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Abstract

Training a supervised neural network classi-

fier typically requires many annotated training

samples. Collecting and annotating a large

number of data points are costly and some-

times even infeasible. Traditional annotation

process uses a low-bandwidth human-machine

communication interface: classification labels,

each of which only provides a few bits of

information. We propose Active Learning

with Contrastive Explanations (ALICE), an

expert-in-the-loop training framework that uti-

lizes contrastive natural language explanations

to improve data efficiency in learning. AL-

ICE learns to first use active learning to se-

lect the most informative pairs of label classes

to elicit contrastive natural language explana-

tions from experts. Then it extracts knowl-

edge from these explanations using a seman-

tic parser. Finally, it incorporates the extracted

knowledge through dynamically changing the

learning model’s structure. We applied ALICE

in two visual recognition tasks, bird species

classification and social relationship classifica-

tion. We found by incorporating contrastive

explanations, our models outperform baseline

models that are trained with 40-100% more

training data. We found that adding 1 expla-

nation leads to similar performance gain as

adding 13-30 labeled training data points.

1 Introduction

The de-facto supervised neural network training

paradigm requires a large dataset with annotations.

It is time-consuming, difficult and sometimes even

infeasible to collect a large number of data-points

due to task nature. A typical example task is med-

ical diagnosis. In addition, annotating datasets

also is costly, especially in domains where ex-

perts are difficult to recruit. In a traditional an-

1Co-supervised project.

Ring

Billed 
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Which image is not a Ring-Billed Gull?

Figure 1: An example task that would benefit from learning
with natural language explanation. The top-left corner shows
an example image of a ring-billed gull. In the other three
images (A), (B), (C), which one is not a ring-billed gull but
a California gull? Given the natural language explanation

“Ring-billed gull has a bill with a black ring near the tip while
California gull has a red spot near the tip of lower mandible”,
it would be easier to find that (A) is the correct choice.

notation process, the human-machine communi-

cation bandwidth is narrow. Each label provides

logC bits per sample for a C-class classification

problem. However, humans don’t solely rely on

such low bandwidth communication to learn. They

instead learn through natural language communi-

cation, which grounds on abstract concepts and

knowledge. Psychologists and philosophers have

long posited natural language explanations as cen-

tral, organizing elements to human learning and

reasoning (Chin-Parker and Cantelon, 2017; Lom-

brozo, 2006; Smith, 2003). Following this intu-

ition, we explore methods to incorporate natural

language explanations in learning paradigms to im-

prove learning algorithm’s data efficiency.

Let’s take a bird species classification task as

an example to illustrate the advantage of learning

with natural language explanation. Figure 1 shows

several bird images. Based on visual dissimilarity,

many people mistakenly thought Image C is not

a ring-billed gull as it has a different colored coat
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compared to the example. However, ring-billed

gulls change their coat color from light yellow to

grey after the first winter. So color is not the decid-

ing factor to distinguish California gull and ring-

billed gull. If we receive abstract knowledge from

human experts through a natural language format,

such as “Ring-billed gull has a bill with a black

ring near the tip while California gull has a red

spot near the tip of lower mandible” and incorpo-

rate it in the model, then the model will discover

that Image A is a California gull instead of a ring-

billed gull based on its bill.

Previous work has shown that incorporating nat-

ural language explanation into the classification

training loop is effective in various settings (An-

dreas et al., 2018; Mu et al., 2020). However, pre-

vious work neglects the fact that there is usually

a limited time budget to interact with domain ex-

perts (e.g., medical experts, biologists) (Liang et al.,

2019, 2020) and high-quality natural language ex-

planations are expensive, by nature. Therefore, we

focus on eliciting fewer but more informative ex-

planations to reduce expert involvement.

We propose Active Learning with Contrastive

Explanations (ALICE), an expert-in-the-loop train-

ing framework that utilizes contrastive natural lan-

guage explanations to improve data efficiency in

learning. Although we focus on image classifica-

tion in this paper, our expert-in-the-loop training

framework could be generalized to other classifica-

tion tasks. ALICE learns to first use active learning

to select the most informative query pair to elicit

contrastive natural language explanations from ex-

perts. Then it extracts knowledge from these expla-

nations using a semantic parser. Finally, it incorpo-

rates the extracted knowledge through dynamically

updating the learning model’s structure. Our ex-

periments on bird species classification and social

relationship classification show that our method

that incorporates natural language explanations has

better data efficiency compared to methods that

increase training sample volume.

2 Related Work

Learning with Natural Language Explanation

Psychologists and philosophers have long posited

natural language explanations as central organizing

elements to human learning and reasoning (Chin-

Parker and Cantelon, 2017). Several attempts have

been made to incorporate natural language explana-

tions into supervised classification tasks. Andreas

et al. (2018); Mu et al. (2020) adopt a multi-task

setting by learning classification and captioning si-

multaneously. Murty et al. (2020); He and Peng

(2017) encode natural language explanations as ad-

ditional features to assist classification. Orthogonal

to their approaches, we focus on eliciting fewer

but more informative explanations to reduce ex-

pert involvement with class-based active learning.

Another line of research collects heuristic rules as

explanations (e.g., ‘honey month’ for predicting

SPOUSE relationship) to automatically label un-

labeled data (Srivastava et al., 2017; Zhou et al.,

2020; Hancock et al., 2018). Different from their

settings, we assume no additional training data-

points. In addition, we leverage natural language

explanations by extracting knowledge and incor-

porate the knowledge into classifiers. Distantly

related to our work, Hendricks et al. (2016) pro-

pose to generate explanations for image classifiers

but they do not explore improving the classifiers

with the explanations.

Active Learning The key hypothesis of active

learning is that, if the learning algorithm is allowed

to choose the data from which it learns, it will

perform better than randomly selecting training

samples (Settles, 2009). Existing work in active

learning focuses primarily on exploring sampling

methods to select additional data-points to label

from a pool of unlabeled data (Sener and Savarese,

2018; Settles, 2011, 2009). Luo and Hauskrecht

(2017) propose group-based active learning where

the annotator could label a group of data points

each time rather than one data point. However, they

still rely on classification labels as the interface for

human-machine communication. Instead, we focus

on incorporating natural language explanations into

the classification training framework. Contrastive

learning has previously been shown to substantially

improve unsupervised learning (Abid et al., 2018),

feature learning (Zou et al., 2015), and learning

probabilistic models (Zou et al., 2013). However, it

has not been applied to the setting of active learning

with explanations as we explore here.

Hierarchical Visual Recognition Categorical

hierarchy is inherent in visual recognition (Bie-

derman, 1987; Feng et al., 2019). Xiao et al. (2014)

propose to expand the model based on category hi-

erarchy for incremental learning. Yan et al. (2015)

decompose classification task into a coarse cate-

gory classification and a fine category classifica-
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Figure 2: ALICE’s three-step workflow for each round. (A) Class-based Active Learning: ALICE first projects each class’s
training data into a shared feature space. Then ALICE selects b most confusing class pairs to query domain experts for
explanations. (B) Semantic Explanation Grounding: ALICE then extracts knowledge from b contrastive natural language
explanations by semantic parsing. ALICE grounds the extracted knowledge on the training data of b class pairs by cropping the
corresponding semantic segments. (C) Neural Architecture Morphing: ALICE finally allocates b new local classifiers and
merges b class pairs in the global classifier. The cropped image patches are used as additional training data for a newly added
local classifier to emphasize these patches’ importance. The model is re-trained after each round.

tion. Different from previous work, we focus on

incorporating contrastive natural language expla-

nations into the model hierarchy to achieve better

data efficiency.

3 Problem Formulation

Contrastive Natural Language Explanations

Existing research in social science and cognitive

science (Miller, 2019; Mittelstadt et al., 2019) sug-

gests contrastive explanations are more effective

in human learning than descriptive explanations.

Therefore, we choose contrastive natural language

explanations to benefit our learners. An example

contrastive explanation is like “Why P rather than

Q?”, in which P is the target event and Q is a coun-

terfactual contrast case that did not occur (Lipton,

1990). In the example in Figure 1, if we ask the

expert to differentiate between Ring-billed gull

against California gull, the expert would output

the following natural language explanation: “Ring-

billed gull has a bill with a black ring near the

tip while California gull has a red spot near tip

of lower mandible”. Our explanations are class-

based and are not specifically associated with any

particular images.

Problem Setup We are interested in a C class

classification problem defined over an input space

X and a label space Y = {1, ..., C}. Initially,

the training set Dtrain = {(xi, yi)}Ntrain

1 is small,

since our setting is restricted to be low resource.

We also assume that there is a limited budget to

ask domain experts to provide explanations during

training. Specifically, we consider k rounds of inter-

actions with domain experts and each round has a

query budget b. For each query, we need to specify

two classes yp, yq for domain experts to compare.

Domain experts would return a contrastive natural

language explanation e. Each explanation e would

guide us to focus on the most discriminating se-

mantic segments to differentiate between yp and

yq. In this paper, a semantic segment refers to a

semantic segment of an object (e.g., “bill” in bird

species classification) or a semantic object (e.g.,

“soccer” in social relationship classification).

To make our framework more general, we start

from a standard image classification neural ar-

chitecture. We formulate our initial model as

M(φ, gpool, f) = f(gpool(φ(x))): Here φ is an

image encoder that maps each input image x to

an activation map φ(x) ∈ R
H×W×d. gpool is a

global pooling layer gpool(φ(x)) ∈ R
dpool . f is

a fully connected layer that performs flat C way

classification. This formulation covers most of the

off-the-shelf pre-trained image classifiers.

4 ALICE: Active Learning with

Contrastive Explanations

4.1 Overview

ALICE is an expert-in-the-loop training framework

that utilizes contrastive natural language explana-

tions to improve data efficiency in learning. AL-

ICE performs multiple rounds of interaction with

domain experts and dynamically updates the learn-

ing model’s structure during each round. Figure 2

describes ALICE’s three-step workflow for each

round: (A) Class-based Active Learning: ALICE

first projects each class’s training data into a shared

feature space. Then ALICE selects b most confus-

ing class pairs to query domain experts for expla-

nations. (B) Semantic Explanation Grounding:
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ALICE then extracts knowledge from b contrastive

natural language explanations by semantic pars-

ing. ALICE grounds the extracted knowledge on

the training data of b class pairs by cropping the

corresponding semantic segments. (C) Neural Ar-

chitecture Morphing: ALICE finally allocates b

new local classifiers and merges b class pairs in the

global classifier. The cropped image patches are

used as additional training data for a newly added

local classifier to emphasize these patches’ impor-

tance. The model is re-trained after each round.

4.2 Class-based Active Learning

ALICE optimizes towards requesting the most in-

formative explanations to reduce expert involve-

ment. Since each explanation provides knowledge

to distinguish a class pair, we aim to identify the

class pairs that confuse the model most and the

explanations on these class pairs would intuitively

help the model a lot. ALICE identifies confusing

class pairs by first projecting each class’s training

data into a shared feature space gpool(φ(x)). As

shown in Figure 2 (A), if the training data of two

classes are close in the feature space, it is usually

hard for the model to distinguish them and thus it

would be helpful to solicit an explanation on this

class pair. Based on this intuition, we first define

the distance between two classes and then select the

class pairs with the lowest distance. We first pro-

file each class j by fitting a multivariate Gaussian

distribution Nj(µj , Σj) on class j’s training sam-

ple features. We define the distance between class

j and class k as the Jensen–Shannon Divergence

(JSD) between Nj and Nk.

DJ(Nj ,Nk) ,
1

2
DKL(Nj ||(Njk))+

1

2
DKL(Nk||Njk)

where Njk = 1
2(Nj + Nk) and DKL(Nj ||Nk) is

the Kullback-Liebler (KL) divergence:

DKL(Nj ||Nk) =
1

2

(

tr(Σ−1
k Σj − I) + log(

|Σk|
|Σj |

)

+ (µj − µk)
TΣ−1

k (µj − µk)
)

After calculating the distance between all possible

class pairs, we select the b class pairs with the

lowest JSD distance to query domain experts.

4.3 Semantic Explanation Grounding

After identifying b class pairs that the model is

most confused about, we send b query to domain

experts. We ask the expert the following question

for each query, “How would you differentiate class

P and class Q?”. Since we want the expert to

provide general class-level knowledge, each query

only contains text information, and no visual ex-

amples are provided to the experts. We obtain b

contrastive natural language explanations after the

query. Next, we parse the natural language expla-

nations into machine-understandable form.

Query Expert: “How to differentiate Ring-billed Gulls
and California Gulls?”

Parse Expert Explanation: “Ring-billed Gull has a bill
with a black ring near the tip while California Gull has
a red spot near the tip of lower mandible. ”
Extracted Knowledge: Pay attention to [Bill] when
classifying Ring-billed Gull v.s. California Gulls

Ground Extracted Knowlwdge: Crop [Bill] in every
training image of Ring-billed Gulls and California Gulls

Table 1: Semantic Explanation Grounding Workflow

We choose a simple rule-based semantic parser

for simplicity, following Hancock et al. (2018). The

simple rule-based semantic parser can be used with-

out any additional training and requires minimum

effort to develop. Formally, the parser uses a set of

rules in the form α → β, which means that α can

be replaced by the token(s) in β. Our rules focus

primarily on identifying the discriminating seman-

tic segments (§ 3) mentioned in the explanations

(e.g., “bill” for differentiating between ring-billed

gull and California gull). We also allow the parser

to skip unexpected tokens so that the parser could

always succeed in generating a valid output.

Since each explanation e provides class-level

knowledge to distinguish class yp, yq, we need to

propagate the knowledge to all the training data-

points in class yp, yq so that the learning model

could incorporate the knowledge later during train-

ing. We denote the semantic segments mentioned

in an explanation e as S = {s1, s2, ..., }. For each

training data-point of class yp, yq, we apply off-the-

shelf semantic segment localization models to crop

out the image patch(es) of the semantic segment(s)

mentioned S = {s1, s2, ..., } (Figure 2 (B)). The

number of patches cropped from each image equals

the number of mentioned semantic segments (i.e.,

|S|). We then resize the image patches to full

resolution. The intuition behind our crop-and-

resize approach comes from the popular image

crop data augmentation: it augments the training
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data with “sampling of various sized patches of

the image whose size is distributed evenly between

8% and 100% of the image area” (Szegedy et al.,

2015). This data augmentation technique is widely-

adopted and is supported by common deep learning

frameworks like PyTorch1.

ALICE does not need the localization model

during testing (More details in § 4.4). The off-the-

shelf semantic segment localization models could

be the pre-trained localization models on various

large-scale datasets like Visual Genome (Krishna

et al., 2017) and PASCAL-Part (Chen et al., 2014).

If there is no available off-the-shelf localization

model, we could recruit non-expert annotators to

annotate the location of the semantic segments

given that our training set Dtrain is small.

4.4 Neural Architecture Morphing

Overview ALICE incorporates contrastive nat-

ural language explanations through dynamically

updating the learning model’s structure. The high-

level idea is to allocate a number of local classifiers

to help the origin model guided by the explanations.

Specifically, for each explanation e that provides

knowledge to distinguish two classes yp, yq, we

allocate a local classifier that is dedicated to the

binary classification between yp, yq. We incorpo-

rate the extracted knowledge from explanation e to

the local classifier so that the local classifier learns

to focus on the discriminating semantic segments

pointed out by the domain experts. We first discuss

the case where all local classifiers perform binary

classification and then discuss how to extend them

to support general m-ary classification.

Progressive Architecture Update The initial

flat C-way classification architecture could be

viewed as a composition of an image encoder φ

and a global classifier f ◦ gpool. We discuss how

the local classifiers are progressively added to as-

sist the global classifier. As shown in Figure 2 (C),

we first merge b class pairs into b super-classes in

the global classifier. For example, in the first round,

the global classifier would change from C-way to

(C−2b+b)-way. We then allocate b new local clas-

sifiers, each for performing binary classification for

one class pair. Each local classifier is only called

when the global classifier predicts its super-class as

the most confident. We delay more complex condi-

tional execution schemes as future work. We also

note that the conditional execution schemes have

1torchvision.transforms.RandomResizedCrop

Figure 3: Local classifiers with shared attention mechanism

potential for reducing computation runtime (Chen

et al., 2020; Mailthody et al., 2019). During train-

ing, we fine-tune the image encoder φ and reset the

global classifier after each round since it is only a

linear layer.

Knowledge Grounded Training The global

classifier is trained on Dtrain, with labels adjusted

according to the class pair merging. For a local

classifier corresponding to the class pair yp, yq, its

training data consists of two parts. One part of the

training data is the training data-points of classes

yp, yq in Dtrain. The other part is the resized im-

age patches of class yp, yq obtained in semantic

explanation grounding (§ 4.3). We use the resized

image patches as additional training data to to em-

phasize these patches’ importance. Take the local

classifier distinguishing ring-billed gull and Cali-

fornia gull as an example (Figure 2 (B, C)). This

local classifier is trained on the training images of

ring-billed gull and California gull, as well as the

bills’ patches of each training image of ring-billed

gull and California gull. During testing, we only

feed the whole image into the model.

Supporting m-ary local classifier So far we

have assumed that the local classifier is always

a binary classifier. An implicit assumption is that

the b class pairs have no overlap. We could support

overlapping class pairs as follows. If some class

pairs have overlap (e.g., class pair (P,Q), class pair

(P, T ), class pair (T, U)), we only allocate one lo-

cal classifier for them (e.g., a 4-ary local classifier

for class (P,Q, T, U)). We also merge all the rel-

evant classes in the global classifier into only one

super-class (e.g., super-class {P,Q, T, U}). The

local classifier is trained on the union of the over-

lapping class pairs’ training data including patches.

Local Classifier Design Our framework is ag-

nostic to the design choice of the local classifiers.

Any design could be plugged into ALICE. We pro-

vide a default design as follows. Ideally, each

local classifier should learn which semantic seg-

ments to focus and how to detect them. Since
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different local classifier might need to detect the

same semantic segments (e.g., bill), the knowledge

of detecting semantic segments could be shared

among all local classifiers. Therefore, we introduce

a shared attention mechanism, which is parame-

terized using M learnable latent attention queries

q1, q2, ..., qM ∈ R
d that represent M different la-

tent semantic segments. To keep our design gen-

eral, we do not bind each latent attention queries

to any concrete semantic segments (e.g., we do not

assign binding like q1 to “bill”) and these queries

are trained in a weakly-supervised manner. Follow-

ing Lin et al. (2015); Hu and Qi (2019), we view

the activation map φ(x) ∈ R
H×W×d of each im-

age x as H×W attention keys k1, ..., kH×W ∈ R
d.

We compute the attention by:

Q =





qT1
...

qTM



,K = V =





kT1
...

kTH×W





A = Attention(Q,K, V ) = softmax(
QKT

√
d

)V

Where Q ∈ R
M×d, K = V ∈ R

(H×W )×d. Each

row in the attention output matrix A ∈ R
M×d is the

attention output for each attention query qi, which

is a descriptor of the ith latent semantic segments.

After the shared attention mechanism, each local

classifier applies a private fully-connected layer

on flattened(A) to make predictions. Each local

classifier could ignore irrelevant semantic segments

by simply setting the corresponding weights in its

fully-connected layer to zero.

Implementation Our image encoder φ could be

any off-the-shelf visual backbone model and we

use Inception v3 (Szegedy et al., 2016). We im-

plement our semantic parser on top of the Python-

based SippyCup (Liang and Potts, 2015) following

previous work Hancock et al. (2018). Our frame-

work could support applications in other languages

by changing a semantic parser for corresponding

languages. We provide more details in Appendix.

5 Bird Species Classification Task

Dataset We use the CUB-200-2011 dataset (Wah

et al., 2011), which contains 11, 788 images for 200
species of North American birds. We randomly

sample 25 bird species due to limited access to

expert query budget. Following Vedantam et al.

(2017), We make sure that each sampled species

has one or more confusing species from the same

subfamilia so that they are challenging to classify.

Least Auklet

Parakeet Auklet

Base Model
ALICE’s local 

classifiers

Predict: Parakeet Auklet

Predict: Parakeet Auklet

Predict: Least Auklet

Predict: Least Auklet

Explanation: Parakeet Auklet has a thicker orange bill.

Arctic Tern Predict: Least Tern Predict: Arctic Tern

Least Tern Predict: Arctic Tern Predict: Least Tern

Explanation: Arctic Tern has a red bill, red legs and feet, 

while  Least Tern has a yellow bill, orange legs and feet. 

Figure 4: Saliency maps visualization. Guided by expert
explanations, ALICE learn to focus on the discriminating
semantic segments and make the correct prediction.

In addition, each image in the CUB data-set is also

annotated with the locations of 15 semantic seg-

ments (e.g., “bill”, “eye”). We use these location

annotations to crop training image patches based

on the explanations. We do not use any location an-

notation during testing. More details are provided

in the Appendix, including the list of 25 sampled

species. We experiment with a low-resource setting

with only 15 images per bird species.

We employ an amateur bird watcher as the do-

main expert since we do not expect general MTurk

workers to have enough domain expertise. To fur-

ther ensure the annotation quality, our domain ex-

pert checks the professional birding field guide 2

before writing each explanation. We ask the ex-

pert, “How would you differentiate bird species P

and bird species Q?”. In total, we collect 67 con-

trastive natural language explanations (avg. length

18.45 words). We collect the explanations in an

on-demand manner because our class-based active

2https://identify.whatbird.com/



4386

Figure 5: Comparing the performance gain of adding con-
trastive natural language explanations and adding training
data points on bird species’ prediction accuracy. Empirically,
adding 1 explanation leads to similar performance gain as
adding 30 labeled training data points.

learning is empirically insensitive to the change

of random seeds and hyper-parameters. Our se-

mantic parser identifies 2.36 semantic segments

per explanation on average. In each experiment,

we conduct k = 4 rounds of expert queries, with a

query budget b = 3 for each round.

Discussion on CUB Description Dataset The

CUB description dataset collects descriptions of

visual appearance for each image rather than ex-

planations of why the bird in the image belongs

to a certain class (Reed et al., 2016; Hendricks

et al., 2016). For example, an image with a Ring-

billed gull has the description: “This is a white

bird with a grey wing and orange eyes and beak.”

However, this description also fits perfectly with a

California gull (Figure 1). So the crowd-sourced

descriptions in the CUB description dataset is not

ideal to support classification. We collected expert

explanations: “Ring-billed gull has a bill with a

black ring near the tip while California gull has

a red spot near the tip of lower mandible.” to im-

prove classification data efficiency. In addition, we

also conducted experiments to incorporate CUB

descriptions (5 sentences per image), but we did

not find improved performance in our setting.

Model Ablations and Metrics We compare AL-

ICE to its several ablations (Table 2) and evaluate

the performance on the test set. We report classi-

fication accuracy on species as well as subfamilia.

For subfamilia accuracy, a prediction is counted as

correct as long as the predicted species’ subfamilia

is the same as the labeled species’ subfamilia. (1)

Base(Inception v3) fine-tunes the pre-trained Incep-

tion v3 to perform a flat-25 way classification. (2)

ALICE w/o Grounding copies the final neural archi-

No. Model
Accuracy (%)

species subfamilia

(1) Base(Inception v3) 59.51 86.50

(2) ALICE w/o Grounding 66.47 87.95
(3) ALICE w/o Hierarchy 59.22 86.94
(4) ALICE w/ Random Ground 64.44 87.52
(5) ALICE w/ Random Pairs 42.67 75.33

(6) RandomSampling + 33% extra data 66.76 88.39
(7) RandomSampling + 66% extra data 71.26 91.00
(8) RandomSampling + 100% extra data 75.91 91.58

(9) ALICE (1st round) 65.46 86.07

(10) ALICE (2nd round) 70.83 89.84

(11) ALICE (3rd round) 74.46 91.00

(12) ALICE (4th round) 76.05 91.87

Table 2: Test accuracy comparison among variants of ALICE
on the bird species classification task.

tecture from ALICE but does not have access to the

discriminating semantic segments (§ 4.3). (3) AL-

ICE w/o Hierarchy has the same neural architecture

as (1) but has access to the discriminating semantic

segments. (4) ALICE w/ Random Grounding has

the semantic segments that are randomly sampled.

(5) ALICE w/ Random Pairs replaces class-based

active learning with randomly selected class pairs.

The randomly selected class pairs are used to query

experts and change the learning model’s neural ar-

chitecture. (9-12) ALICE ith round shows ALICE’s

performance after the ith round of expert queries.

(6-8) RandomSampling + x% extra data augments

(1) with x% extra training data points.

Results Our first takeaway is that incorporating

contrastive natural language explanations is more

data-efficient than adding extra training data points.

Figure 5 visualizes the performance gain of adding

explanations and adding data points. ((6-12) in Ta-

ble 2). As shown in Figure 5, adding 1 explanation

leads to the same amount of performance gain of

adding 30 labeled data points. For example, adding

12 explanations (ALICE (4th round), 76.05%)

achieves comparable performance gain of adding

375 training images (RandomSampling + 100% ex-

tra data, 75.91%). We note that writing one expla-

nation for an expert is typically faster than labeling

15-30 examples. As an estimate, Zhou et al. (2020);

Hancock et al. (2018); Zaidan and Eisner (2008)

perform user study and find that collecting natural

language explanations is only twice as costly as

collecting labels for their tasks. Our experiment

shows that adding 1 explanation leads to similar

performance gain as adding 30 labeled training data

points, yielding a 6× speedup.

Our second takeaway is that both the ground-
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No. Method
Species Acc (%)

+33% data +66% data

(1) RandomSampling 66.76 71.26
(2) CoreSet 68.06 73.09
(3) LeastConfidence 67.34 71.94
(4) MarginSampling 66.04 70.36
(5) EntropySampling 66.91 72.52
(6) BALDdropout 66.33 71.65

Table 3: Instance-based active learning baselines on the bird
species classification task. We note that ALICE (4th round,
Acc 76.05%) in Table 2 (12) outperforms all instance-based
active learning baselines with 66% extra training data (Acc
70.36%-73.09%).

ing of explanations’ semantics and the hierarchical

neural architecture improves classification perfor-

mance a lot. Removing the grounded training im-

age patches degrades ALICE’s performance (AL-

ICE w/o Grounding, 66.47%). Substituting the

discriminating semantic segments’ image patches

with other semantic segments’ patches leads to

worse performance (ALICE w/ Random Ground-

ing, 64.44%). The hierarchical neural architecture

is also important. As shown in Table 2, a base-

line model augmented with hierarchical classifica-

tion (ALICE w/o Grounding, 66.74%) outperforms

the flat C way classification (Base(Inception v3),

59.51%). Similarly, removing the hierarchical neu-

ral architecture from ALICE drops the performance

a lot (ALICE w/o Hierarchy, 59.22% v.s. ALICE

(4th round), 76.05%). ALICE morphs the neu-

ral architecture based on class-based active learn-

ing (§ 4.2). If we replace class-based active learn-

ing with a random selection of class pairs, ALICE

learns a bad model structure that leads to reduced

performance (ALICE w/ Random Pairs, 42.67%).

Additional Experiments Table 3 shows our ex-

periments with several common instance-based ac-

tive learning baselines. We show the test accu-

racy of adding 33% extra training data (i.e., 125
extra data points) and adding 66% extra training

data (i.e., 250 extra data points) using the instance-

based active learning baselines. In this case, we ob-

serve that ALICE with 12 explanations (Accuracy

76.05%, Table 2 (12)) outperforms all instance-

based active learning baselines with 250 extra data

points(Accuracy 70.36%-73.09%, Table 3). We de-

lay the combination of instance-based active learn-

ing and our class-based active learning as future

work. To testify whether ALICE could work ro-

bustly with smaller amount of training data, we

present an experiment on CUB starting with as few

as 5 images per species. ALICE with 12 expla-

No. Model
Accuracy (%)

relation domain

(1) Base(Inception v3) 33.67 45.39

(2) ALICE w/ Random Ground 27.20 42.52
(3) ALICE w/ Random Pairs 22.94 35.29

(4) RandomSampling + 20% extra data 34.91 46.51
(5) RandomSampling + 40% extra data 36.28 46.63

(6) ALICE (1st round) 35.29 47.13

(7) ALICE (2nd round) 36.41 47.38

Table 4: Test accuracy comparison among variants of ALICE
on the social relationship classification task.

nations (k = 4, b = 3) improves the accuracy of

the base model from 49.76% to 62.80%, outper-

forming the base model with 15 images per class

(Accuracy 59.51%, Table 2).

Visualization We show how the explanations

help the learning model as shown in Figure 4. We

visualize the saliency maps (Simonyan et al., 2014)

corresponding to the correct class on four example

images. As shown in Figure 4, the base model does

not know which semantic segments to focus and

makes wrong predictions. In contrast, ALICE’s

local classifiers obtain knowledge from the expert

explanations and successfully learns to focus on

the discriminating semantic segments to make the

correct predictions.

6 Social Relationship Classification Task

Dataset We also evaluate ALICE on the People

in Photo Album Relation dataset (Zhang et al.,

2015; Sun et al., 2017). An example is shown

in Figure 6. The dataset was originally collected

from Flickr photo albums and involves 5 social

domains and 16 social relations. We focus on the

images that have only two people since handling

more than two people requires task-specific neural

architecture. The details of dataset pre-processing

are included in Appendix. After pre-processing,

we obtain 1, 679 training images and 802 testing

images. We experiment with a low-resource setting

with 15% of the remaining training images (i.e.,

264 images). We obtain explanations by convert-

ing the knowledge graph collected by Wang et al.

(2018) into a parsed format. The semantic seg-

ments here are contextual objects like soccer. The

knowledge graph contains heuristics to distinguish

social relations by the occurrence of contextual

objects (e.g., “soccer” for sports v.s. colleagues).

We use a faster-RCNN-based object detector (Ren
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Relationship: Sport Team Members         Relationship: Colleagues 

Relationship Group: Coalitional               Relationship Group: Coalitional

Explanation: Sports team members appear with balls, 

while colleagues appear with laptops, books and ties. 

Figure 6: Examples of social relationship classification. Ex-
planations are reconstructed from Wang et al. (2018)

et al., 2017) trained on the COCO dataset (Lin et al.,

2014) to localize the semantic segments (contex-

tual objects) during training. The object detector

is not used during testing. We set rounds of expert

queries k = 2 and the query budget b = 4.

Results We compare ALICE to its several abla-

tions (Table 4) and evaluate the performance on the

testing set. We report classification accuracy on so-

cial relationships as well as social domains. We ob-

serve similar benefits of incorporating explanations

to ALICE as in the bird species classification task.

As shown in Table 4, the base model with 40%
extra training data (i.e., 105 images) still slightly

underperforms ALICE with 8 explanations (Ran-

domSampling + 40% extra data, 36.28% v.s. AL-

ICE (2nd round), 36.41%). As shown in Figure 7,

adding 1 explanation leads to similar performance

gain as adding 13 labeled training data points. Our

ablation experiment also confirms the importance

of class-based active learning. If we replace class-

based active learning with a random selection of

class pairs, ALICE learns a bad model structure

that leads to reduced performance (ALICE w/ Ran-

dom Pairs, 22.94%). The performance drop in do-

main accuracy is also significant. We suspect it is

because the bad model structure confuses the global

classifier a lot. If the global classifier calls a wrong

local classifier, the local classifier is forced to make

a prediction on such a out-of-distribution data. In

addition, our ablation experiment also verify the im-

portance of having knowledge beyond having the

localization model. Substituting the discriminat-

ing semantic segments’ image patches with other

semantic segments’ patches leads to worse perfor-

mance (ALICE w/ Random Grounding, 27.20%).

One reason is that there are many objects in each

image. Under our low resource setting, learning on

the image patches of random semantic segments

may make the model to latch on to sample-specific

Figure 7: Comparing the performance gain of adding con-
trastive natural language explanations and adding training data
points on social relationship classification.

artifacts in the training images, which leads to poor

generalization.

7 Conclusion

We propose an expert-in-the-loop training frame-

work ALICE to utilize contrastive natural language

explanations to improve a learning algorithm’s data

efficiency. We extend the concept of active learn-

ing to class-based active learning for choosing the

most informative query pair. We incorporate the

extracted knowledge from expert natural language

explanation by changing our algorithm’s neural

network structure. Our experiments on two visual

recognition tasks show that incorporating natural

language explanations is far more data-efficient

than adding extra training data. In the future, we

plan to examine the hierarchical classification ar-

chitecture’s potential for reducing computational

runtime.
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Appendix

Additional Implementation Details

We use Inception v3 (Szegedy et al., 2016) as

our image encoder φ. The global pooling layer

gpool is a global average pooling layer. The in-

put image size is (448, 448). We implement our

model in PyTorch. We implement the shared at-

tention infrastructure of fine-grained classifiers by

noting that calculating QKT is equivalent to an

efficient 1 × 1 × d convolution on the activation

map φ(x) ∈ R
H×W×d, with M latent attention

queries as M convolutional kernels. We use the

same hyper-parameters for both datasets. We adopt

Inception v3 (Szegedy et al., 2016) as the backbone

and choose Mix6e layer as the activation map. We

tune the hyper-parameters on the unused training

images. We train the models using Stochastic Gra-

dient Descent (SGD) with the momentum of 0.9,

weight decay of 1e− 5. We decay the learning rate

of each parameter group by 0.9 every 2 epochs us-

ing torch.optim.lr scheduler.StepLR.

The global pooling g is a global average pooling

layer. We set M the number of learnable latent

attention queries to 6. The total number of parame-

ters of our model is 15, 114, 476. The training time

for our approach is less than 20 minutes since our

resource constraint setting has a limited amount of

training data. Unlike previous active learning on

data-points, our class-based active learning is em-

pirically insensitive to the change of random seeds

and hyper-parameter (e.g., batch size). Therefore,

we could collect the explanations in an on-demand

manner.

Bird Species Classification Dataset

We adopt the random sampling method in (Vedan-

tam et al., 2017), to make sure that the sampled

species are challenging to classify. The sam-

pling method is based on birds’ biological hier-

archy (Barz and Denzler, 2020) from Wikispecies.

The 25 randomly sampled bird species are: Crested

Auklet, Least Auklet, Parakeet Auklet, Tropical

Kingbird, Gray Kingbird, Belted Kingfisher, Green

Kingfisher, Pied Kingfisher, Ringed Kingfisher,

Scarlet Tanager, Summer Tanager, Brown Thrasher,

Sage Thrasher, California Gull, Heermann Gull,

Ivory Gull, Ring billed Gull, Black capped Vireo,

Blue headed Vireo, White eyed Vireo, Yellow

throated Vireo, Artic Tern, Black Tern, Caspian

Tern, Least Tern.

Saliency Map Visualization

We use the techniques in Simonyan et al. (2014) to

visualze the saliency map. A saliency map tells us

the degree to which each pixel in the image affects

the classification score for that image. To compute

it, we compute the gradient of the unnormalized

score corresponding to the correct class (which is

a scalar) with respect to the pixels of the image.

If the image has shape (3, H,W ) then this gradi-

ent will also have shape (3, H,W ); for each pixel

in the image, this gradient tells us the amount by

which the classification score will change if the

pixel changes by a small amount. To compute the

saliency map, we take the absolute value of this

gradient, then take the maximum value over the

3 input channels; the final saliency map thus has

shape (H,W ) and all entries are nonnegative.

Social Relationship Classification Dataset

PIPA-Relation dataset (Sun et al., 2017) is built on

PIPA dataset (Zhang et al., 2015). We exclude the

images with more than two people since it requires

task-specific neural architecture. Since we have

annotations of people pairs for each image, we

could easily identify and remove images with more

than two people. However, the dataset becomes

heavily unbalanced after this step since images of

certain relationships tend to have less people. To

tackle this issue, we truncate the classes that have

more than 200 training images left to 200 training

images. Similarly, we truncate the classes that have

more than 100 testing images left to 100 testing

images. We finally get 1679 training images and

802 testing images.


