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Abstract

Massively multilingual transformers (MMTs)
pretrained via language modeling (e.g.,
mBERT, XLM-R) have become a default
paradigm for zero-shot language transfer
in NLP, offering unmatched transfer perfor-
mance. Current evaluations, however, verify
their efficacy in transfers (a) to languages with
sufficiently large pretraining corpora, and (b)
between close languages. In this work, we an-
alyze the limitations of downstream language
transfer with MMTs, showing that, much
like cross-lingual word embeddings, they are
substantially less effective in resource-lean
scenarios and for distant languages. Our
experiments, encompassing three lower-level
tasks (POS tagging, dependency parsing,
NER) and two high-level tasks (NLI, QA), em-
pirically correlate transfer performance with
linguistic proximity between source and target
languages, but also with the size of target
language corpora used in MMT pretraining.
Most importantly, we demonstrate that the
inexpensive few-shot transfer (i.e., additional
fine-tuning on a few target-language instances)
is surprisingly effective across the board, war-
ranting more research efforts reaching beyond
the limiting zero-shot conditions.

1 Introduction and Motivation

Labeled datasets of sufficient size support super-
vised learning in NLP. The notorious tediousness,
subjectivity, and cost of linguistic annotation (Dan-
dapat et al., 2009; Sabou et al., 2012; Fort, 2016),
coupled with plethora of structurally different NLP
tasks, lead to existence of such datasets only for a
handful of resource-rich languages (Bender, 2011;
Ponti et al., 2019; Joshi et al., 2020). This data
scarcity renders the need for effective cross-lingual
transfer strategies: how can we exploit abundant
labeled data from resource-rich languages to make

∗Equal contribution.

predictions in resource-lean languages? In the most
extreme scenario, termed zero-shot cross-lingual
transfer, not a single labeled instance exists for
a target language. Recent work has placed much
emphasis on this scenario exactly; in theory, it of-
fers the widest portability across the world’s 7,000+
languages (Pires et al., 2019; Artetxe et al., 2020b;
Lin et al., 2019; Cao et al., 2020; Hu et al., 2020).

The current mainstay of cross-lingual transfer
in NLP are approaches based on continuous cross-
lingual representation spaces such as cross-lingual
word embeddings (CLWEs) (Ruder et al., 2019)
and, most recently, massively multilingual trans-
former networks (MMTs), pretrained on multilin-
gual corpora with language modeling (LM) ob-
jectives (Devlin et al., 2019; Conneau and Lam-
ple, 2019; Conneau et al., 2020). The latter have
de facto become the default language transfer
paradigm, with multiple studies reporting their un-
paralleled transfer performance (Pires et al., 2019;
Wu and Dredze, 2019; Rönnqvist et al., 2019;
Karthikeyan et al., 2020; Wu et al., 2020).

Key Questions and Contributions. In this work,
we dissect the current state-of-the-art MMT-based
approach to (zero-shot) cross-lingual transfer, and
analyze a variety of conditions and factors that criti-
cally impact or limit effective cross-lingual transfer.
Our aim is to provide answers to the following
crucial questions.

(Q1) What is the role of language (dis)similarity
and language-specific corpora size in pretraining?

Current cross-lingual transfer via MMTs is still
primarily focused on either (1) languages that are
typologically or etymologically close to English
(e.g., German, Scandinavian languages, French,
Spanish), or (2) languages with large monolingual
corpora, well-represented in the multilingual pre-
training corpora (e.g., Arabic, Hindi, Chinese). Wu
et al. (2020) suggest that LM-pretrained transform-
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ers, much like static word embeddings models, pro-
duce topologically similar representation spaces
that can easily be aligned between languages, offer-
ing this as explanation of language transfer efficacy
of MMTs. However, transfer with static CLWEs
has been shown ineffective between dissimilar lan-
guages (Søgaard et al., 2018; Vulić et al., 2019) or
languages with small corpora (Vulić et al., 2020).

We thus scrutinize MMTs in diverse zero-shot
transfer settings and find, in line with prior work
on CLWEs, that MMTs’ transfer performance crit-
ically depends on (1) linguistic (dis)similarity be-
tween the source and target language and (2) size
of the pretraining corpus of the target language.

(Q2) What is the role of a particular task in consid-
eration for transfer performance?

We conduct all analyses across five different tasks,
which we roughly divide into two groups: (1) “low-
level” tasks (POS-tagging, dependency parsing,
and NER); and (2) “high-level” language under-
standing (LU) tasks (NLI and QA). We show that
transfer performance in both zero-shot and few-
shot scenarios largely depends on the “task level”.

(Q3) Can we (even) predict transfer performance?

Running a simple regression on available transfer
results, we show that we can (roughly) predict the
transfer performance from (1) language proximity
(Littell et al., 2017) for low-level tasks; (2) com-
bination of language proximity and size of target-
language pretraining corpora for high-level tasks.

(Q4) Should we focus more on few-shot transfer
scenarios and quick annotation cycles?

Complementing the efforts on improving zero-
shot transfer (Cao et al., 2020), we point to few-
shot transfer as a very effective mechanism for
improving target-language performance. Similar
to the seminal “pre-neural” work of Garrette and
Baldridge (2013), our results suggest that only sev-
eral hours (or even minutes) of annotation work
can “buy” substantial performance gains for low-
resource targets. For all five tasks in our study, we
obtain substantial (and in some cases surprisingly
large) improvements with minimal annotation ef-
fort. For instance, we improve dependency parsing
for some target languages up to 40 UAS points with
as few as 10 target language sentences. Crucially,
the few-shot gains are most pronounced exactly
where zero-shot transfer fails: for distant target
languages with small monolingual corpora.

2 Background and Related Work

For completeness, we provide a brief overview of
1) cross-lingual transfer approaches, with a focus
on 2) massively multilingual transformer (MMT)
models, and then 3) position our work w.r.t. other
studies that examine different properties of MMTs.

2.1 Cross-Lingual Transfer Paradigms

Language transfer entails representing texts from
both the source and target language in a shared
cross-lingual space. Transfer paradigms based
on discrete text representations include machine
translation (MT) of target language text to the
source language (or vice-versa) (Mayhew et al.,
2017; Eger et al., 2018), and grounding texts from
both languages in multilingual knowledge bases
(KBs) (Navigli and Ponzetto, 2012; Lehmann et al.,
2015). While reliable MT hinges on availability
of large parallel corpora, transfer via multilingual
KBs (Camacho-Collados et al., 2016; Mrkšić et al.,
2017) is impaired by the limited KB coverage
and inaccurate entity linking (Moro et al., 2014;
Raiman and Raiman, 2018).

Therefore, recent years have seen a surge of lan-
guage transfer methods based on continuous rep-
resentation spaces. The previous state-of-the-art,
cross-lingual word embeddings (CLWEs) (Mikolov
et al., 2013; Ammar et al., 2016; Artetxe et al.,
2017; Smith et al., 2017; Glavaš et al., 2019; Vulić
et al., 2019) and sentence embeddings (Artetxe and
Schwenk, 2019), have most recently been replaced
by massively multilingual transformers (MMTs)
pretrained with LM objectives (Devlin et al., 2019;
Conneau and Lample, 2019; Conneau et al., 2020).

2.2 Massively Multilingual Transformers

Multilingual BERT (mBERT). At BERT’s (De-
vlin et al., 2019) core is a multi-layer transformer
network (Vaswani et al., 2017), parameters of
which are pretrained using masked language mod-
eling (MLM) and next sentence prediction (NSP).
In MLM, some tokens are masked out and they
need to be recovered from the context; NSP pre-
dicts adjacency of sentences in text, informing
the transformer of longer dependencies, beyond
sentence boundaries. Liu et al. (2019) introduce
RoBERTa, a more robust instance of BERT trained
on larger corpora using only the MLM objective.
Multilingual BERT (mBERT) is an instance of
BERT trained on concatenation of 104 largest
Wikipedias. The effects of underfitting for lan-
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guages with small Wikipedias and overfitting to lan-
guages with large Wikipedias, are respectively at-
tenuated with exponentially smoothed up-sampling
and down-sampling.

XLM on RoBERTa (XLM-R). XLM-R (Conneau
et al., 2020) is an instance of RoBERTa, robustly
trained on a large multilingual CommonCrawl-100
(CC-100) corpus (Wenzek et al., 2019) covering
100 languages. mBERT’s corpus and CC-100 share
88 languages, with corresponding CC-100’s por-
tions being much larger than mBERT’s Wikipedias.

The “Curse of Multilinguality”. For XLM-R,
Conneau et al. (2020) observe that for a fixed
model capacity, downstream cross-lingual trans-
fer improves with more pretraining languages up
to a point after which adding more pretraining
languages hurts downstream transfer. This effect,
termed the “curse of multilinguality”, can be miti-
gated by increasing model’s capacity (Artetxe et al.,
2020b) or additional training for particular lan-
guage pairs (Pfeiffer et al., 2020). This points to
MMTs’ capacity (i.e., computational budgets), as a
critical factor for effective zero-shot transfer.

In contrast, we identify few-shot transfer as a
much more cost-effective strategy for improving
downstream target language performance (§4). We
show for a number of target languages and down-
stream tasks, that one can obtain large performance
gains at very small annotation cost, without having
to pretrain from scratch an MMT of larger capacity.

2.3 Cross-Lingual Transfer with MMTs

A body of recent work probed the knowledge en-
coded in MMTs, primarily mBERT. Libovickỳ et al.
(2020) analyze language-specific versus language-
universal knowledge encoded in mBERT. Pires
et al. (2019) demonstrate mBERT to be effective for
POS-tagging and NER zero-shot transfer between
related languages. Wu and Dredze (2019) extend
this analysis to more tasks and languages, and show
that mBERT-based transfer is on a par with the best
task-specific zero-shot transfer approaches. Simi-
larly, Karthikeyan et al. (2020) prove mBERT to
be effective for NER and NLI transfer to Hindi,
Spanish, and Russian.1 Importantly, they show
that transfer effectiveness does not depend on the
vocabulary overlap between the languages.

In most recent work, concurrent to this, Hu et al.
(2020) introduce XTREME, a benchmark for eval-

1Note that all three are high-resource Indo-European lan-
guages with large Wikipedias.

uating multilingual encoders encompassing 9 tasks
and 40 languages.2 While the primary focus is
a large-scale zero-shot transfer evaluation, they
also experiment with target-language fine-tuning
(1,000 instances for POS and NER). While Hu
et al. (2020) focus on the evaluation aspects and
protocols, in this work, we provide a more detailed
analysis of the factors that hinder effective zero-
shot transfer across several tasks.3 We also put
more emphasis on few-shot transfer, and approach
it differently: by sequentially fine-tuning MMTs,
first on (larger) source language training data and
then on few target-language instances.

Artetxe et al. (2020b) and Wu et al. (2020) ana-
lyze different monolingual BERTs to explain trans-
fer efficacy of mBERT. They find topological sim-
ilarities between monolingual spaces, suggesting
these are responsible for effective language transfer
with MMTs. In essence, their work recasts the well-
known assumption of approximate isomorphism of
monolingual representation spaces (Søgaard et al.,
2018). For CLWEs, this assumption does not hold
for distant languages (Søgaard et al., 2018; Vulić
et al., 2019), and in face of monolingual corpora
of small size (Vulić et al., 2020). We demonstrate
that the same is the case for zero-shot language
transfer with MMTs: target-language performance
drastically decreases as we move to more distant
target languages with smaller pretraining corpora.

3 Zero-Shot Transfer: Analyses

We first address Q1 and Q2 (see §1): we conduct
zero-shot language transfer experiments for five
different tasks and analyze the factors behind the
varying performance drops across target languages.

3.1 Experimental Setup
Tasks and Languages. We experiment with – a)
low-level structured prediction tasks: POS-tagging,
dependency parsing, and NER and b) high-level
language understanding (LU) tasks: NLI and QA.
We investigate if the factors that drive transfer per-
formance differ between the two task groups.

Dependency Parsing (DEP). We use Universal De-
pendency treebanks (UD, Nivre et al., 2017) for
English and following target languages (from 8 lan-
guage families): Arabic (AR), Basque (EU), (Man-

2Note that none of the individual tasks in XTREME covers
all 40 languages, but much smaller language subsets.

3We leave an even more general analysis that combines
transfer both across tasks (Pruksachatkun et al., 2020; Glavaš
and Vulić, 2020) and across languages for future work.



4486

darin) Chinese (ZH), Finnish (FI), Hebrew (HE),
Hindi (HI), Italian (IT), Japanese (JA), Korean (KO),
Russian (RU), Swedish (SV), and Turkish (TR).

Part-of-speech Tagging (POS). Again, we use UD
and obtain the Universal POS-tag (UPOS) annota-
tions from the same treebanks as with DEP.

Named Entity Recognition (NER). We resort to the
NER WikiANN dataset from Rahimi et al. (2019).
We experiment with the same set of 12 target lan-
guages as in DEP and POS.

Cross-lingual Natural Language Inference (XNLI).
We evaluate on the XNLI corpus (Conneau et al.,
2018) created by translating dev and test portions
of the English Multi-NLI dataset (Williams et al.,
2018) into 14 languages by professional translators
(French (FR), Spanish (ES), German (DE), Greek
(EL), Bulgarian (BG), Russian (RU), Turkish (TR),
Arabic (AR), Vietnamese (VI), Thai (TH), Chinese
(ZH), Hindi (HI), Swahili (SW), and Urdu (UR)).

Cross-lingual Question Answering (XQuAD). We
rely on the XQuAD dataset (Artetxe et al., 2020b),
created by translating the 240 dev paragraphs (from
48 documents) and corresponding 1,190 QA pairs
of SQuAD v1.1 (Rajpurkar et al., 2016) to 11 lan-
guages (ES, DE, EL, RU, TR, AR, VI, TH, ZH, and
HI). In order to allow for a comparison between
zero-shot and few-shot transfer (see §4), we reserve
10 documents as the development set for our exper-
iments and evaluate on the remaining 38 articles.4

Fine-tuning. For higher-level tasks, we perform
standard downstream fine-tuning of LM-pretrained
mBERT and XLM-R. For lower-level tasks, we
instead freeze the transformer and train only task-
specific classifiers.5,6

We add the following task-specific architectures
on top of MMTs: for DEP we add the biaffine pars-
ing head (Dozat and Manning, 2017; Kondratyuk
and Straka, 2019); for POS, we attach a simple

4As a general note, while the effects of “translationese”
might have some impact on the absolute numbers (Artetxe
et al., 2020a), they are not prominent enough to have any
impact on the relative trends in the reported results (e.g., zero-
shot vs. few-shot performance). For both XNLI and XQuAD,
the translations were done completely manually and not via
post-editing of MT (which would pose a higher “translationese”
risk). Moreover, having an independently created test set in
each language would impede comparability across languages.

5This gave slightly better performance than fine-tuning.
6We tokenize the input for each model with the corre-

sponding pretrained fixed-vocabulary tokenizer: WordPiece
tokenizer (Wu et al., 2016) with the vocabulary of 110K tokens
for mBERT, and the SentencePiece BPE tokenizer (Sennrich
et al., 2016) with the vocabulary of 250K tokens for XLM-R.

feed-forward token-level classifier; for NER, we
feed MMT’s token-level outputs to a CRF classi-
fier, similar to Peters et al. (2017). For XNLI, we
apply a simple softmax classifier on the vector of
the sequence start token ([CLS] for mBERT; <s>
for XLM-R); for XQuAD, we pool MMT’s repre-
sentations of all subwords and input it to a span
classification head – a linear layer computing the
start and the end of the answer.

Training and Evaluation Details. We experiment
with mBERT Base cased and XLM-R Base, both
with L = 12 transformer layers, hidden state size
of H = 768, and A = 12 self-attention heads.

For XNLI, we limit the inputs to T = 128 sub-
word tokens and train in batches of 32 instances.
For XQuAD, we limit paragraphs to T = 384 to-
kens and questions to Q = 64 tokens. We slide
over paragraphs with a window of 128 tokens and
train in batches of size 12. For XNLI and XQuAD,
we search the following hyperparameter grid: learn-
ing rate λ ∈ {5 · 10−5, 3 · 10−5}; training epochs
n ∈ {2, 3}. For DEP, POS and NER, we fix
the number of training epochs to 20. We train in
batches of 32 sentences, with maximal length of
T = 512 subword tokens. We optimize all models
with Adam (Kingma and Ba, 2015).

We report DEP performance in terms of Unla-
beled Attachment Scores (UAS).7 For POS, NER,
and XNLI we report accuracy, and for XQuAD, we
report the Exact Match (EM) score.

3.2 Results and Preliminary Discussion
A summary of the zero-shot cross-lingual transfer
results, per target language, is provided in Table 1.
As expected, we observe drops in performance for
all tasks and all target languages w.r.t. reference
EN performance. However, the drops vary greatly
across languages. For example, NER (mBERT)
drops mere 2.6% for IT, but enormous 32% for AR;
XNLI transfer (XLM-R) yields a moderate 6.1%
drop for FR, but a large 20% drop for SW, etc.

At first glance, it appears – as suggested in
prior work – that the transfer drops primarily cor-
relate with language proximity: they are more pro-
nounced for languages that are more distant from
EN (e.g., JA, ZH, AR, TH, SW). While we see no no-
table exception to this in the three lower-level tasks,
language proximity alone does not explain many

7Using Labeled Attachment Score (LAS) would make
differences in annotation schemes between languages a con-
founding factor and impede our analysis of effects of language
proximity and size of the target language corpora.



4487

EN
ZH TR RU AR HI EU FI HE IT JA KO SV VI TH ES EL DE FR BG SW UR

Task Model EN
∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

DEP B 91.2 -43.9 -46.0 -28.1 -56.4 -36.1 -50.2 -30.7 -36.1 -17.1 -60.1 -56.1 -14.3 - - - - - - - - -
X 92.0 -85.4 -44.2 -29.7 -54.6 -39 -49.5 -26.7 -39 -23.5 -80.5 -56.0 -16.3 - - - - - - - - -

POS B 95.8 -38.0 -35.9 -16.0 -40.1 -33.4 -34.6 -21.9 -33.4 -19.8 -46.1 -42.0 -9.6 - - - - - - - - -
X 96.3 -69.2 -27.7 -14.3 -37.1 -27.3 -31.9 -17.9 -27.3 -19.0 -77.0 -37.3 -10.7 - - - - - - - - -

NER B 92.4 -23.3 -11.6 -10.7 -31.7 -11.1 -12.8 -3.8 -11.1 -2.6 -25.7 -13.8 -6.7 - - - - - - - - -
X 91.6 -34.8 -6.2 -13.7 -24.6 -16.5 -8.0 -0.9 -16.5 -2.4 -30.1 -15.6 -2.2 - - - - - - - - -

XNLI B 82.8 -13.6 -20.6 -13.5 -17.3 -21.3 - - - - - - - -11.9 -28.1 -8.1 -14.1 -10.5 -7.8 -13.3 -33.0 -23.4
X 84.3 -11.0 -11.3 -9.0 -13.0 -14.2 - - - - - - - -9.7 -12.3 -5.8 -8.9 -7.8 -6.1 -6.6 -20.2 -17.3

XQuAD B 71.1 -22.9 -34.2 -19.2 -24.7 -28.6 - - - - - - - -22.1 -43.2 -16.6 -28.2 -14.8 - - - -
X 72.5 -26.2 -18.7 -15.4 -24.1 -22.8 - - - - - - - -19.7 -14.8 -14.5 -15.7 -16.2 - - - -

Table 1: Zero-shot cross-lingual transfer performance on five tasks (DEP, POS, NER, XNLI, and XQuAD) with
mBERT (B) and XLM-R (X). We show the monolingual EN performance and report drops in performance relative
to EN for all target languages. Numbers in bold indicate the largest zero-shot performance drops for each task.

of the XNLI and XQuAD results. For instance, RU

XNLI (for both mBERT and XLM-R) is compara-
ble to that of ZH, and lower than that for HI and
UR: this is despite the fact that, as Indo-European
languages, RU, HI, and UR are linguistically closer
to EN than ZH. Similarly, we observe comparable
performance on XQuAD for TH, RU, and ES.

3.3 Analysis
For each task, we now analyze the correlations
between transfer performance and a) several mea-
sures of linguistic proximity (i.e., similarity) be-
tween languages and b) the size of MMT pretrain-
ing corpora of each target language.

Language Vectors and Corpora Sizes. For es-
timates of linguistic similarity, we rely on lan-
guage vectors from LANG2VEC, which encode var-
ious linguistic features from the URIEL database
(Littell et al., 2017). We consider the following
LANG2VEC vectors: syntax (SYN) vectors en-
code syntactic properties, e.g., if a subject appears
before or after a verb; phonology (PHON) vec-
tors encode phonological properties such as the
consonant-vowel ratio; inventory (INV) vec-
tors denote presence or absence of natural classes
of sounds (e.g., voiced uvulars); FAM vectors en-
code memberships in language families;
and GEO vectors express orthodromic distances
for languages w.r.t. fixed points on the Earth’s sur-
face. Language proximity is computed as cosine
similarity between the languages’ corresponding
LANG2VEC vectors: each vector type (e.g., SYN)
produces one similarity score (i.e., feature). We
couple LANG2VEC features with the z-normalized
size of the target language corpus used in MMT
pretraining (SIZE).8

8For XLM-R, we take reported sizes of language-specific

Correlation Analysis. We first correlate individ-
ual features with the zero-shot transfer scores for
each task and show the results in Table 2. Quite
intuitively, the zero-shot performance for low-level
syntactic tasks – POS and DEP – highly corre-
lates with syntactic language similarity (SYN).
SYN also correlates well with transfer results for
high-level tasks (except with XLM-R results on
XQuAD). Somewhat surprisingly, the phonological
language similarity (PHON) correlates best with
transfer performance with XLM-R, for all tasks ex-
cept XNLI, and also for mBERT on POS. For both
high-level tasks and both MMTs, we observe very
high correlations between transfer performance and
size of pretraining corpora of the target language
(SIZE). In contrast, SIZE exhibits lower correla-
tions for lower-level tasks (DEP, POS, NER). We
believe that this reflect the fact that high-level LU
tasks rely on rich representations of semantic phe-
nomena of a language, whereas low-level tasks
require simpler structural representation of a lan-
guage – it simply takes more distributional data to
acquire the former than the latter.

Meta-Regression. Across the tasks, we observe
high correlations between zero-shot transfer results
and several features (e.g., SYN, PHON and SIZE).
We next test if we can predict the transfer perfor-
mance for a new language, by (linearly) combining
individual features. For each task, we fit a linear re-
gression using transfer results for target languages
as labels. With only between 11 and 14 target lan-
guages (i.e., instances for fitting the regressor) per
task, we resort to leave-one-out cross-validation
(LOOCV) to obtain correlations for feature com-

CC-100 portions (Conneau et al., 2020); for mBERT, we work
with sizes of language-specific Wikipedias.
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SYN PHON INV FAM GEO SIZE

Task Model P S P S P S P S P S P S

DEP XLM-R 0.77 0.78 0.83 0.77 0.46 -0.04 0.68 0.61 0.80 0.81 0.62 0.47
mBERT 0.92 0.91 0.79 0.74 0.55 -0.01 0.76 0.62 0.64 0.69 0.79 0.59

POS XLM-R 0.68 0.79 0.81 0.81 0.38 0.02 0.58 0.74 0.80 0.73 0.54 0.46
mBERT 0.90 0.87 0.86 0.81 0.57 0.02 0.82 0.80 0.66 0.72 0.47 0.39

NER XLM-R 0.49 0.49 0.80 0.83 0.27 0.14 0.47 0.55 0.77 0.81 0.37 0.35
mBERT 0.60 0.74 0.81 0.84 0.34 -0.04 0.53 0.58 0.59 0.73 0.42 0.38

XNLI XLM-R 0.88 0.90 0.29 0.27 0.31 -0.11 0.63 0.54 0.54 0.74 0.70 0.76
mBERT 0.87 0.86 0.21 0.08 0.29 0.04 0.61 0.47 0.55 0.67 0.77 0.91

XQuAD XLM-R 0.69 0.53 0.85 0.81 0.62 -0.01 0.81 0.54 0.43 0.50 0.81 0.55
mBERT 0.84 0.89 0.56 0.48 0.55 0.22 0.79 0.64 0.51 0.55 0.89 0.96

Table 2: Correlations between zero-shot transfer performance with mBERT and XLM-R for different downstream
tasks with linguistic proximity features (SYN, PHON, INV, FAM and GEO) and pretraining size of target-
language corpora (SIZE). Results reported in terms of Pearson (P) and Spearman (S) correlation coefficients.

Task Model Selected features P S MAE

POS X PHON (.75); GEO (.25) 0.77 0.75 10.99
B SYN (.99) 0.94 0.90 4.60

DEP X PHON (.25); SYN (.18) 0.81 0.89 10.14GEO (.57)
B SYN(.99) 0.93 0.92 5.77

NER X PHON(.99) 0.80 0.88 4.64
B PHON(.99) 0.69 0.82 9.45

XNLI
X SYN (.51); SIZE (.49) 0.84 0.85 2.01

B SYN (.35); SIZE (.34), 0.89 0.90 2.78FAM (.31)

XQuAD X PHON (.99) 0.95 0.83 2.89
B SIZE (.99) 0.89 0.93 4.76

Table 3: Results of the meta-regression analysis,
i.e., predicting zero-shot transfer performance for
mBERT (B) and XLM-R (X). For each task-model pair
we list only features with weights ≥ 0.01. P=Pearson;
S=Spearman; MAE=Mean Absolute Error.

binations. We perform greedy forward feature se-
lection: in each iteration we add the feature which
boosts correlation (obtained via LOOCV) the most;
we stop when none of the remaining features fur-
ther improves the Pearson correlation.

We summarize the results of this meta-regression
analysis in Table 3. For each task-model pair, we
list features selected with the greedy feature selec-
tion and show (normalized) weights assigned to
each feature. Except for NER, combinations of fea-
tures manage to yield higher correlations with zero-
shot transfer results than any of the features on their
own. These results empirically confirm our previ-
ous intuition that linguistic proximity between the
source and target language only partially explains
zero-short transfer performance. On XNLI, transfer

performance is best explained with the combination
of structural similarity between languages (SYN)
and the size of the target-language pretraining cor-
pora (SIZE); on XQuAD with mBERT, SIZE alone
best explains zero-short transfer scores. Note that
the features are mutually quite correlated as well
(e.g., languages closer to EN also tend to have larger
pretraining corpora): thus if the regressor selects
only one feature, this does not mean that other fea-
tures do not correlate with transfer performance (as
shown by Table 2).

The coefficients in Table 3 again indicate the
importance of SIZE for the language understand-
ing tasks and highlight our core finding: pretrain-
ing corpora sizes are stronger features for predict-
ing zero-shot performance in higher-level tasks,
whereas the results in lower-level tasks are more
affected by typological language proximity.

4 From Zero to Hero: Few-Shot

Motivated by the low zero-shot transfer perfor-
mance for many tasks and languages obtained in
§3, we now investigate Q4 from §1: we aim to
mitigate transfer losses with inexpensive few-shot
cross-lingual transfer.

Experimental Setup. We rely on the same mod-
els, tasks, and evaluation protocols as described in
§3.1. However, instead of fine-tuning the MMTs
on task-specific data in EN only, we continue the
fine-tuning process by feeding k additional training
examples randomly chosen from reserved target
language data portions, disjoint with the test sets.9

9Note that for XQuAD, we performed the split on the arti-
cle level to avoid topical overlap. Consequently, for XQuAD
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k k = 10 k = 50 k = 100 k = 500 k = 1000

Task Model k = 0 score ∆ score ∆ score ∆ score ∆ score ∆

DEP MBERT 52.96 66.69 13.73 72.67 19.70 74.8 21.84 80.47 27.5 82.74 29.77
XLM-R 48.60 65.57 16.97 72.19 23.59 74.08 25.48 81.16 32.56 83.33 34.73

POS MBERT 67.2 80.17 12.96 85.34 18.14 87.09 19.88 91.16 23.96 92.64 25.44
XLM-R 65.5 80.68 15.18 85.7 20.2 87.59 22.09 91.35 25.85 92.80 27.3

NER MBERT 79.34 83.18 3.84 84.54 5.20 85.25 5.91 87.9 8.56 89.31 9.97
XLM-R 85.43 88.06 2.63 91.07 5.64 91.49 6.06 93.69 8.26 93.82 8.39

XNLI MBERT 65.92 65.89 -0.03 65.08 -0.84 64.92 -1.00 67.41 1.49 68.16 2.24
XLM-R 73.32 73.73 0.41 73.76 0.45 75.03 1.71 75.34 2.02 75.84 2.52

k = 2 k = 4 k = 6 k = 8 k = 10

XQUAD MBERT 45.62 48.12 2.50 48.66 3.04 49.34 3.72 49.91 4.29 50.19 4.57
XLM-R 53.68 53.73 0.05 53.84 0.17 54.76 1.08 55.56 1.88 55.78 2.10

Table 4: Results of the few-shot experiments with varying numbers of target-language examples k. For each k, we
report performance averaged across languages and the difference (∆) with respect to the zero-shot setting.

For our low-level tasks, we compare three sampling
methods: (i) random sampling (RAND) of k target
language sentences, (ii) selection of the k short-
est (SHORTEST) and (iii) the k longest (LONGEST)
sentences.10 For XNLI and XQuAD, we run the ex-
periments five times and report the average scores.

4.1 Results and Discussion

The results on each task, conditioned on the num-
ber of examples k and averaged across all target
languages, are presented in Table 4. We note
substantial improvements in few-shot learning se-
tups for all tasks. However, the results also re-
veal notable differences between different types
of tasks. For higher-level language understanding
tasks the improvements are less pronounced; the
maximum gains for XNLI and XQuAD after seeing
k = 1, 000 target-language instances and 10 arti-
cles, respectively, are between 2.52 (XLM-R) and
4.57 points (mBERT). On the other hand, the aver-
age gains for the lower-level tasks are massive: be-
tween 10 (NER) and 30 (DEP) points for mBERT
and 8 (NER) and 35 (DEP) points for XLM-R.
Moreover, the gains in all lower-level tasks are
substantial even when we add only 10 annotated
sentences in the target language (on average, up to
17 points on DEP, and 15 points on POS). What
is more, our additional experiments (omitted for
brevity) show substantial gains for DEP and POS
even with fewer than 5 annotated target language
sentences. A comparison of different sampling
strategies for the lower-level tasks is shown in Fig-

k refers to the number of articles.
10In all three cases, we only choose between sentences with

≥ 3 and ≤ 50 tokens.

ure 1 for mBERT.11 For DEP and POS, the pattern
is very clear and quite expected – adding longer
sentences results in better scores. For NER, how-
ever, random sampling (RAND) appears to perform
best: we hypothesize that this is because: (i) very
long sentences are relatively sparse with named en-
tities, resulting in our model seeing mostly negative
examples; (ii) shorter sentences contribute less than
for DEP and POS because they typically consist of
(confirmed by manual inspection) a single named
entity mention, without any non-NE tokens.

Figure 2 illustrates few-shot performance for in-
dividual languages on two lower-level (DEP, NER)
and two higher-level tasks (XNLI, XQuAD), for
different values of k.12 Across languages, we see a
clear trend – more distant target languages benefit
much more from the few-shot data. Observe, e.g.,
SV for DEP or DE for XQuAD. Both are closely
related to EN, exhibit high zero-shot transfer per-
formance, and benefit only marginally from few in-
language instances. We hypothesize that for such
closely related languages, with enough pretrain-
ing data, MMT is able to extrapolate the missing
language-specific knowledge from few in-language
examples; its priors for languages close to EN are
already quite sensible and a priori offer less room
for improvements. In stark contrast, KO (DEP, a)
and TH (XQuAD, b), for example, both exhibit
poor zero-shot performance and understandably
so, given their linguistic distance to EN. Given in-
language data, however, both see rapid leaps in per-
formance, displaying gains of almost 40% UAS on

11A similar analysis for XLM-R is in the supplementary.
12We show per-language scores for POS with mBERT, and

all tasks with XLM-R in the Appendix.
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Figure 1: Heatmap of performance gains for low-level tasks from few-shot transfer with mBERT for different
sampling strategies. X-axis: number of target-language instances k; Y-axis: sampling strategy.

(a) DEP (b) NER

(c) XQuAD (d) XNLI

Figure 2: Few-shot transfer results with mBERT for each language with varying k for two low-level tasks: a) DEP,
b) NER, and two higher-level tasks: c) XQuAD, d) XNLI. For DEP, NER, and XNLI k denotes the number of
sampled sentences, for XQuAD, the number of sampled articles.

DEP (KO), and almost 5% on XQuAD (TH). This
can be seen as MMTs’ ability to rapidly learn to uti-
lize the multilingual space to adjust its task-specific
knowledge for the target language. Other interest-
ing patterns emerge. Particularly interesting are
DEP results for JA and AR, where we observe mas-
sive UAS improvements with only 10 annotated
sentences. For XQuAD, we observe a substantial
improvement from only 2 in-language documents
for TH. In sum, we see the largest gains from few-
shot transfer exactly for languages for which the
zero-shot transfer setup yields largest performance
drops: languages distant from EN and represented
with small corpora in MMT pretraining.

Direct Target Language Few-Shot Fine-Tuning.
We have additionally run a set of control experi-
ments in which we bypass the task-specific fine-
tuning on the Enhlish data and directly fine-tune
the MMTs on the few target language instances.
Expectedly, for high-level LU tasks, fine-tuning

the MMTs with only a handful of target language
examples (i.e., without prior fine-tuning in English)
yields subpar performance w.r.t. the corresponding
model variant that had been previously fine-tuned
on English data. For instance, direct few-shot target
language fine-tuning of mBERT yields the average
XNLI performance of 33.95 for k = 100 and 40.19
for k = 1, 000, respectively (compared to 64.92
and 68.16, respectively, when prior fine-tuning on
English data is performed). These findings suggest
that fine-tuning with abundant (English) in-task
data plus fine-tuning with scarce in-language in-
task data yields a truly synergistic effect for higher-
level language understanding tasks: the small num-
ber of examples in the target language is not suf-
ficient to adapt the MMT directly, but they can
provide a substantial edge over fine-tuning only on
the English data (i.e., zero-shot transfer).

Somewhat surprisingly, however, for the sim-
pler lower-level tasks, omitting task-specific fine-
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Task #inst. Cost est. ∆ mBERT ∆ XLM-R

POS 1K sents $73 +25.4 +27.3
DEP 1K sents $280 +29.8 +34.7
NER 1K sents $60 +10 +8.4

NLI 1K sent. pairs $10 +2.24 +2.54
QA 10 docs $30 +4.5 +2.1

Table 5: Conversion rates between target language an-
notation costs and corresponding average performance
gains from MMT-based few-shot language transfer.

tuning on the English data and fine-tuning only
on few target language instances does not lead to
the major deterioration of performance (in fact, in
some cases, omitting to fine-tune the MMTs on
English data even slightly improves the results):
for NER (mBERT) we obtain the average per-
formance of 82.89 and 89.76 for k = 100 and
k = 1, 000 respectively, compared to 85.25 and
89.31 obtained respectively with prior English fine-
tuning; for POS, the direct few-shot target language
fine-tuning yields 87.08 (k = 100) and 92.64
(k = 1, 000). We observe the same trends for the
remaining tasks and with XLM-R. This suggests
that MMTs can be fine-tuned for lower-level (i.e.,
simpler) tasks with only a handful of instances.

4.2 Cost of Language Transfer Gains
As shown in §4.1, moving to few-shot transfer can
massively improve performance and reduce the
gaps observed with zero-shot transfer, especially
for low-resource languages. While additional fine-
tuning on few target-language examples is com-
putationally cheap, data annotation may be expen-
sive, especially for minor languages. What are the
annotation costs, and how do they translate into
performance gains? Table 5 provides ballpark es-
timates for our five evaluation tasks; the estimates
are based on annotation costs from the literature
(Hovy et al., 2014; Tratz, 2019; Bontcheva et al.,
2017; Marelli et al., 2014; Rajpurkar et al., 2016).
We explain these cost-to-gain conversion estimates
in more detail in Appendix C).

A provocative high-level question that calls for
further discussion in future work can be framed as:
are GPU hours effectively more costly13 than data
annotations are in the long run? While MMTs are
extremely useful as general-purpose models of lan-
guage, their potential for some (target) languages
can be quickly unlocked by pairing them with a
small number of annotated target-language exam-

13Financially, but also ecologically (Strubell et al., 2019).

ples. Effectively, this suggests leveraging the best
of both worlds, i.e., coupling knowledge encoded
in large MMTs with a small annotation effort.

5 Conclusion

Research on zero-shot language transfer in NLP
is motivated by inherent data scarcity: the fact
that most languages have no annotated data for
most NLP tasks. Massively multilingual transform-
ers (MMTs) have recently been praised for their
zero-shot transfer capabilities that mitigate the data
scarcity issue. In this work, we have demonstrated
that, similar to earlier language transfer paradigms,
MMTs perform poorly in zero-shot transfer to dis-
tant target languages, and to languages with smaller
monolingual corpora available for exploitation in
MMT pretraining. We have presented a detailed
empirical analysis of factors affecting zero-shot
transfer performance of MMTs across diverse tasks
and languages. Our results have revealed that struc-
tural language similarity determines the transfer
success for lower-level tasks like POS-tagging and
dependency parsing; on the other hand, the pretrain-
ing corpora size of the target language is crucial for
explaining transfer results for higher-level language
understanding tasks, such as question answering
and natural language inference.

Finally and most importantly, we have shown
that the MMT potential on distant and low-resource
target languages can be quickly unlocked if they
are provided a handful of annotated instances in
the target language. This finding provides a strong
incentive for intensifying future research efforts
that focus on cheap or naturally occurring super-
vision (Vulić et al., 2019; Artetxe et al., 2020c;
Marchisio et al., 2020), quick and simple annota-
tion procedure, and the more effective few-shot
transfer learning setups.
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Baden-Württemberg Stiftung (Grant “AGREE: Al-
gebraic Reasoning over Events from Text and Ex-
ternal Knowledge”). The work of Ivan Vulić is sup-
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Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Sebas-
tian Ruder. 2020. MAD-X: An adapter-based frame-
work for multi-task cross-lingual transfer. In Pro-
ceedings of EMNLP.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.
How multilingual is multilingual BERT? In Pro-
ceedings of ACL, pages 4996–5001.

Edoardo Maria Ponti, Helen O’Horan, Yevgeni Berzak,
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A Reproducibility

We first provide details on where to obtain datasets
and code used in this work.

Code and Dependencies. Our code can be
obtained from https://www.dropbox.com/s/

o5cxyy92re48xmu/zerohero_code.zip?dl=0.
The code is separated in two parts: for experiments
related to low-level tasks (DEP, POS, NER) the
code is based on the AllenNLP framework; for the
experiments on high-level tasks (XNLI, XQuAD),
our code directly builds on top of the HuggingFace
Transformers framework (Wolf et al., 2019). We
provide links to code dependencies and pretrained
models in Table 6.

Datasets. Table 7 provide links to all datasets
that we used in our study, for each of the five tasks
(low-level tasks: DEP, POS, NER; high-level tasks:
XNLI, XQuAD).

B Full Per-Language Few-Shot Results

We show full per-language few-shot transfer re-
sults for all five tasks (DEP, POS, NER, XNLI,
XSQuAD) for mBERT and XLM-R in Tables 8
and 9, respectively. We visually illustrate the gains
from few-shot transfer for individual languages,
for mBERT (for the POS task not covered in the
main paper) in Figure 3 and for XLM-R (for all five
tasks) in Figure 4. Finally, we show how the few-
shot transfer results with XLM-R for lower-level
tasks (DEP, POS, NER) depend on the instance
sampling strategy (RAND, SHORTEST, LONGEST)
in Figure 5.

C Few-Shot Transfer: Annotation Costs
versus Performance Gains

We now present the more detailed explanations for
the conversion between the annotation costs and
few-shot transfer performance gains, summarized
in Table 5 in the main paper.

Natural Language Inference. Marelli et al.
(2014) reportedly paid $2, 030 for 200k judge-
ments, which would amount to $0.01015 per NLI
instance and, in turn, to $10.15 for 1, 000 annota-
tions. In our few-shot experiments this would yield
an average improvement of 2.24 and 2.52 accuracy
points for mBERT and XLM-R, respectively. It is
also possible to translate the English data directly
via professional translation services as done with
the XNLI dataset and XQuAD: the platforms for

hiring professionals such as Upwork show that it
is possible to find qualified translators even for
lower-resource languages: e.g., the translation cost
estimate for Zulu is $12.5-$16/h, or $19/h for the
Basque language.

Question Answering. Rajpurkar et al. (2016) re-
port a payment cost of $9 per hour and a time effort
of 4 minutes per paragraph. With an average of 5
paragraphs per article, our few-shot scenario (10
articles) roughly requires 50 paragraphs-level an-
notations, i.e., 200 minutes of annotation effort and
would in total cost around $30 (for respective per-
formance improvements of 4.6 and 2.1 points for
mBERT and XLM-R).

On the one hand, compared to language under-
standing tasks, our lower-level (DEP, POS) tasks
are presumably more expensive to annotate, as they
require some linguistic knowledge and annotation
training. On the other hand, as shown in our few-
shot experiments, we typically need much fewer
annotated instances (i.e., we observe high gains
with already 10 target language sentences) for sub-
stantial gains in these tasks.

Dependency Parsing. Tratz (2019) provide an
overview of crowd-sourcing annotations for depen-
dency parsing; they report obtaining a fully correct
dependency tree from at least one annotator for
72% of sentences. At the reported cost of $0.28
per sentence this amounts to spending $280 for an-
notating 1, 000 sentences. Somewhat shockingly,
annotating 10 sentences with dependency trees –
which for particular target languages like AR and
JA corresponds to performance gains of 30-40 UAS
points (see Figure 2) – amounts to spending merely
$3-5.

Part-of-Speech Tagging. Hovy et al. (2014) mea-
sure agreement of crowdsourced POS annotations
with expert annotations; they crowdsource annota-
tions for 1,000 tweets, at a cost of $0.05 for every
10 tokens. With a total of 14, 619 tokens in the cor-
pus, this amounts to approximately $73 for 1, 000
tweets, which is ≥ 1, 000 sentences.14 Based on
Table 4, 2 hours of POS annotation work trans-
lates to gains of up to 20-22 points on average over
zero-shot transfer methods.

14Note, however, that lower-level tasks do come with an
additional risk of poorer quality annotation, due to crowd-
sourced annotators not being experts. Garrette and Baldridge
(2013) report that even for truly low-resource languages (e.g.,
Kinyarwanda, Malagasy), it is possible to obtain ≈ 100 POS-
annotated sentences in 2 hours.

https://www.dropbox.com/s/o5cxyy92re48xmu/zerohero_code.zip?dl=0
https://www.dropbox.com/s/o5cxyy92re48xmu/zerohero_code.zip?dl=0
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Codebase MMT Vocab Params URL

Allen NLP – – – https://github.com/allenai/allennlp

HF Trans. – – – https://github.com/huggingface/transformers
mBERT 119K 125M https://huggingface.co/bert-base-multilingual-cased
XLM-R 250K 125M https://huggingface.co/xlm-roberta-base

Table 6: Links to codebases and pretrained models used in this work. For low-level tasks (DEP, POS, NER), we
carried out our experiments using the AllenNLP library. For high-level tasks (XNLI, XQuAD), we built our models
directly on top of the HuggingFace (HF) Transformers library.

Task Dataset URL

Dependency Parsing UD https://lindat.mff.cuni.cz/repository/xmlui/handle/
11234/1-3105

POS Tagging UPOS https://lindat.mff.cuni.cz/repository/xmlui/handle/
11234/1-3105

Named Entity Recognition WikiAnn https://elisa-ie.github.io/wikiann/
Natural Language Inference XNLI https://github.com/facebookresearch/XNLI
Question Answering XQuAD https://github.com/deepmind/xquad

Table 7: Links to the datasets used in our work.

(a) POS

Figure 3: Graphical illustration of few-shot transfer gains for each language with mBERT, for the remaining task
not covered in the main paper: POS.

Named Entity Recognition. Bontcheva et al.
(2017) provide estimates for crowdsourcing anno-
tation for named entity recognition; they pay $0.06
per sentence, resulting in $60 cost for 1, 000 anno-
tated sentences. At a median pay of $11.37/hr, this
amounts to around 190 sentences annotated in an
hour. In other words, in less than 3 hours, we can
collect more than 500 annotated examples. Accord-
ing to Table 4, this can result in gains of 8+ points
on average, and even more for some languages
(e.g., 27 points for AR).

https://github.com/allenai/allennlp
https://github.com/huggingface/transformers
https://huggingface.co/bert-base-multilingual-cased
https://huggingface.co/xlm-roberta-base
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3105
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3105
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3105
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3105
https://elisa-ie.github.io/wikiann/
https://github.com/facebookresearch/XNLI
https://github.com/deepmind/xquad
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POS ar eu zh fi he hi it ja ko ru sv tr

0 55.65 61.19 57.8 73.85 62.38 61.7 76.02 49.65 53.75 79.79 86.15 59.9
10 83.16 74.65 76.1 75.5 83.18 75.19 87.56 82.04 71.02 82.95 87.28 67.73
50 89.18 79.84 83.84 81.4 88.91 83.12 92.04 88.27 77.17 86.07 89.5 74.2
100 90.73 81.63 85.82 82.28 90.12 85.46 93.47 90.95 80.57 87.5 91.06 76.66
500 94.08 86.84 90.78 86.8 94.75 89.69 95.73 94.25 86.48 91.21 93.43 85.29
1000 94.97 88.23 92.83 88.86 95.7 93.09 96.15 95.24 88.64 92.77 94.39 87.72

NER ar eu zh fi he hi it ja ko ru sv tr

0 60.69 79.53 69.01 88.59 81.26 78.46 89.77 66.64 78.51 81.64 85.62 80.78
10 81.69 90.51 82.27 91.28 83.12 81.44 92.14 75.64 79.36 83.39 92.09 86.91
50 86.3 93.36 85.6 92.38 87.02 85.04 92.34 78.88 86.94 88.07 95.51 91.93
100 87.37 94.84 87.19 92.88 87.8 86.52 92.79 81.98 88 89.98 95.53 92.5
500 89.74 95.28 89.5 94.01 89.86 89.27 93.8 84.6 90.93 92.18 96.84 94.34
1000 90.92 96.01 90.71 94.57 90.8 90.67 94.5 85.62 91.96 92.71 97.17 94.65

DEP ar eu zh fi he hi it ja ko ru sv tr

0 34.72 40.96 47.25 60.44 55.1 33.59 74.05 31.03 35.11 63.03 76.9 45.17
10 69.08 56.16 54.18 63.3 70.02 56.49 82.26 71.12 53.25 69.89 76.88 53.26
50 73.65 61.11 64.39 65.88 78.78 71.48 84.46 82.58 61.11 73.95 79.37 56.78
100 75.91 62.98 68.17 67.31 79.71 76.1 86.53 85.77 64.51 76.51 80.13 57.66
500 81.48 70.33 78.64 71.4 84.81 85.34 89.39 90.38 73.65 81.19 82.87 65.16
1000 83.31 73.85 81.59 74.97 87.47 89.49 89.9 92.18 76.08 83.18 83.95 68.26

XNLI fr es el bg ru tr ar vi th zh hi sw ur de

0 75.05 74.71 68.68 69.50 69.34 62.18 65.53 70.88 54.69 69.26 61.50 49.84 59.38 72.34
10 75.09 73.62 67.04 69.35 69.80 61.86 65.56 69.26 55.30 70.89 61.92 51.79 59.28 71.63
50 74.60 73.91 66.44 68.37 69.05 60.99 64.63 70.29 51.17 71.32 60.08 49.95 58.83 71.43
100 73.85 73.50 65.67 68.47 70.24 60.13 64.93 69.59 51.68 71.46 60.01 48.96 58.78 71.60
500 75.36 74.97 68.04 71.03 70.59 63.21 66.71 72.38 58.12 72.81 64.06 52.26 61.15 73.09
1000 76.20 76.24 68.73 71.73 71.41 65.01 67.04 72.35 59.19 73.47 64.75 52.47 62.38 73.21

XQUAD zh vi tr th ru hi es el de ar

0 48.14 49.02 36.90 27.84 51.86 42.47 54.48 42.90 56.22 46.40
2 48.93 50.50 40.87 39.43 51.07 44.19 56.14 46.46 56.66 46.99
4 49.72 51.38 40.22 41.24 51.33 45.90 56.62 47.25 56.38 46.57
6 50.81 50.81 41.59 44.04 51.20 46.81 57.14 47.16 56.40 47.45
8 51.53 51.29 41.99 45.28 51.29 47.10 57.45 47.95 57.07 48.21
10 50.87 51.57 42.55 46.05 52.05 48.06 57.03 48.60 57.29 47.82

Table 8: Detailed per-language few-shot language results with mBERT for different number of target-language
data instances k. For low-level tasks, we report results with RAND sampling.



4498

POS ar eu zh fi he hi it ja ko ru sv tr

0 59.23 64.41 27.06 78.34 68.94 65.63 77.25 19.28 58.98 81.96 85.54 68.61
10 82.72 76.54 68.3 81.04 84.81 77.08 88.44 78.92 70.5 83.95 87.87 72.33
50 89.14 80.19 77.49 84.94 89.13 84.07 92.51 86.94 76.09 87.29 90.8 79.19
100 90.67 83.38 80.83 86.44 90.3 87.23 93.52 88.78 78.91 88.84 91.79 81.65
500 94.36 88.4 86.61 90.23 94.23 91.4 95.7 92.11 84.37 91.87 94.35 87.64
1000 95.29 89.66 88.86 91.87 95.31 94.26 96.18 93.49 86.88 93.19 95.41 89.71

NER ar eu zh fi he hi it ja ko ru sv tr

0 67.03 83.58 56.77 90.69 75.05 78.28 89.25 61.46 76 77.87 89.36 85.43
10 75.45 89.81 79.02 91.14 75.1 78.5 90.02 76.45 74.8 84.5 92.01 88.06
50 82.56 91.63 80.81 92.01 80.34 81.23 91.01 78.13 81.8 87.21 94.72 91.07
100 83.37 93.33 82.77 92.77 82.63 83.88 91.23 79.97 83.06 88.01 94.89 91.49
500 86.95 94.82 85.77 93.78 86.09 87.79 92.44 82.38 87.17 91.02 96.33 93.69
1000 88.36 95.24 87.34 94.3 87.4 89.87 93.25 83.45 88.52 91.66 96.78 93.82

DEP ar eu zh fi he hi it ja ko ru sv tr

0 37.46 42.48 6.61 65.33 53.06 32.94 68.54 11.48 36 62.37 75.72 47.83
10 68.37 56.09 45.67 66.97 70.06 51.93 79.32 70.05 49.88 70.14 77.03 54.93
50 74.9 60.92 57.39 71.35 77.95 67.09 83.97 81.64 59.22 73.55 78.72 59.77
100 77.15 63.46 60.33 71.65 78.27 73.2 84.63 84.3 61.37 75.03 81.52 60.06
500 83.29 72.37 71.52 77.22 86.21 87.06 88.82 88.83 73.1 80.41 85.38 68.88
1000 84.99 75.25 76.2 80.46 88.48 90.81 90.14 90.28 75.35 82.88 85.68 70.68

XNLI fr es el bg ru tr ar vi th zh hi sw ur de

0 84.25 78.16 78.44 75.39 77.68 75.25 72.99 71.28 74.59 72 73.21 70.02 64.03 66.93 76.45
10 84.26 77.96 78.67 75.77 78.11 76.32 73.31 71.75 75.17 73.18 74.53 69.23 64.09 68.32 77.32
50 84.39 78.69 79.81 76.13 77.57 76.16 73.96 71.2 75.01 71.74 74.47 69.84 61.98 68.06 77.6
100 83.64 79.37 78.87 76.28 77.58 77.42 73.31 71.4 74.83 71.94 74.1 70.54 61.55 67.63 77.84
200 81.57 79.29 79.84 77.01 78.94 77.54 74.81 73.22 76.52 73.91 76.37 71.54 64 68.98 78.42
500 82.69 79.65 79.95 77.34 79.09 77.78 74.08 73.6 77.22 74.32 77.03 71.75 65.37 68.85 78.71
1000 83.74 79.91 80.29 77.39 79.39 77.8 74.92 74.26 77.34 74.8 77.26 72.83 66.77 69.84 78.91

XQUAD zh vi tr th ru hi es el de ar
0 46.29 52.84 53.82 57.64 57.10 49.67 57.97 56.77 56.33 48.36
2 47.16 52.86 52.84 60.96 55.39 50.20 57.51 55.37 57.05 47.97
4 48.06 53.43 51.88 61.57 54.21 50.28 57.62 55.68 56.72 49.00
6 52.29 53.41 53.03 62.97 55.48 50.85 57.88 55.37 57.16 49.10
8 57.88 53.49 52.47 63.73 55.87 50.96 58.25 55.83 57.05 50.09
10 60.22 53.28 52.36 64.02 55.79 51.38 57.90 56.11 57.47 49.30

Table 9: Detailed per-language few-shot language results with XLM-R for different number of target-language
data instances k. For low-level tasks, we report results with RAND sampling.
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(a) DEP

(b) XQUAD (c) XNLI

(d) POS (e) NER

Figure 4: Graphical illustration of few-shot transfer gains for individual languages, for XLM-R and all languages.

Figure 5: Heatmap of performance gains for low-level tasks from few-shot transfer with XLM-R for different
sampling strategies. X-axis: number of target-language instances k; Y-axis: sampling strategy.


