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Abstract

Bolukbasi et al. (2016) presents one of the first
gender bias mitigation techniques for word
embeddings. Their method takes pre-trained
word embeddings as input and attempts to iso-
late a linear subspace that captures most of
the gender bias in the embeddings. As judged
by an analogical evaluation task, their method
virtually eliminates gender bias in the embed-
dings. However, an implicit and untested as-
sumption of their method is that the bias sub-
space is actually linear. In this work, we gener-
alize their method to a kernelized, non-linear
version. We take inspiration from kernel prin-
cipal component analysis and derive a non-
linear bias isolation technique. We discuss and
overcome some of the practical drawbacks of
our method for non-linear gender bias mitiga-
tion in word embeddings and analyze empiri-
cally whether the bias subspace is actually lin-
ear. Our analysis shows that gender bias is in
fact well captured by a linear subspace, justify-
ing the assumption of Bolukbasi et al. (2016).

1 Introduction

Pre-trained word representations are a necessity for
strong performance on modern NLP tasks. These
embeddings now serve as input to neural meth-
ods (Goldberg, 2017), which recently have become
the standard models in the field. However, be-
cause these representations are constructed from
large, human-created corpora, they naturally con-
tain societal biases encoded in that data; gender
bias is among the most well studied of these bi-
ases (Caliskan et al., 2017). Both a-contextual
word embeddings (Mikolov et al., 2013; Penning-
ton et al., 2014) and contextual word embeddings
(Peters et al., 2018; Devlin et al., 2019) have been
shown to encode gender bias (Bolukbasi et al.,
2016; Caliskan et al., 2017; Zhao et al., 2019;
May et al., 2019; Karve et al., 2019). More im-
portantly, the bias in those embeddings has been
shown to influence models for downstream tasks

where they are used as input, e.g. coreference reso-
Iution (Rudinger et al., 2018; Zhao et al., 2018).

Bolukbasi et al. (2016) present one of the first
methods for detecting and mitigating gender
bias in word embeddings. They provide a novel
linear-algebraic approach that post-processes word
embeddings in order to partially remove gender
bias. Under their evaluation, they find they can
nearly perfectly remove bias in an analogical
reasoning task. However, subsequent work (Gonen
and Goldberg, 2019; Hall Maudslay et al., 2019)
has indicated that gender bias still lingers in the em-
beddings, despite Bolukbasi et al. (2016)’s strong
experimental results. In the development of their
method, Bolukbasi et al. (2016) make a critical and
unstated assumption: Gender bias forms a linear
subspace of word embedding space. In mathemat-
ics, linearity is a strong assumption and there is
no reason a-priori why one should expect complex
and nuanced societal phenomena, such as gender
bias, should be represented by a linear subspace.

In this work, we present the first non-linear gen-
der bias mitigation technique for a-contextual word
embeddings. In doing so, we directly test the lin-
earity assumption made by Bolukbasi et al. (2016).
Our method is based on the insight that Bolukbasi
et al. (2016)’s method bears a close resemblance to
principal component analysis (PCA). Just as one
can kernelize PCA (Scholkopf et al., 1997), we
show that one can kernelize the method of Boluk-
basi et al. (2016). Due to the kernelization, the
bias is removed in the feature space, rather in the
word embedding space. Thus, we also explore pre-
image techniques (Mika et al., 1999) to project the
bias-mitigated vectors back into R,

As previously noted, there are now multiple bias
removal methodologies (Zhao et al., 2018, 2019;
May et al., 2019) that have succeed the method
by Bolukbasi et al. (2016). Furthermore Gonen
and Goldberg (2019) point out multiple flaws in
Bolukbasi et al. (2016)’s bias mitigation technique
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and the aforementioned methods. Nonetheless we
believe that this method has received sufficient at-
tention from the community such that research into
its properties is both interesting and useful.

We test our non-linear gender bias technique in
several experiments. First, we consider the Word
Embedding Association Test (WEAT; Caliskan
et al., 2017); we notice that across five non-linear
kernels and convex combinations thereof, there is
seemingly no significant difference between the
non-linear bias mitigation technique and the lin-
ear one. Secondly, we consider the professions
task (Bolukbasi et al., 2016; Gonen and Goldberg,
2019) that measures how word embeddings repre-
senting different professions are potentially gender-
stereotyped. Again, as with the WEAT evaluation,
we find that our non-linear bias mitigation tech-
nique performs on par with the linear method. We
also consider whether the non-linear gender mit-
igation technique removes indirect bias from the
vectors (Gonen and Goldberg, 2019); yet again, we
find the non-linear method performs on par with the
linear methods. As a final evaluation, we evaluate
whether non-linear bias mitigation hurts semantic
performance. On Simlex-999 (Hill et al., 2015),
we show that similarity estimates between the vec-
tors remain on par with the linear methods. We
conclude that much of the gender bias in word em-
beddings is indeed captured by a linear subspace,
answering this paper’s titular question.

2 Bias as a Linear Subspace

The first step of Bolukbasi et al. (2016)’s technique
is the discovery of a subspace B C R¢ that cap-
tures most of the gender bias. Specifically, they
stipulate that this space is linear. Given word em-
beddings that live in R?, they provide a spectral
method for isolating the bias subspace. In this sec-
tion, we review their approach and show how it is
equivalent to principal component analysis (PCA)
on a specific design (input) matrix. Then, we in-
troduce and discuss the implicit assumption made
by their work; we term this assumption the linear
subspace hypothesis and test it in §4.

Hypothesis 1. Gender bias in word embeddings
may be represented as a linear subspace.
2.1 Construction of a Bias Subspace

We will assume the existence of a fixed and finite
vocabulary V/, each element of which is a word w;.
The hard-debiasing approach takes a set of N sets

D = {D,})_, as input. Each set D,, contains
words that are considered roughly semantically
equivalent modulo their gender; Bolukbasi et al.
(2016) call the D,, defining sets. For example,
{man, woman} and {he, she} form two such defin-
ing sets. We identify each word with a unique inte-
ger 1 for the sake of our indexing notation; indeed,
we exclusively reserve the index ¢ for words. We
additionally introduce the function f : [|V|] — [N]
that maps an individual word to its defining set. In
general, the defining sets are not limited to a cardi-
nality of two, but in practice Bolukbasi et al. (2016)
exclusively employ defining sets with a cardinality
of two in their experiments. Using the sets D,
Bolukbasi et al. (2016) define the matrix C

N
1
C:=) Dy > (wi—pp,) (Wi —pp,)"
n=1 n

1€Dn

where we write w; for the ™ word’s embedding
and the empirical mean vector pp,, is defined as

1
D, ‘= w;

leDn

Bolukbasi et al. (2016) then extract a bias subspace
B using the singular value decomposition (SVD).
Specifically, they define the bias subspace to be
the space spanned by the first k£ rows of V' where

VSV =SVD(C) (1)

Since C' is symmetric and positive semi-definite,
the SVD is equivalent to an eigendecomposition as
our notation in Equation 1 shows. We assume the
rows of V, the eigenvectors of C', are ordered by
the magnitude of their corresponding eigenvalues.

2.2 Bias Subspace Construction as PCA

As briefly noted by Bolukbasi et al. (2016), this
can thus be cast as performing principal component
analysis (PCA) on a recentered input matrix. We
prove this assertion more formally. We first prove
that the matrix C may be written as an empirical
covariance matrix.

Proposition 1. Suppose |D,,| = 2 for all n. Then
we have

12N
_ T w.
C = 5 z_; W, W )
where we define the design matrix W as:
T
Wi, = (Wi =y, ) ©
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n=1 €Dy,
1 N
-
252 (Wi — pp,) (Wi — pp,)
n=1+i€D,
2N
1 T
=9 ) (Wi - “Dfm) (Wi “Dfm)
i=1
1 2N
=5 VVZT W;.
=1
where W; . € R2NVxd ig defined as above. OJ

Next, we show that the matrix is centered, which
is a requirement for PCA.

Proposition 2. The matrix W is row-wise cen-
tered.

Proof.

nzlieDn
1 N

32 (2w o)
n=1 iGDﬂ

Remark 3. The method of Bolukbasi et al. (2016)
may be considered principal component analysis
performed on the matrix 2C.

Proof. As the algebra in proposition 1 and propo-
sition 2 show we may formulate the problem as an
SVD on a mean-centered covariance matrix. One
view of PCA is performing matrix factorization on
such a matrix. O

3 Bolukbasi et al. (2016)

In this section, we review the bias mitigation tech-
nique introduced by Bolukbasi et al. (2016). When
possible, we take care to reformulate their method
in terms of matrix notation. They introduce a two-
step process that neutralizes and equalizes the vec-
tors to mitigate gender bias in the embeddings. The

underlying assumption of their method is that there
exists a linear subspace B C R? that captures most
of the gender bias.

3.1 Neutralize

After finding the linear bias subspace B, the gist
behind Bolukbasi et al. (2016)’s approach is based
on elementary linear algebra. We may decompose
any word vector w as the sum of its orthogonal
projection onto the bias subspace (range of the
projection) and its orthogonal projection onto the
complement of the bias subspace (null space of the
projection), i.e.

W=WRB+W,|pR 4
We may then re-embed every vector as
Wntr (=W —Wp =W,p (&)

We may re-write this in terms of matrix notation
in the following manner. Let {vj}X  be an or-
thogonal basis for the linear bias subspace B. This
may be found by taking the eigenvectors C' that
correspond to the top-K eigenvalues with largest
magnitude. Then, we define the projection matrix
onto the bias subspace as P = Y p_, viv)] it
follows that the matrix (I — P ) is a projection
matrix on the complement of B. We can then write
the neutralize step using matrices

Whntr := (I - PK)W (6)

The matrix formulation of the neutralize step offers
a cleaner presentation of what the neutralize step
does: it projects the vectors onto the orthogonal
complement of the bias subspace.

3.2 Equalize

Bolukbasi et al. (2016) decompose words into two
classes. The neutral words which undergo neutral-
ization as explained above, and the gendered words,
some of which receive the equalizing treatment.
Given a set of equality sets £ = {F1,...,EL}
which we can see as a greater extension of the
defining sets D, i.e. E; = {guy, gal}, Bolukbasi
et al. (2016) then proceed to decompose each of
the words w € £ into their gendered and neutral
counterparts, setting their neutral component to a
constant (the mean of the equality set) and the gen-
dered component to its mean-centered projection
into the gendered subspace:

Weq 1=V + Z (Wp — pp) (7)
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where we define the following quantities:

. VT IwIB

"~ |lws — pall2
1
= A%
P

vi=I-Px)p

the “normalizer” Z ensures the vector is of unit
length. This fact is left unexplained in the original
work, but Hall Maudslay et al. (2019) provide a
proof in their appendix.

4 Bias as a Non-Linear Subspace

We generalize the framework presented in Boluk-
basi et al. (2016) and cast it to a non-linear setting
by exploiting its relationship to PCA. Thus, the
natural extension of Bolukbasi et al. (2016) is to
kernelize it analogously to Scholkopf et al. (1997),
which is the kernelized generalization of PCA. Our
approach preserves all the desirable formal prop-
erties presented in the linear method of Bolukbasi
et al. (2016).

4.1 Adapting the Design Matrix

The idea behind our non-linear bias mitigation tech-
nique is based on kernel PCA (Schélkopf et al.,
1998). In short, the idea is to map the original word
embeddings w; € R? to a higher-dimensional
space H via a function @® : R? — H. We
will consider cases where H is a reproducing ker-
nel Hilbert space (RKHS) with reproducing kernel
k(wi, w;) = (®(w;), ®(w;)) where the notation
(-, -) refers to an inner product in the RKHS. Tradi-
tionally, one calls H the feature space and will use
this terminology throughout this work. Exploiting
the reproducing kernel property, we may carry out
Bolukbasi et al. (2016)’s bias isolation technique
and construct a non-linear analogue.

We start the development of bias mitigation tech-
nique in feature space with a modification of the
design matrix presented in Eq. (3). In the RKHS
setting the non-linear analogue is

W =®(wi) -~ Mp . YwieV (8

where we define

1
M}

i€Dp
As one can see, this is a relatively straightforward

mapping from the set of linear operations to non-
linear ones.

4.2 Kernel PCA

Using our modified design matrix, we can cast our
non-linear bias mitigation technique as a form of
kernel PCA. Specifically, we form the following
matrix

12N

c* - Ly W Twe
i=1
Our goal is to find the eigenvalues A and their
corresponding eigenfunctions V,:I’ € H by solving
the eigenvalue problem
c*vE®=\Vv2 (10)
Computing these directly from Equation 10 is im-
possible since H’s dimension may be prohibitively
large or even infinite. However, Scholkopf et al.
note that V;® is spanned by {®(w;)}?%|. This
allows us to rewrite Eq. (10) as

2N
Vi =D o) ®(wi) (11)
=1

where there exist coefficients af € R. Now, by
substituting Eq. (11) and Eq. (10) into the respec-
tive terms in A\(®(w;), V&) = (®(w;),C V;®),
Scholkopf et al. (1997) derive a computationally
feasible eigendecomposition problem. Specifically,
they consider

INM. of = KaF (12)

where K;; = (®(w;), ®(w;)). Once all the
o vectors have been estimated the inner product
between an eigenfunction V,f' and a point w can
be computed as

Be(w) = (V;2, @(w;))

2N
= Zaf K(Wi, W) (13)
i=1

A projection into the basis {V;2}X | can then
be carried out by applying the projection operator
Px : H — H as follows:

Prd®(w)=> KWV (14

where K is the number of principal components.
Projection operator P is analogous to the linear
projection Py introduced in §3.1.
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4.3 Centering Kernel Matrix

We can perform the required mean-centering op-
erations on the design matrix by centering the ker-
nel matrix in a similar fashion to Scholkopf et al.
(1998). For the case of equality sets of size 2, which
is what Bolukbasi et al. use in practice, we realize
that the centered design matrix reduces to pairwise
differences:

W = L (B(wi) — B(w;))

i (15)

Wi, W; € D, A W; %+ w;
which leads to a very simple re-centering in terms
of the Gram matrices:

K _ K(ll) _ K(12) _ (K(12))T + K(22)

where
(@y) _ 1 @) @)
K" = Sn (W W )
W = ] T meme (050 T T g

Wﬂz—imndz(f((%n) =

where f : [N] — [|V]] x [|V|] maps a defining
set index to a tuple containing the word indices
in the corresponding defining set and my,mo :
[IV]] x [|[V]] — [|V]] are projection operators
which return the first or second elements of a tuple
respectively. In simpler terms, Eq. (16) is creating
two matrices: matrix W) which is constructed
by looping over the definition sets and placing pairs
within the same definition set as adjacent rows, then
W @) is constructed in the same way but the order
of the adjacent pairs is swapped relative to W),
Once we have this pairwise centered Gram matrix
K we can apply the eigendecomposition proce-
dure described in Equation 12 directly on K. We
note that carrying out this procedure using a lin-
ear kernel recovers the linear bias subspace from
Bolukbasi et al. (2016).

4.4 Inner Product Correction (Neutralize)
We now focus on neutralizing and equalizing the in-
ner products in the RKHS rather than correcting the
word embeddings directly. Just as in the linear case,
we can decompose the representation of a word in

the RKHS into biased and neutral components
®(w) = Py ®(w) + Py ®(w), (17)

which provides a nonlinear equivalent for Eq. (6)
... (W) = Px ®(w) (18)
= ®(w) — Pg ®(w)

Proposition 4. The corrected inner product in the
feature space for two neutralized words z,w is
given by

<(I)ntr(z)7 (I)ntr(w)> (19)

Proof.

<'1)ntr(z),‘19ntr(w)> =
<<I>(Z) —Pg ®(z), ®(w) — Pg q,(w)>

Applying Eq. (13) and Eq. (14)

K N
= k(z,w) — Z Br(w) Z afk(z, wi)
=1 =1

K 2N K
= B2 akk(w,wi) + Y Be(w)Bi(z)
k=1 i=1 k=1
K IN
= k(z,w) — Z Br(w) Z afl/f(z, w;)
k=1 i=1
K
= Kz, W) = > _ Bu(w)B(2), (20)
k=1
where

2N
Br(w) = VT @(w) = 3 af s(w, wy)
=1

as derived by Scholkopf et al. (1998). O

An advantage of this approach is that it will not
rely on errors due to the approximation of the pre-
image. However, it will not give us back a set of
debiased embeddings. Instead, it returns a debiased
metric, thus limiting the classifiers and regressors
we could use. Equation Eq. (19) provides us with
an O(K Nd) approach to compute the inner prod-
uct between two feature-space neutralized words.

4.5 Inner Product Correction (Equalize)

To equalize, we may naturally convert Eq. (7) to its
feature-space equivalent. We define an equalizing
function

06q(wi) = V‘I’ + Zq:' Px (‘I’(WZ) — gg(i))
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where we define
v® :=Pg M7 |

7% ._ V1-—|lva|?

T Pk(@w) - ME ]

where ¢ : [|V|] = [L] maps an individual word in-
dex to its corresponding equality set index. Given
vector dot products in the linear case follow the
same geometric properties as inner products in the
RKHS we can show that 0.,(w) is unit norm fol-
lows directly from the proof for Proposition 1 in
(Hall Maudslay et al., 2019) which can be found in
Appendix A of Hall Maudslay et al. (2019).

Proposition 5. For any two vectors in the observed
space W,z and their corresponding representa-
tions in feature space ®(w), ®(z) the inner prod-
uct (B(w) —Px ®(w),Pg ®(2)) is 0.

Proof.

(®(w) — Pr ®(w),Pr ®(e))

= (®(w), Pk ®(2)) — (P, ®(W), Px ®(2))
K

K
= Zﬁk(w)ﬁk(z) — Zﬂk(w)ﬁk(z) —0
k=1

k=1
t

Proposition 6. For a given neutral word w and a
word in an equality set e € &£ the inner product
(Putr (W), Ocq(€)) is invariant across members in
the equality set E.

Proof.

(B e (W), Oeq(€)) 2 (Buie (), %)

= 5 @), P B(ow)
€l

_ ‘;' 3 Pk ®(w), Pk ®(w,)

el

(i) 1 &

2 (,«w,wi) - kZﬂk(wwk(wn)
=1

S

where (i) follows from proposition 5 and (ii) fol-
lows from proposition 4. O

At this point we have completely kernelized the
approach in Bolukbasi et al. (2016). Note that a
linear kernel reduces to the method described in
Bolukbasi et al. (2016) as we would expect. We can

y
>

Figure 1: Pre-image problem illustration for the neu-
tralised embeddings (null-space). The plane represents
represents the bias subspace in the RKHS.

see an initial disadvantage that equalizing via inner
product correction has in comparison to Bolukbasi
et al. (2016) and that is that we now require switch-
ing in between three different inner products at test
time depending on whether the words are neutral
or not. To overcome this in practice, we neutralize
all words and do not use the equalize correction,
however we present it for completeness.

5 Computing the Pre-Image

As mentioned in the previous section, a downfall
of the metric correction approach is that it does not
provide us embeddings that we can use in down-
stream tasks: the bias-mitigated embeddings only
exist in feature space. Thus, when it comes to trans-
fer tasks such as classification we are limited to
kernel methods such (i.e. support vector machines).
One way to resolve this problem is by obtaining
the pre-image of the corrected representations in
the feature space.

Finding the pre-image is a well studied problem
for kernel PCA (Kwok and Tsang, 2004). The goal
is to fine the pre-image mappings I' : Hx EBH[L( —
R, Tt Hiy —» Riand T'T @ Hg — RY
that compute (or approximate) the pre-images for
P(w;), <I>1%K (w;) and ®p, (W;), respectively. In
our case, with the pre-image maping, the neutralize
step from Bolukbasi et al. (2016) becomes

7z =T (®(w;)) — P ®(wy))  (21)
In general, we will not have access to I'" so we
discuss the following approximation scheme.

Additive Decomposition Approach. Alterna-
tively, following Kandasamy and Yu (2016), we
can construct an approximation to I that additively
decomposes over the direct sum @. We decompose
I" additively over the direct sum Hpy & 7—[%{. That
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kernel K(Wi, Wj)
Tw.
Cosine S/ B
(Twll2 [[w;]]2
RBF Kernel exp (= [|lwi — w;l|3)
Sigmoid Kernel tanh(yw, w; + co)

(v WiTWj + Co)d
eXIi(—’YHWi - wjll1)
D1 ko (Wi, W),

Polynomial Kernel
Laplace Kernel
Convex Combination

Table 1:
ments.

Different kernels used throughout experi-

is, we assume that the pre-image mappings have
the following form:

D(@(w)) = T+ (Bh,(w)) +T7 (@p, (W)
I (@6, (W) = T(@(W))~ T (p, (w))

Given that we will always know that the pre-image
of I'(®(w)) exists and is w, we can select I to
return w resulting in:

I (@f,(w) =w-TT (@ (w)) (22

We then learn an analytic approximation for I'T
using the method in Bakir et al. (2004). Note that
most pre-imaging methods, e.g., Mika et al. (1999)
and Bakir et al. (2004), are designed to approx-
imate a pre-image I'" and do not generalize to
approximating the pre-image mappings I' and T'*.
This is because such methods explicitly optimise
for pre-imaging representations in the space I'"
using points in the training set as examples of their
pre-image, for the null-space I'" we have no such
examples.

6 Experiments and Results

We carry out experiments across a range of bench-
marks and statistical tests designed to quantify the
underlying bias in word embeddings (Gonen and
Goldberg, 2019). Our experiments focus on quan-
tifying both direct and indirect bias as defined in
Gonen and Goldberg (2019); Hall Maudslay et al.
(2019). Furthermore we also carry out word simi-
larity experiments using the Hill et al. (2015) bench-
mark in order to asses that our new debiased spaces
still preserve the original properties of word em-
beddings (Mikolov et al., 2013).

6.1 Experimental Setup

Across all experiments we apply the neutralize met-
ric correction step to all word embeddings, in con-

‘‘‘‘‘‘‘‘‘‘‘‘‘

Figure 2: 2D toy example of non-linear component re-
moval using Kernel PCA and the pre-image (neutralize
step) described in §5.

trast to Bolukbasi et al. (2016) where the equalize
step is applied to the equality sets £ and the neu-
tralize step to a set of neutral words as determined
in Bolukbasi et al. (2016). We show in Tab. 3 that
applying the equalize step does not bring an en-
hancement over neutralizing all words. We varied
kernel hyper-parameters using a grid search and
found that they had little effect on performance,
as a result we used default initialisation strategies
as suggested in Scholkopf et al. (1998). Unless
mentioned otherwise, all experiments use the inner
product correction approach introduced in §4.4.

6.2 Kernel Variations

The main kernels used throughout experiments are
specified in Tab. 1. We also explored the follow-
ing compound kernels: (i) convex combinations
of the Laplace, radial basis function (RBF), co-
sine and sigmoid kernels; (ii) convex combinations
of cosine similarity, RBF, and sigmoid kernels;
(iii) convex combinations of RBF and sigmoid ker-
nels; (iv) polynomial kernels up to 4™ degree. We
only report the results on the most fundamental
kernels out of the explored kernels.

6.3 Direct Bias: WEAT

The Word Embeddings Association Test Caliskan
et al. (WEAT; 2017) is a statistical test analogous
to the implicit association test (IAT) for quantify-
ing human biases in textual data (Greenwald and
Banaji, 1995). WEAT computes the difference in
relative cosine similarity between two sets of target
words X and Y (e.g. careers and family) and two
sets of attribute words A and B (e.g. male names
and female names). Formally, this quantity is Co-
hen’s d-measure (Cohen, 1992) also known as the
effect size: The higher the measure, the more bi-
ased the embeddings. To quantify the significance
of the estimated d, Caliskan et al. (2017) define
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Targets Original PCA KPCA (rbf) KPCA (sig) KPCPA (lap)
d p d p d p d p d p
Google News Word2Vec (Mikolov et al., 2013)
Career , Family 1.622 0.000 1.327 0.001 1.321 0.005 1.319 0.006 1.311 0.002
Math, Arts 0.998 0.017 -0.540 0.859 -0.755 0.922 -0.754 0.933 -0.024 0.507
Science , Arts 1.159 0.005 0.288 0.281 0.271 0307 0.269 0.283 1.110 0.009
GloVe (Pennington et al., 2014)
Career , Family 1.749 0.000 1.160 0.007 1.166 0.006 1.165 0.01 1.443 0.000
Math, Arts 1.162 0.007 0.144 0.389 0.096 0437 0.095 0411 0999 0.015
Science , Arts 1.281 0.008 -1.074 0985 -1.114 0995 -1.112 0.993 -0.522 0.839

Table 2: WEAT results using GloVe and Google News word embeddings.

Bolukbasi et al. (2016) PCA

Dataset
d p d p
Google News Word2Vec (Mikolov et al., 2013)
Career , Family 1.299  0.003 1.327  0.001
Math, Arts -1.173  0.995 -0.540 0.859
Science , Arts  -0.509 0.832 0.288  0.281
GloVe (Pennington et al., 2014)

Career , Family 1.160  0.000 1.160 0.007
Math, Arts -0.632  0.887 0.144  0.389
Science , Arts 0.937 0.937 -1.074 0.985

Table 3: Effect of the equalize step

the null-hypothesis that there is no difference be-
tween the two sets of target words and the sets of
attribute words in terms of their relative similarities
(i.e. d = 0). Using this null hypothesis, Caliskan
et al. (2017) then carry out a one-sided hypothe-
sis test where failure to reject the null-hypothesis
(p > 0.05) means that the degree of bias measured
by d is not significant.

We obtain WEAT scores across different kernels
(Tab. 2). We observe that the differences between
the linear and the non-linear kernels is small and, in
most cases, the linear kernel has a smaller value for
the effect size indicating a lesser degree of bias in
the corrected space. Overall, we conclude that the
non-linear kernels do not reduce the linear bias as
measured by WEAT further than the linear kernels.
We also experiment with polynomial kernels and
obtain similar results, which can be found in Tab. 7
of App. A.

Embeddings Original PCA  KPCA(rbf) KPCA(sig) KPCA(lap)

0.740 0.675 0.678 0.675 0.708
0.758 0.675 0.681 0.680 0.715

Word2Vec
Glove

Table 4: Pearson correlation coefficients of professions
analogy task. All observed at significant at o = 0.05.
Indeed, all have p-values < 10730,

Embeddings Original PCA  KPCA(rbf) KPCA(sig) KPCA(lap)

Word2Vec 0.974 0.702  0.716 0.715 0.720
Glove 0.978 0.757 0.754 0.753 0.914

Table 5: Classification accuracy results on male versus
female terms.

6.4 Professions (Gonen and Goldberg, 2019)

We consider the professions dataset introduced by
Bolukbasi et al. (2016) and apply the benchmark
defined in Gonen and Goldberg (2019). We find
the neighbors (100 nearest neighbors) of each word
using the corrected cosine similarity and count the
number of male neighbors. We then report the Pear-
son correlation coefficient between the number of
male neighbors for each word and the original bias
of that word. The original bias of a word vector w
is given by the cosine similarity cos(w,he — she)
in the original word embedding space. We can
observe from the results in Tab. 4 that the non-
linear kernels yield only marginally different re-
sults which in most cases seem to be slightly worse,
i.e. their induced space exhibits marginally higher
correlations with the original biased vector space.

6.5 Indirect Bias

Following Gonen and Goldberg (2019), we build
a balanced training set of male and female words
using the 5000 most biased words according to
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the bias in the original embeddings as described
in Section 6.4, and then train an RBF-kernel sup-
port vector machine (SVM) classifier (Pedregosa
etal., 2011) on a random sample of 1000 (training
set) of them to predict the gender, and evaluate its
generalization on the remaining 4000 (test set). We
can perform classification in our corrected RKHS
with any SVM kernel  fgym (Putr (W), Prir(2))
that can be written in the forms ' kgym ((W, z)) or
ksym(||W — 2||?) since we can use the kernel trick
in our corrected RKHS (®p, (W), Ppir(z)) =
k(w,z) to compute the inputs to our SVM kernel,
resulting in

Ksym (|[W — ZHQ) (23)

= Keym(R(W, W) — 2R(w, z) + R(z,2)).

It is clear that the RBF kernel is an example of a
kernel that follows Eq. (23).

We can see that the bias removal induced by non-
linear kernels results in a slightly higher classifica-
tion accuracy (shown in Tab. 5) of gendered words
for GoogleNews Word2Vec embeddings (Mikolov
et al., 2013) and a slightly lower classification ac-
curacy for GloVe embeddings (Pennington et al.,
2014) (with the exception of the Laplace kernel
which has a very high classification accuracy).
Overall for the RBF and the sigmoid kernels there
is no improvement in comparison to the linear ker-
nel (PCA), the Laplace kernel seems to have no-
tably worse results than the others, still being able
to classify gendered words at a high accuracy of
91.4% for GloVe embeddings.

6.6 Word Similarity: SimLex-999

The quality of a word vector space is traditionally
measured by how well it replicates human judg-
ments of word similarity. We use the SimLex-999
benchmark by Hill et al. (2015) which provides
a ground-truth measure of similarity produced by
500 native English speakers. Similarity scores by
our method are computed using Spearman correla-
tion between embedding and human judgments are
reported. We can observe that the metric correc-
tions only slightly change the Spearman correlation
results on SimLex-999 (Tab. 6) from the original
embedding space. We can thus conclude that the
embedding quality is mostly preserved.

!Stationary kernels are sometimes written in the form
k(w,z) = n((w,z)2 or k(w,z) = s(||w — 2|]?), ie.
krBrF(r) = exp(—r

Embeddings Original PCA  KPCA(rbf) KPCA(sig) KPCA(lap)

Word2Vec 0.121 0.119 0.118 0.118 0.118
Glove 0.302 0.298 0.298 0.298 0.305

Table 6: Correlation on SimLex-999 using Google-
News Word2Vec and GloVe embeddings. The signif-
icance level is @ = 0.05 with p < 0.001.

7 Conclusion

We offer a non-linear extension to the method pre-
sented in Bolukbasi et al. (2016) by connecting its
bias space construction to PCA and subsequently
applying kernel PCA. We contend our extension is
natural in the sense that it reduces to the method of
Bolukbasi et al. (2016) in the special case when we
employ a linear kernel and in the non-linear case
it preserves all the desired linear properties in the
feature space. This allows us to provide equivalent
constructions of the neutralize and equalize steps
presented.

We compare the linear bias mitigation technique
to our new kernelized non-linear version across a
suite of tasks and datasets. We observe that our
non-linear extensions of Bolukbasi et al. (2016)
show no notable performance differences across
a set of benchmarks designed to quantify gender
bias in word embeddings. Furthermore, the results
in Tab. 7(App. A) show that gradually increasing
the degree of non-linearity has again no significant
change in performance for the WEAT (Caliskan
et al., 2017) benchmark. Thus, we provide empir-
ical evidence for the linear subspace hypothesis;
our results suggest representing gender bias as a
linear subspace is a suitable assumption. We would
like to highlight that our results are specific to our
proposed kernelized extensions and does not im-
ply that all non-linear variants of (Bolukbasi et al.,
2016) will yield similar results. There may very
well exist a non-linear technique that works better,
but we were unable to find one in this work.
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Original PCA KPCA (poly-2) KPCA (poly-3) KPCPA (poly-4)

Targets
d p d p d p d p d P

Google News Word2Vec (Mikolov et al., 2013)

Career , Family 1.622 0.000 1.327 0.001 1.320 0.004 1.321 0.001 1.312 0.002
Math, Arts 0.998 0.017 -0.540 0.859 -0.755 0.927 -0.755 0.933 -0.754 0.932
Science , Arts 1.159 0.005 0.288 0.281 0.271 0.312 0.272 0.305 0.272 305

GloVe (Pennington et al., 2014)

Career , Family 1.749 0.000 1.160 0.007 1.166 0.000 1.166 0.009 1.667 0.005
Math, Arts 1.162 0.007 0.144 0389 0.096 0429 0.097 0421 0.097 0432
Science , Arts 1.281 0.008 -1.074 0.985 -1.113 0995 -1.114 0.994 -1.114 0.992

Table 7: Results for polynomial Kernel Experiments on Glove and Google News embeddings.

A Polynomial Kernel Results

For experimental completeness, we provide direct bias experiments on WEAT using a range of polynomial
kernels. The results are displayed in Tab. 7. The results for the polynomial kernels suggest the same
conclusions we arrived at in the main text, i.e. a linear kernel is generally enough.
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