS2348 76.3 75.6 68.1 75.1 77.0 75.4 75.9* 66.3* 78.0* 64.0* 80.7* 83.5*
GlossBERT 77.7 75.9 72.1 76.8 79.3 77.0 77.2* 68.7* 79.7* 66.5* 79.3* 85.5*

Gen-SEM (Prob.) 76.9 73.7 69.2 74.6 78.2 75.3 75.7 60.6 77.5 65.0 78.4 87.6
Gen-SEM (Sim.) 77.5 76.4 71.6 76.8 77.4 76.7 77.0 63.3 80.1 64.8 79.1 85.0
Gen-SEM (MBRR) 78.0 75.4 71.9 77.0 77.6 76.7 77.0 65.0 79.9 64.8 79.2 86.4
Gen-UNI (MBRR) 77.8 73.7 68.8 78.3 77.6 76.3 76.8 73.0 79.8 63.3 80.1 84.7

Table 4: Results on the WSD evaluation. Row groups: (1) previous approaches; (2) Generationary. Columns:
datasets in the evaluation framework (S2 to S15), ALL w/ and w/o the dev set (ALL/ALL−), zero-shot set (0-shot),
and results by PoS on ALL (N/V/A/R). F1 is reported. Bold: best. *: re-computed with the original code.

the 0-shot set. As both Sim. and MBRR outscore
Prob., it is clear that generating a gloss and rank-
ing candidates with similarity is a better strategy
than directly ranking with model probability, which
leaves room for further improvement as better sim-
ilarity measures are developed.

On another note, Gen-SEM (MBRR) achieves
performances which are overall comparable with
those of the state of the art (GlossBERT) with-
out having been explicitly trained to perform
WSD. Compared to Gen-SEM (MBRR), Gen-UNI
(MBRR) sacrifices 0.4 and 0.2 points on, respec-
tively, ALL and ALL−, but obtains 8 points more
on the zero-shot set, also improving over Gloss-
BERT by 4.3 points. This demonstrates that, when
using Generationary with data from multiple inven-
tories, (i) performances remain in the same ballpark
as those of a state-of-the-art system, and (ii) much
improved generalizability is achieved, as shown by
the state-of-the-art results on the zero-shot setting.

5.3 Word-in-Context
In the task of Word-in-Context (WiC) (Pilehvar and
Camacho-Collados, 2019), predefined sense inven-
tories are not required and meaning identification
is reduced to a binary problem in which, given two
contexts, both featuring an occurrence of the same
lemma, a model has to predict whether the two tar-
gets have the same meaning. We compare against
Chang and Chen (2019), which is the only DM
approach reporting results for WiC, following their
setting in which no task-specific training is per-
formed and the training set for the task is used for
testing. Results are reported for both Gen-CHAS ,
which is trained on the same data as Chang and
Chen (2019), and Gen-UNI.11

To perform the task, for each pair in the WiC
dataset we generate two sets, γ and γ′, each of

11In this experiment we have excluded Wiktionary, which
was used to build the WiC dataset, from the UNI training set.

10 glosses, for the two respective sentences in the
pair. Then, for each generated gloss ĝ ∈ γ, we
compute the score zĝ as the mean SBERT similar-
ity between ĝ and the 10 generated glosses in γ′.
Analogously, we compute zĝ′ as the mean similar-
ity between ĝ′ ∈ γ′ and the glosses in γ. For each
gloss g we normalize zg by subtracting an approx-
imate mean similarity of g with random glosses,
computed as the mean similarity between g and all
other unrelated glosses in the batch. If the mean
score (

∑
ĝ∈γ zĝ+

∑
ĝ′∈γ′ zĝ′)/20 exceeds a thresh-

old t (tuned on the dev set), we predict that a WiC
pair shares the same sense.

Gen-CHAS , with an accuracy of 69.2, outper-
forms Chang and Chen (2019), which achieves
68.6, demonstrating the strength of our approach
in this setting. Moreover, Gen-UNI, which attains
a result of 71.1, outscores both Gen-CHAS and
the competitor, once again bearing witness to the
versatility of training on multiple inventories.

6 Qualitative Experiment

Given that the ability of Generationary to produce
fluent and meaningful definitions is its key asset,
in addition to the automatic evaluation reported in
Section 5 we devised a qualitative experiment on
two distinct datasets we constructed. While our
previous experiments shed light upon the quality
of Generationary in comparison with other auto-
matic systems, here we employ human annotators
to compare definitions produced with our approach
against glosses written by human lexicographers.

The datasets that we use in this experiment are
(i) our Hei++ dataset of definitions for adjective-
nouns phrases (Section 4.2) and (ii) SamplEval, i.e.
a sample of 1,000 random instances made up of
200 items12 for each of the five WSD datasets in-
cluded in ALL (see Section 5.2), with at most one

12We do not sample instances annotated with many senses.
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dataset gold Gen. ≥

Hei++ 4.43 3.58 29.9
SamplEval 3.75 3.62 51.3

Table 5: Qualitative evaluation results. Columns:
dataset, average Likert for gold and Generationary, %
of Generationary scores equal or better than gold (≥).

total instance per sense. With Hei++ we assess the
ability of Generationary to accurately gloss com-
plex expressions, such as free phrases (e.g. wrong
medicine or hot forehead), that are rarely covered
by traditional dictionaries. With SamplEval, in-
stead, we test whether generated glosses can im-
prove over gold definitions associated with gold
senses in WordNet.

6.1 Annotators and Annotation Scheme
For each context-target pair in Hei++ and SamplE-
val we have two definitions: a gold one, written by
a lexicographer, and one generated by Gen-UNI,
which is not tied to any specific inventory and has
proven the most versatile model across tasks. We
hired three annotators with Master’s Degrees in
Linguistics and effective operational proficiency in
English and, in a similar fashion to Erk and Mc-
Carthy (2009), we asked them to assign a graded
value to the definitions based on their pertinence
to describing the target t in c, according to a five-
level Likert scale (see Appendix F).13 The anno-
tators received a wage in line with the standards
of their country of residence, and worked an over-
all amount of 90 person-hours (30 per annotator).
The ITA was substantial, with an average pairwise
Cohen’s κ of 0.69 (SamplEval) and 0.67 (Hei++).

6.2 Results
As can be seen in Table 5, the quality of Generation-
ary glosses in the SamplEval dataset is comparable
to those drawn from WordNet. Note that, although
it would be expected for gold annotations to come
close to the top of the scale, this is not the case,
as they received an average score of 3.75 out of
5, demonstrating the suboptimal nature of “ready-
made” meaning distinctions. We report comparable
scores on the Hei++ dataset. The gap with respect
to gold definitions here is wider, probably because
(i) Generationary is not specifically trained on com-
plex expressions, and (ii) the gold score is higher
since phrases are less ambiguous than single words.
Interestingly, the annotators rated Generationary

13We presented glosses for each sentence in random order.

c1 [. . . ] I scooted them into the dog run.
ĝ1 Cause to move along by pushing.
g1 Run or move very quickly or hastily.

c2 Exotic cuisine.
ĝ2 A style of cooking that is out of the ordinary

and unusual (as if from another country).
g2 Cuisine involving unfamiliar foods.

c3 He was never the same after the accident.
ĝ3 Indicates that a person has lost the good quali-

ties that were present before the accident.

c4 Sam is in a better place now.
ĝ4 A phrase used to express that one has learned

about another’s death.

c5 Yesterday I had to undergo a beardectomy.
ĝ5 The surgical removal of the beard.

c6 You’ve got a hard coconut to smash here, Dr.
Yang!

ĝ6 Something difficult to deal with.

c7 The mind is haunted by the ghosts of the past.
ĝ7 People’s memories of the past are still present

in their mind, even after they have ceased to
exist.

c8 The fault, dear Brutus, is not in our stars, but
in ourselves.

ĝ8 The responsibility for a problem lies with the
people who cannot see it themselves.

Table 6: Sample of Generationary definitions (ĝ) for
several targets in context (c). g: gold definition.

glosses at least as high as their gold counterparts
on 51.3% and on 29.9% of the total cases on Sam-
plEval and Hei++, respectively: this result provides
evidence for the reliability of Generationary defi-
nitions as valid alternatives to glosses taken from
established inventories of discrete word senses.

7 Generation Examples

In Table 6 we show a sample of definitions gen-
erated via our Gen-UNI model for various spans
in context.14 As can be seen, the glosses ĝ1 and
ĝ2 (extracted from SamplEval and Hei++, respec-
tively) demonstrate that Generationary can indeed
provide better, more specific definitions than gold
standard ones. The following reported examples
show the strength of our model on contexts which
do not resemble those it is trained on: Generation-
ary is proficient at (i) handling fixed or semi-fixed

14See Appendix A for further samples of generated glosses.



7215

idioms of different lengths (ĝ3, ĝ4) and (ii) defining
non-conventional words and phrases (ĝ5, ĝ6); inter-
estingly, Generationary is also able to (iii) provide
high-level explanations for whole figurative con-
texts (ĝ7, ĝ8), which goes well beyond what is com-
monly referred to as glossing. This might result in
interesting applications beyond the scope of this
work, e.g. for paraphrase generation and metaphor
interpretation (Rai and Chakraverty, 2020).

8 Error Analysis

To have a broader picture of the quality of the out-
puts produced by means of Generationary, we per-
form behavioural testing for our Gen-UNI model,
in the spirit of Ribeiro et al. (2020). As a result,
we can identify two main trends behind failures
to generate an appropriate contextual definition,
which we refer to as disambiguation errors and
hallucinations, respectively.

Disambiguation errors When the model pre-
dicts a perfectly good definition for the target, but
one that fits another common context of occurrence,
a disambiguation error arises. For instance, given
the 〈c, t〉 pair in (2 a), with the word pupil as the
target, the model fails to identify the “aperture in
the iris of the eye” sense, and instead produces an
output gloss which is compatible with the meaning
of the homograph (2 b):

(2) (a) The teacher stared into the pupils of her
pupil.

(b) A person receiving instruction,
especially in a school.

Hallucinations Other errors stem from the fact
that the model can only rely on the knowledge
about possible definienda that it is able to store in
the parameters during the pre-training and training
stages. Thus, if the contextual knowledge is not
sufficient to extrapolate a definition, the model –
which is required to always generate an output –
will hallucinate an answer on the basis of contex-
tual clues, incurring the risk of introducing non-
factualities. This particularly concerns named enti-
ties and domain-specific concepts, but the clearest
examples can be seen with targets that do not cor-
respond to any existing, fictional or non-fictional
entity. For example, given the input sentence (3):

(3) Squeaky McDuck wasn’t happy about it,

the model outputs the following:

(4) The title character in the “Squeaky
Squeakety-Squeakiness” cartoon series.

In this case, the model picked the cue of the
cartoonish Squeaky McDuck character, and hallu-
cinated the name of a plausible cartoon series for it.
Note that neither Squeaky McDuck nor the cartoon
series actually exist.

9 Conclusion

With this work, we showed that generating a defini-
tion can be a viable, suitable alternative to the tra-
ditional use of sense inventories in computational
lexical semantics, and one that better reflects the
non-discrete nature of word meaning. We intro-
duced Generationary, an approach to automatic
definition generation which, thanks to a flexible en-
coding scheme, can (i) encode targets of arbitrary
length (including unseen multi-word expressions),
and (ii) exploit the vast amount of knowledge en-
coded in the BART pre-trained Encoder-Decoder,
through fine-tuning.

From two points of view, Generationary repre-
sents a unified approach: first, it exploits multiple
inventories simultaneously, hence going beyond the
quirks of each one; second, it is able to tackle both
generative (Definition Modeling) and discrimina-
tive tasks (Word Sense Disambiguation and Word-
in-Context), obtaining competitive to state-of-the-
art results, with particularly strong performances
on zero-shot settings. Finally, human evaluation
showed that Generationary is often able to provide
a definition that is on a par with or better than one
written by a lexicographer.

We make the software and reproduction materi-
als, along with a new evaluation dataset of defini-
tions for adjective-noun phrases (Hei++), available
at http://generationary.org.
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c1: Good news.
ĝ1: (New Testament) The gospel as revealed by
Jesus to the apostles.
g1: Any news that arouses feelings of joy or eases
anxiety.

c2: Uneven margin.
ĝ2: A margin that is not uniform.
g2: A margin that is not perfectly leveled.

c3: Early diagnosis.
ĝ3: The diagnosis of a condition before symptoms
appear.
g3: A diagnosis that is made at an initial stage of a
disease.

c4: Sincere friendship.
ĝ4: A friendship that is not based on deceit or
hypocrisy.
g4: Friendship marked by genuine feelings of
benevolence.

c5: Painful performance.
ĝ5: A performance of a piece of music that is diffi-
cult to play.
g5: A performance that is exceptionally bad.

c6: Courageous heart.
ĝ6: A heart that is strong enough to endure adver-
sity.
g6: The feelings of a person that is not afraid of
getting hurt.

c7: Inaccurate thermometer.
ĝ7: A thermometer that is inaccurate in measuring
temperature.
g7: A thermometer that indicates the wrong tem-
perature.

c8: New friend.
ĝ8: A friend who has recently come into one’s life.
g8: A recently made friend.

c9: Familiar guest.
ĝ9: A person who is a regular customer or client of
a hotel, restaurant, etc.
g9: A well known guest.

c10: Vivacious hostess.
ĝ10: A woman who entertains guests at their home
and makes them feel welcome.
g10: A woman host who shows liveliness.

Table 7: Random sample of Generationary definitions
(ĝ) for Hei++ contexts (c). g: gold definition.

A Generation Examples

In the evaluation of NLG systems, human qualita-
tive assessment is very important. Therefore, we
choose to report a fair number of non-cherrypicked,
zero-shot generation examples, produced by means
of our GEN-UNI model.

c1: Hipster guys #2 & #3.
ĝ1: Members of the hipster subculture.

c2: Because you have no estrogen... you could
not possibly understand what chocolate means to a
woman.
ĝ2: The absence of estrogen in the body.

c3: Mozilla Firebird bookmark toolbar doesn’t hide
command click to open link in new tab.
ĝ3: A toolbar in the Mozilla browser.

c4: Guy #2: On that table over there.
ĝ4: The (usually specified) table on which something
is located.

c5: Man, why do chip manufacturers always put the
crumbs at the bottom of the bag?
ĝ5: A company that manufactures potato chips.

c6: Install new theme without an internet connection.
ĝ6: A connection to the internet.

c7: It’s a true story.
ĝ7: A fictional story based on real events.

c8: Seeking female friend, 40s, attractive 5 ft 5+.
ĝ8: A friend who is not a man.

c9: Clicking Get New Extensions in Options Dialog
opens a new browser...
ĝ9: A dialog box in a web browser, allowing the user
to select from a number of options.

c10: And he goes to my other roommate for advice.
ĝ10: The other person with whom one shares a room.

Table 8: Generationary definitions (ĝ) for random
targets and contexts (c) excerpted from webtext.

In Table 7 we show Generationary outputs and
gold definitions for 10 randomly sampled phrases
in the Hei++ dataset. In addition, in Table 8 we
report gloss generation examples for random words
and noun phrases taken from the webtext corpus
included in the NLTK suite (Loper and Bird, 2002).
We exclude swear words, slurs, numbers, and noun
phrases consisting entirely of named entities. More-
over, every sampled item whose target was featured
in our training set was filtered out.

B Reproducibility Details

To train our models we employ the fairseq li-
brary. Generationary has the same number of pa-
rameters as BART (Lewis et al., 2019), i.e. ca.
458M. For fine-tuning, we use the same hyperpa-
rameters used in Lewis et al. (2019) for summariza-
tion,15 except that:

15github.com/pytorch/fairseq/
blob/master/examples/bart/README.
summarization.md

http://github.com/pytorch/fairseq/blob/master/examples/bart/README.summarization.md
http://github.com/pytorch/fairseq/blob/master/examples/bart/README.summarization.md
http://github.com/pytorch/fairseq/blob/master/examples/bart/README.summarization.md
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• the learning rate is set to 5× 10−5 on the basis
of preliminary experiments;

• due to memory concerns, we feed the input
in batches of 1,024 tokens, updating every 16
iterations;

• we use inverse square root learning rate
scheduling, which does not require to set a
maximum number of iterations a priori;

• we double the number of warmup steps to
1,000.

Training is performed for at most 50 epochs. We
employ a single NVIDIA GeForce RTX 2080 Ti
GPU to perform all the reported experiments, with
average runtimes per epoch of BART fine-tuning
ranging from ca. 50 minutes (Gen-SEM) to >120
minutes (Gen-UNI).

On the DM task, we evaluate on the best epoch,
i.e. the one with the lowest cross-entropy loss on
the dev set, with no hyperparameter tuning.

On the WSD task, instead, we perform minimal
hyperparameter tuning, with search trials just on
beam size (testing with values of 1, 10, 25, and 50),
choosing as the best configuration the one with the
highest F1 on our dev set, SemEval-2007; with
simple similarity scoring, the best Gen-SEM has
a beam size of 10, while, with MBRR similarity
scoring, the best Gen-SEM has a beam size of 25.
We use only MBRR with Gen-UNI, with a beam
size of 10, resulting in the best performance on the
development set.

On the WiC task we only perform tuning of the
threshold on the dev set, by trying every value in
range between the lowest and the highest z score,
with a minimum step of 0.025. We compute simi-
larities in batches of 125 pairs.

For training and prediction of the models of Ishi-
watari et al. (2019), we use the code provided by the
authors.16 We use the same hyperparameters, ex-
cept that we increase the vocabulary size to 39,000,
which results in much improved performances on
our benchmarks.

C Additional Results on DM

In Table 9 we report results, for the DM evaluation
described in Section 5.1, on two additional datasets.

NOR (Noraset et al., 2017) includes data from
the GCIDE and WordNet. It features only “static”

16github.com/shonosuke/
ishiwatari-naacl2019

model ppl↓ BL↑ R-L↑ MT↑ BS↑

N
O

R

Random - 0.2 6.3 1.9 69.0
Noraset et al. (2017) 48.2 - - - -
Ishiwatari-NOR* - 1.9 15.7 5.0 72.9
Gen-NOR 28.6 3.8 17.7 8.1 72.9

G
A

D

Random - 0.2 8.7 2.8 68.6
Gadetsky et al. (2018) 43.5 - - - -
Mickus et al. (2019) 34.0 - - - -
Ishiwatari-GAD* - 2.5 18.7 7.0 72.8
Gen-GAD 12.3 9.9 28.9 12.8 77.9

Table 9: DM evaluation results. Columns: perplexity,
BLEU, Rouge-L, METEOR, BERTScore (ppl/BL/R-
L/MT/BS). Row groups are mutually comparable (bold
= best). ↑/↓: higher/lower is better. *: re-trained.

pairs, in which the context coincides with the word
to be defined. Nonetheless, each lemma can be
associated with multiple definitions.

GAD (Gadetsky et al., 2018) collects
context-target pairs and definitions from
oxforddictionaries.com. The target lemma is
not present in all contexts, so in these cases we
prepend the lemma according to the following
template: ‘lemma: context’.17

D Perplexity

Perplexity captures the confidence of the model in
outputting a certain sequence. In approaches with
word-level tokenization, evaluated at word-level,
perplexity can be computed by exponentiating the
negative log-likelihood that is used for training:

PPLww = exp(−
∑
w∈V

P (w|c, t, h̄) ln P̂ (w|c, t, h̄))

(5)

= exp(− ln P̂ (w̄|c, t, h̄)) (6)

where c is the context, t is the target, V is the
vocabulary, w̄ is the gold word, and h̄ is the gold
history of previous tokens. Generationary employs
subword-level tokenization, but we can still obtain
the word-level probabilities by applying the chain
rule of conditional probability:

PPLsw = exp(− ln

|w̄?|∏
i=1

P̂ (w̄?i |c, t, h̄, w̄?1:i−1))

(7)

where w̄∗ is the n-ple that is the subword
split of w̄, e.g. 〈 token, ##ization 〉 for

17The train/dev/test splits of NOR and GAD are disjoint in
the lemma of the target words.

http://github.com/shonosuke/ishiwatari-naacl2019
http://github.com/shonosuke/ishiwatari-naacl2019
oxforddictionaries.com
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tokenization. Do we maintain full compa-
rability? There are two issues here. The first stems
from the fact that, thanks to the application of the
chain rule, the vocabulary is open, i.e. the support
of the subword model is the set of possible words,
so that every item receives non-zero probability.

In contrast, a word-level model without some
kind of backoff strategy has a closed vocabulary. If
the evaluation set includes a word outside V , the
closed vocabulary model has a special <unk> to-
ken, on which it is trained to concentrate all the
probability mass that the open vocabulary model,
instead, would spread over all the possible words
which are not in V . This entails an unfavorable
advantage of the closed vocabulary model over
the open vocabulary. Moreover, there is an ad-
ditional complication arising from the fact that,
while the subword tokenizers are usually determin-
istic, i.e. any word is always split in the same
way, there might be multiple legal subword splits
depending on the vocabulary, and to obtain the
probability of the word we would need to marginal-
ize over all splits. In other words, we would
need to marginalize by summing the probability
of 〈 token, ##ization 〉, 〈 token, ##iz,
##ation 〉, 〈 to, ##ken, ##ization 〉 and
so on. This is very burdensome, and in practice we
only consider the deterministic split produced by
the tokenizer. In doing this, we underestimate the
probability of the word and, thus, overestimate the
perplexity of the subword-level model.

E NLG Measures Details

In order to ensure comparability, here we report
the BLEU, ROUGE, METEOR, and BERTScore
configurations that we used. A scorer is available
as part of the provided software.

BLEU We employ the reference implementation
of corpus BLEU provided in the sacrebleu
package (Post, 2018, https://github.com/

mjpost/sacreBLEU). We use default parameters.
Signature:
BLEU+case.mixed+numrefs.1+smooth
.exp+tok.13a+version.1.3.6.

ROUGE We have employed the Python rouge
library (https://github.com/pltrdy/rouge).

METEOR We have employed the Java meteor
library (https://www.cs.cmu.edu/˜alavie/
METEOR), version 1.5. METEOR is calculated using
the -norm and -noPunct flags. Signature:

meteor-1.5-wo-en-norm nopunct-
0.85 0.2 0.6 0.75-ex st sy pa-1.0
0.6 0.8 0.6

BERTScore We evaluate using the
Python BERTScore (https://github.com/
Tiiiger/bert_score) library, with the
roberta-large-mnli model and default
parameters. Signature:
roberta-large-mnli L19 no-idf
version=0.3.0(hug trans=2.8.0)

F Likert Scale

We employ a five-level Likert scale to rank glosses
in both the annotation experiments on SamplEval
and Hei++ (see Section 6.1). In Table 10 we show
one of the annotation examples that were provided
to the annotators to be used as guidelines.

Was he going to be saddled with a creep for a bar-buddy?

1
Wrong gloss. May refer to a homonym of the target.
A heating element in an electric fire.

2
Wrong gloss. Captures the domain of the target.
A counter where you can obtain food or drink.

3
Correct gloss. Utterly vague and generic.
A person with whom you are acquainted.

4
Correct gloss. Fits the context, but misses some details.
A close friend who accompanies his buddies in their activities.

5
Correct gloss. Perfectly describes the target in its context.
A friend who you frequent bars with.

Table 10: Annotation guidelines excerpt. Rows: Likert
score, explanation and example definition for target.

https://github.com/mjpost/sacreBLEU
https://github.com/mjpost/sacreBLEU
https://github.com/pltrdy/rouge
https://www.cs.cmu.edu/~alavie/METEOR
https://www.cs.cmu.edu/~alavie/METEOR
https://github.com/Tiiiger/bert_score
https://github.com/Tiiiger/bert_score

