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Abstract

The dependencies between system and user ut-
terances in the same turn and across different
turns are not fully considered in existing multi-
domain dialogue state tracking (MDST) mod-
els. In this study, we argue that the incorpo-
ration of these dependencies is crucial for the
design of MDST and propose Parallel Inter-
active Networks (PIN) to model these depen-
dencies. Specifically, we integrate an interac-
tive encoder to jointly model the in-turn de-
pendencies and cross-turn dependencies. The
slot-level context is introduced to extract more
expressive features for different slots. And a
distributed copy mechanism is utilized to se-
lectively copy words from historical system ut-
terances or historical user utterances. Empiri-
cal studies demonstrated the superiority of the
proposed PIN model.

1 Introduction

Spoken dialogue system (SDS) is an application
that can help users complete their goals efficiently.
An SDS usually has a logic engine, called dialogue
manager, which involves two main sub-tasks for
determining how the system will respond to the
users: dialogue state tracking and dialogue pol-
icy learning. The task we discuss in this paper is
dialogue state tracking, which allows the system
maintaining an internal representation of the state
of the dialogue as the dialogue progress (Young
et al., 2010).

Dialogue state tracking involving a single do-
main has been extensively studied and achieved
much progress. As a more challenging task, Multi-
domain dialogue state tracking (MDST) has been
introduced in (Ramadan et al., 2018) and attracts

∗Corresponding author

much attention in the research community. In-
stead of only predicting the (slot, value) pair,
in MDST, a model is expected to predict the
(domain, slot, value) triplets for each slot in each
domain. This task is a great challenge not only
because of the large ontology involving 30 slots
and exceeding 4500 values (Wu et al., 2019), but
also the mixed-domain nature of the dialogues and
some complex cases involving cross-turn inference.

u1: I want a cheap european restaurant.

s1: Can I help you?

s2: There is a Curry Garden, and hotel?

u2: I need a hotel with free-wifi.

s3: There is a Ashley hotel. Anything else?

u3: A taxi from the retaurant to the hotel.

Figure 1: The dependencies between the system utter-
ances and user utterances in a multi-domain dialogue.
The red lines imply cross-turn dependencies and the
blue lines imply in-turn dependencies.

Several models have been proposed for MDST
task and proven to be successful (Mrksic et al.,
2015; Ramadan et al., 2018; Goel et al., 2019;
Eric et al., 2020; Lee et al., 2019; Wu et al., 2019).
Among these models, TRADE (Wu et al., 2019)
achieves the state-of-the-art on the MultiWOZ 2.0
dataset (one of the standard MDST datasets) by
encoding the entire dialogue history using a bidi-
rectional GRU and incorporating soft-gated copy
mechanism to generate the values. Inspired by
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TRADE, we purpose to build a more accurate
and robust state generator PIN. The motivations
of proposing PIN is in two aspects.

One aspect is considering the interactive nature
of the dialogues. The interaction of the user and the
system is often organized by a question-answering
style. It is common in dialogue state tracking that
a domain or slot being specified by one of the user
or system, then the value being answered by the
other. For example, in the dialogue in Figure 1, the
user specifies a Restaurant domain, and the system
answers a restaurant name Curry Garden. As is
shown in Figure 1, there are two types of dependen-
cies, in-turn dependencies and cross-turn dependen-
cies, both contribute to discovering slot-value pairs.
It is worth noting that some hard cases involving
inference actually rely on cross-turn dependencies
(e.g., the dependency between utterance s2 and u3
in Figure 1). Thus a correctly modeling of these de-
pendencies can improve slot-value extraction and
cross-turn inference. In this work, we build an In-
teractive Encoder which completely accords with
the dependencies expressed in Figure 1 to jointly
model the in-turn dependencies and cross-turn de-
pendencies.

The interactive nature of dialogues also implies
that the value for a slot tends to be specified fre-
quently either by a system or by a user. For ex-
ample, the values for slots involving names, such
as Restaurant-name and Hotel-name are likely to
be provided by the system. And the values for the
slots like Hotel-stay (the days to stay) and Hotel-
people (the number of people booking for) are usu-
ally provided by the user. This observation inspires
our designing of the distributed copy mechanism,
which allows the state generator choosing to copy
words from either the historical system utterances
or the historical user utterances.

The other aspect is the slot overlapping problem
in MDST. Unlike single-domain DST, slot over-
lapping is common in MDST, and these overlap-
ping slots share similar values. For example, both
the Restaurant and Hotel domain have a slot price
range that shares the same values. Under this con-
dition, a generator without considering slot-specific
features may mistakenly extract the value of one
slot as the value of some other slot. To overcome
the slot overlapping problem, we introduce a slot-
level context in the state generator.

In summary, we propose a generation-based
MDST model which takes into consideration of

the interactive nature of dialogues and slot overlap-
ping problem in MDST. The contributions of this
work are as follows.

• We propose an interactive encoding method
with two parallel double-layer recurrent net-
works which can jointly model the in-turn de-
pendencies and cross-turn dependencies.

• We introduce the slot-level context into the
state generator to accurately generate the val-
ues for overlapping slots.

• We present a distributed copy mechanism to
selectively copy words from either the histor-
ical system utterances or the historical user
utterances.

2 Problem Statement

In multi-domain dialogue state tracking, the state is
usually expressed as a set of (domain, slot, value)
triplets. The domain refers to the topics of the dia-
logue, such as the Restaurant domain, which indi-
cates that the dialogue involves restaurant booking.
The slot is an aspect of the user’s goals, such as
food, area and pricerange in the restaurant-booking
dialogues. And the value is the user’s specific in-
terests, such as chinese value for food slot that
indicates the user is interested in Chinese food.
The dialogue state is maintained so as to track the
progress of the dialogue. At each turn, the system
generates a system utterance in natural language,
and the user responds to the system with some sen-
tences, referred to as user utterance. The objective
of multi-domain dialogue state tracking is to pre-
dict the value of each (domain, slot) pair at each
turn given the historical system utterances and user
utterances. In this paper, the multi-domain dialogue
state tracking is treated as a sequence generation
task, where each word of a value is generated from
a state generator.

3 Methodology

In this section, we introduce the proposed PIN
model. The model consists of four components:
Interactive Encoder, Slot-level Context, Value Gen-
erator and Slot Gate. We next describe each com-
ponent in detail.

3.1 Interactive Encoder
Our design of the Interactive Encoder is inspired by
the dependencies between the system and user ut-
terances. Specifically, we wish to propose a novel
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network structure that completely represents the
dependencies expressed in Figure 1. A hierarchi-
cal recurrent networks with specific structures have
been used to construct the Interactive Encoder, as
shown in Figure 2. The Interactive Encoder con-

GRU GRU GRU

GRU GRU GRU
u1 u2 u3

hu
1 hu

2 hu
3

gu
1 gu

2 gu
3

GRU GRU GRU

GRU GRU GRU
u4 u5 u6

hu
4 hu

5 hu
6

gu
4 gu

5 gu
6

GRU GRU GRU

GRU GRU GRU
a1 a2 a3

ha
1 ha

2 ha
3

ga
1 ga

2 ga
3

GRU GRU GRU

GRU GRU GRU
a4 a5 a6

ha
4 ha

5 ha
6

ga
4 ga

5 ga
6

Turn 1 Turn 2

Figure 2: The structure of the Interactive Encoder. Due
to space limitation, only two turns are shown. The
red arrows emphasize modeling cross-turn dependen-
cies and the blue arrows emphasize modeling in-turn
dependencies.

sists of two parallel hierarchical recurrent networks,
one for historical system utterance encoding and
another for historical user utterance encoding. The
lower layer of the hierarchical recurrent networks
allow each word to capture the cross-turn depen-
dencies; and the higher layer of the hierarchical
recurrent networks allows each word to capture the
in-turn dependencies. In this way, the cross-turn
dependencies and in-turn dependencies are jointly
modeled.

We now present the details of the Interactive
Encoder. Let Al = {a1,a2, · · · ,am} denotes the
sequence of word embeddings for the lth system
utterance. And Ul = {u1,u2, · · · ,un} denotes
the sequence of word embeddings for the the lth

user utterance. Here m and n denote the number of
words in the lth system utterance and user utterance,
respectively.

For later use, we introduce a notation
GRE(X,h;W) to indicate the bi-directional GRU
encoder (Chung et al., 2014) with inputs X (se-
quence of vector representations, such as word em-
beddings), parameters W and initialized hidden
state h. The Interactive Encoder jointly models the
cross-turn dependencies and in-turn dependencies
through the following recurrent process.

The Interactive Encoder first let the input word
embedding sequences Al and Ul interact with the
historical context, allowing the words capturing

cross-turn dependencies

Ga
l ,g

a
l = GRE(Al,h

u
l−1;Wa)

Gu
t ,g

u
l = GRE(Ul,h

a
l−1;Wu)

(1)

where Wa and Wu are the parameters of the
GRUs, the initialized hidden states ha

l−1 and hu
l−1

are respectively the system context vector and the
user context vector generated from the last turn.
Ga

l and ga
l denote the entire sequence of output

vectors and the last output vector of the GRUs,
respectively.

The outputs of the lower-layer GRUs, Ga
l and

ga
l , are then feed into the higher-layer GRUs to

interact with the current context for capturing in-
turn dependencies

Ha
l ,h

a
l = GRE(Ga

l ,g
u
l ;Ma)

Hu
l ,h

u
l = GRE(Gu

t ,g
a
l ;Mu)

(2)

where Ma and Mu are the parameters of the higher-
layer GRUs, and ha

l and hu
l are the generated sys-

tem context vector and user context vector of the
current turn. ha

l and hu
l are then feed into the lower-

layer GRUs as the initialized hidden states of the
next turn.

With this recurrent architecture, the Interactive
Encoder captures the dependencies of the entire
dialogue history by rolling from the first turn to the
current turn. At the beginning of a dialogue, we set
the initialized hidden states as zero vectors, that is
ha
0 = hu

0 = 0.

The outputs from each turn of the dialogue are
then concatenated as the system context sequence
Ha = {ha

1,h
a
2, · · · ,ha

M} and user context se-
quence Hu = {hu

1 ,h
u
2 , · · · ,hu

N}. Here M and
N denote the total number of words in historical
system utterance and historical user utterance, re-
spectively.

3.2 Slot-level Context

The purpose of applying the slot-level context here
is to strengthen the context representation with slot
specific features and deal with the slot overlapping
problem. We employ the attention mechanism to
construct the slot-level context. Specifically, for
each (domain, slot) pair, we introduce an embed-
ding vector vs. The slot-level system context cas
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Figure 3: The architecture of the Value Generator and the Slot Gate.

and the slot-level user context cus are computed by

cas=
M∑
i=1

µih
a
i , µi=

exp (vT
s h

a
i )∑M

k=1 exp (v
T
s h

a
k)

cus =

N∑
j=1

ηjh
u
j , ηj=

exp (vT
s h

u
j )∑N

l=1 exp (v
T
s h

u
l )

(3)

The slot-level context of the entire dialogue his-
tory is then simply the summation of the slot-level
system context and the slot-level user context

cs = cas + cus (4)

The slot-level context is then feed into the Value
Generator as the initialized hidden state for the
decoder GRU.

3.3 Value Generator

The Value Generator takes the slot-level context as
input and uses a GRU decoder to generate the value
sequence for each (domain, slot) pair. Different
from the copy mechanism applied in TRADE (Wu
et al., 2019) that copying words from the entire
dialogue history, in this paper, we propose a dis-
tributed copy mechanism that allows the state gen-
erator copying words from different sequences.
The architecture of the Value Generator is shown
in Figure 3. we now describe it in detail.

We use the abbreviation GRD to denote the GRU
decoder. At the tth decoding step, the hidden state
of the GRU decoder for each (domain, slot) pair
s is

ots = GRD(xt
s,o

t−1
s ,Wd) (5)

where xt
s is the input at the tth step, ots is the hid-

den state at the tth step and Wd is the parameters
of the GRU decoder. The hidden state of GRD for
each slot is initialized with corresponding slot-level
context cs. The first input x0

s is set as the summa-
tion of corresponding domain embedding and slot
embedding.

We then introduce three distributions on the
vocabulary: P v

s,t, P
a
s,t and P u

s,t, for applying dis-
tributed copy mechanism. The three distributions
represent the probabilities of generating a word
from the vocabulary, copying a word from the his-
torical system utterances and copying a word from
the historical user utterances, respectively. Let ei
be the embedding of the ith word in the vocabu-
lary and |V | be the vocabulary size. We use Ps,t[i]
to denote the ith element in Ps,t. Then the three
distributions are computed by

P v
s,t[i] =

exp (eTi o
t
s)∑|V |

j=1 exp (e
T
j o

t
s)

P a
s,t[i] =

∑
f(k)=i

exp ((ha
k)

Tots)∑M
j=1 exp ((h

a
j )

Tots)

P u
s,t[i] =

∑
f(k)=i

exp ((hu
k)

Tots)∑N
j=1 exp ((h

u
j )

Tots)

(6)

where the function f is used for mapping a dis-
tribution on the dialogue-history to corresponding
distribution on the vocabulary.

The three distributions, P v
s,t, P

a
s,t and P u

s,t are
then combined by learnable weights. We define
αs,t as the weight of generating from the vocab-
ulary and βs,t as the weight of choosing to copy
a word from the system utterances. For calculat-
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ing the weights αs,t and βs,t, we first generate new
feature vectors

ha
s,t=

M∑
i=1

qas,t[i] · ha
i , hu

s,t=

N∑
j=1

qus,t[j] · hu
j (7)

The weight αs,t and βs,t are then computed by

αs,t = σ(WT
v · [xt

s,o
t
s,h

a
s,t,h

u
s,t])

ρas,t = WT
c · [xt

s,o
t
s,h

a
s,t]

ρus,t = WT
c · [xt

s,o
t
s,h

u
s,t]

βs,t =
exp (ρas,t)

exp (ρas,t) + exp (ρus,t)

(8)

where Wv and Wc are the parameters of the linear
functions, and σ denotes the logistic function.

The final distribution Ps,t is then calculated as
the weighted sum of distributions P v

s,t, P
a
s,t and

P u
s,t as follows

Ps,t=αs,tP
v

s,t+(1−αs,t)(βs,tP
a

s,t+(1−βs,t)P u
s,t)

(9)

The tth word of the value for (domain, slot)
pair s is then generated from distribution Ps,t. The
embedding of the generated word is then used as
the next input of the GRU decoder. This generation
procedure allows the state generator to generate
words from the vocabulary or copy words from
either the historical system utterances or the histor-
ical user utterances.

3.4 Slot Gate
Following TRADE (Wu et al., 2019), we introduce
the slot gate to predict the special values none (the
value of the slot is not expressed yet) and dont-
care (the user does not care about the slot) for
each (domain, slot) pair. Specifically, the slot
gate is a three-class classifier, which aims to iden-
tify whether the value none, dontcare or other value
is expressed from the context through a softmax
classifier

P c
s = softmax(WT

s · [ha
s,1,h

u
s,1]) (10)

where Ws is the parameter of the softmax classi-
fier. For a (domain, slot) pair, if the output of the
slot gate is none or dontcare, the generated word
sequence from the state generator will be ignored
and the corresponding predicted result of the slot
gate will be chosen as the value. Otherwise, the
generated word sequence from the state generator
will be the predicted value for the (domain, slot)
pair.

3.5 Loss Function and Optimization

The cross-entropy loss is built for optimizing both
the Value Generator and the Slot Gate, simulta-
neously. Let S be the total set of (doamin, slot)
pairs, and Ts be the number of words in the value
for slot s ∈ S. We define yc

s as the ground-truth
one-hot label vector of the slot gate and yv

s,t as the
one-hot representation of the tth word in the value
of s. The loss function is then defined as

L =
∑
s∈S

3∑
i=1

−yc
s[i] · logP c

s [i]

+
∑
s∈S

Ts∑
t=1

|V |∑
j=1

−yv
s,t[j] · logPs,t[j]

(11)

The loss function can be optimized by stochastic
gradient descent(SGD) method.

4 Experiment

4.1 Datasets

MultiWOZ 2.0. The Multi-Domain Wizard-
of-Oz (MultiWOZ 2.0) dataset, collected by
(Budzianowski et al., 2018), with conversations
spanning over multiple domains and topics, is used
to train and evaluate the models. There are total
7 domains with 30 (domain, slot) pairs in the on-
tology; these (domain, slot) pairs involve 4, 510
values. The dataset contains 10, 419 dialogues with
a a total 115, 434 turns; the average turns of dia-
logue is 13.46. The training, validation and test set
contain 8, 420, 1, 000 and 1, 000 dialogues respec-
tively. As is mentioned in (Wu et al., 2019) that
hospital and police domain has very few dialogues
and only appear in the training set. We thus follow
the dataset setting in (Wu et al., 2019) that only
keep five domains (restaurant, hotel, attraction,
taxi, train) in the experiment.
MultiWOZ 2.1. As is pointed out in (Eric et al.,
2020), the MultiWOZ 2.0 dataset is faulty in sub-
stantial errors in the state annotations and dialogue
utterances. In order to clean the dataset, the authors
of (Eric et al., 2020) ask crowd-source workers to
fix the state annotations and utterances in the origi-
nal data. As a result, over 32% of state annotations
in 40% of the dialogue turns are changed and 146
utterances are fixed. The cleaned dataset is released
as the MultiWOZ 2.1 dataset. We also evaluate our
models on the MultiWOZ 2.1 dataset.
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4.2 Implementation Details

The proposed model is implemented using the Py-
torch framework. The code and data are released
on the Github page1. All the word embeddings are
initialized by the concatenation of the pre-trained
GloVe embeddings (Pennington et al., 2014) and
character n-gram embeddings (Hashimoto et al.,
2017). The batch size is set as 32. The dimensions
of hidden states in all GRUs are set as 400. The
embedding dropout is used in the Interactive En-
coder with a dropout rate 0.3. Following (Bowman
et al., 2016; Wu et al., 2019), we also adopt the
word dropout in the Interactive Encoder to improve
the model generalization; and the dropout rate is
set as 0.3. At training time, the Value Generator
uses Teacher-forcing (Williams and Zipser, 1989)
with a probability 0.5. The greedy search (Vinyals
and Le, 2015) is used in the decoding process. We
use the Adam optimizer (Kingma and Ba, 2015) to
optimize the model with an initialized learning rate
0.001.

4.3 Evaluation Metrics

The standard metrics joint goal accuracy and goal
accuracy are used to evaluate the multi-domain
dialogue state tracking performance. The joint goal
accuracy denotes the proportion of dialogue turns
where the values of all the (domain, slot) pairs
are correctly predicted. While goal accuracy is
the proportion of slots whose values are correctly
predicted.

4.4 Baseline Models

The recently proposed dialogue state tracking mod-
els are used for comparison. The models deal-
ing with dialogue state tracking through build-
ing classifiers on predefined ontology include the
MDBT (Ramadan et al., 2018), GLAD (Zhong
et al., 2018), GCE (Nouri and Hosseini-Asl, 2018),
SUMBT (Lee et al., 2019), FJST (Eric et al., 2020),
HJST (Eric et al., 2020) and SST (Chen et al.,
2020). The models utilizing the copy system in-
clude PtrNet (Xu and Hu, 2018). The models in-
corporating both classifiers and copy system in-
clude HyST (Goel et al., 2019), DSTreader (Gao
et al., 2019), TRADE (Wu et al., 2019), DST-
Picklist (Zhang et al., 2019) and MERET (Huang
et al., 2020).

To investigate how much the proposed interac-
tive encoder and distributed copy mechanism con-

1https://github.com/BDBC-KG-NLP/PIN EMNLP2020

tributes to the PIN model, we also report the results
of two ablated version of the PIN model: PIN–inter
and PIN–dcopy. The PIN–inter model removes the
interaction between the two parallel encoders in
PIN and allows them to be independent. And the
PIN–dcopy model copies words from the entire di-
alogue history instead of applying the distributed
copy.

Table 1: Evaluation on the MultiWOZ 2.0 dataset.

Model Joint Goal (%) Goal (%)

MDBT 15.57 89.53
PtrNet 30.28 93.85
GLAD 35.57 95.44
GCE 36.27 98.42
HJST 38.40 -

DSTreader 39.41 -
FJST 40.20 -
HyST 42.33 -

HyST(ensemble) 44.22 -
SUMBT 42.40 -

DSTreader+JST 47.33 -
TRADE 48.62 96.92
MERET 50.91 97.07

SST 51.17 -
PIN–inter 51.95 97.24

PIN–dcopy 50.57 97.06
PIN 52.44 97.28

4.5 Experimental Results
Evaluation on the MultiWOZ 2.0 dataset. The
evaluation results on the MultiWOZ 2.0 dataset are
shown in Table 1. We observe that most of the
models building classifiers and the models using
the copy system to generate the states are inferior
to the models utilizing both the classifiers and the
copy system. As mentioned in (Eric et al., 2020),
the models building upon a copy system have an
advantage in extracting values from the dialogue
history but struggle to predict values that do not
exist in the dialogue history. Thus it is reasonable
that models combining copy systems with state
classifiers achieve better performance. Compared
with the baseline model TRADE and the previous
state-of-the-art model SST, PIN achieves signif-
icant 3.82% and 1.27% performance gain. This
fact demonstrates that the modeling of the interac-
tion dependencies, the slot-level context and the
distributed copy mechanism help improve state gen-
eration.
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Table 2: Evaluation on the MultiWOZ 2.1 dataset.

Model Joint Goal (%) Goal (%)

HJST 35.55 -
DST Reader 36.40 -

FJST 38.00 -
HyST 38.10 -

TRADE 45.60 96.55
DST-Picklist 53.30 -

SST 55.23 -
PIN–inter 47.36 96.90

PIN–dcopy 47.29 96.91
PIN 48.40 97.02

Evaluation on the MultiWOZ 2.1 dataset. The
evaluation results on the MultiWOZ 2.1 dataset are
shown in Table 2. The consistent performance
drop is caused by changing a value to a dontcare
or none label as explained in (Eric et al., 2020).
The PIN model outperforms the previous models
except for the DST-Picklist and SST model, which
indicates the effectiveness of the model design. Al-
though DST-Picklist and SST achieve better per-
formance than PIN, DST-Picklist takes a lot of hu-
man efforts in dividing the slots into span-based or
picklist-based slots and SST requires extra relation
information among the slots. PIN’s performance
drop in the ablated version (PIN-inter and PIN-
dcopy) on both datasets demonstrates the necessity
of encoder-interaction and distributed copy.

Table 3: The evaluation results of overlapping slots and
non-overlapping slots on the MultiWOZ 2.1 dataset.
1:Restaurant, 2:Hotel, 3:Attraction, 4:Train, 5:Taxi.

Slot Domains TRADE PIN

area 1,2,3 86.2 86.4
book people 1,2,3 92.0 95.1
price range 2,3 84.2 89.7
book day 2,3 96.4 96.8
departure 4,5 89.0 90.9

destination 4,5 91.6 92.4
leave at 4,5 65.1 66.7
arrive by 4,5 82.4 84.7
book time 1 92.7 91.8

food 1 92.8 92.6
parking 2 80.1 81.2

book stay 2 96.4 96.2
internet 2 78.8 81.2

4.6 Evaluation on the Overlapping Slots

In multi-domain dialogue state tracking, domains
may have overlapping slots. One of the motiva-
tions for building the PIN model is to handle the
slot overlapping problem with a slot-level con-
text. Thus we report the goal accuracy on over-
lapping slots and non-overlapping slots in Table 3
for further analysis on PIN. Table 3 shows that slot
overlapping (involve at least two domains) usually
appears among similar domains, such as (Restau-
rant, Hotel, Attraction) and (Train, Taxi). The PIN
model achieves much higher goal accuracy than
TRADE on all overlapping slots, compared with
non-overlapping slots. This result demonstrates the
effectiveness of the slot-level context on extracting
distinctive features for each slot so that the values
for overlapping slots are correctly predicted.
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Figure 4: Error analysis on the dialogue turns involving
in-turn dependencies (left) and cross-turn dependencies
(right). We report the number of error predictions for
TRADE and PIN on each domain.

4.7 The Effectiveness of the Interactive
Encoder

To study the Interactive Encoder in handling in-
turn and cross-turn dependencies in MDST, we
make a error analysis on a subset of the test
data. We first sample 100 dialogue turns from the
MultiWOZ 2.1 test set. Then the wrongly pre-
dicted (domain, slot, value) triplets for TRADE
and PIN are selected and each of the triplets is
marked according to the dependencies (in-turn or
cross-turn) involved. The statistics of these error
predictions are shown in Figure 4. We observe
that whether in the dialogue turns involving in-turn
dependencies or cross-turn dependencies, the PIN
model creates much fewer prediction errors than
the TRADE model, especially on hotel domain and
restaurant domain. These results demonstrate the
effectiveness of the Interactive Encoder in captur-
ing the in-turn and cross-turn dependencies.
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Domain: Restaurant Slot: food Value: european α = 0.37

System Utterances

β = 0.033

User Utterances

1− β = 0.967

PAD ; ok , i found the cambridge lodge restaurant . would
you like · · · · · · i would suggest · · · · · · . would you like me
to make a reservation ? · · · · · ·

i am looking for a european restaurant in the west of
cambridge; · · · · · · i really need someplace expensive , it
is a special occasion for me · · · · · ·

Figure 5: An example of dialogues and prediction of PIN. The red color represent the copy probability of the word.
And the copy probability of the word reservation in system utterances is 0.668, the copy probability of the word
european in the user utterances is 0.507.

4.8 The Function of the Distributed Copy
Mechanism

Unlike the traditional copy mechanism that only
copies words from one sequence, the distributed
copy mechanism in the PIN model can copy words
from two separate sequences considering the inter-
active nature of dialogues. The example in Figure 5
shows a case that the traditional copy mechanism
will make a wrong prediction, but the distributed
copy mechanism will correctly predict. The dia-
logue in Figure 5 is a sample from the Restaurant
domain in the test set. In this example, we want
to predict the value of the food slot. As the wight
α = 0.37, the generator has a higher probability
of copying a word from the dialogue history. In
the total dialogue history, if we ignore the wight β,
which determines whether to copy from the histori-
cal system utterance or the historical user utterance,
the generator will copy the wrong word reserva-
tion from the entire dialogue history because the
word reservation has higher copy probability 0.668
than 0.507 of the word european. This wrong pre-
diction will happen in the traditional copy-based
model. But in PIN, the word to be copied also de-
pends on the sequence-selection weight β. With
a probability 0.967 to copy the word from the his-
torical user utterance, the correct value european
will be copied according to Equation 9. This case
demonstrates the effectiveness of the distributed
copy mechanism.

5 Related Works

The dialogue state tracking (DST) problem has
attracted the research community for years. The
traditional DST models focus on single domain di-

alogue state tracking (Thomson and Young, 2010;
Wang and Lemon, 2013; Lee and Kim, 2016; Liu
and Perez, 2017; Jang et al., 2016; Shi et al., 2016;
Vodolán et al., 2017; Yu et al., 2015; Henderson
et al., 2014; Zilka and Jurcı́cek, 2015; Mrksic et al.,
2017; Xu and Hu, 2018; Zhong et al., 2018; Ren
et al., 2018). Some of these models solve DST
problem by incorporating a natural language un-
derstanding (NLU) module (Thomson and Young,
2010; Wang and Lemon, 2013) or jointly model-
ing NLU and DST (Henderson et al., 2014; Zilka
and Jurcı́cek, 2015), which rely on hand-crafted
features or delexicalisation features. Other models
adopt the representation learning approach and in-
corporate neural networks to extract features and
track the dialogue states (NBT (Mrksic et al., 2017),
GLAD (Zhong et al., 2018), StateNet (Ren et al.,
2018), PtrNet (Xu and Hu, 2018) and SUMBT (Lee
et al., 2019)). Although these models have achieved
remarkable success in single-domain DST , they
can not be capable enough in multi-domain DST.

Recently, the multi-domain DST attracts more at-
tention than the single-domain DST in the research
community. The first work involving state track-
ing in multiple domains is (Mrksic et al., 2015).
This work proposes a pre-training procedure to
improve the performance on a new domain. The
work of (Rastogi et al., 2017) uses bi-directional
GRU to extract features and predict the value by a
candidate scoring model. The MDBT (Ramadan
et al., 2018) model applies multiple bi-directional-
LSTM to jointly track the domain and states. It
adopts semantic similarity between the ontology
and utterances and allows parameter sharing across
domains. The HyST (Goel et al., 2019) model com-
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bines a classification-based system and an n-gram
copy-based system to deal with multi-domain dia-
logue state tracking problem. The FJST and HJST
model presented in (Eric et al., 2020) employ flat-
ten structured LSTM and hierarchical structured
LSTM to encode the dialogue history respectively.
The TRADE model (Wu et al., 2019) combines the
soft-copy mechanism to generate states and a slot
gate to classify special values for each slot. These
models motivate our design of the PIN model.

Another idea related to our design of PIN is
hierarchical recurrent networks. The hierarchical
recurrent networks have been used for dialogue
representation in HRED (Serban et al., 2016) and
VHRED (Serban et al., 2017). Although our model
has a slight flavor of a hierarchical structure (since
a sentence-level encoding is sent to another GRU
as its initial state), our model is very different from
the hierarchical recurrent networks. Specifically,
in PIN, the inputs and outputs for each GRU layer
are both at the word level; and the GRU layers are
parallel, albeit interacting. This is distinct from the
hierarchical recurrent networks, where a GRU layer
takes word-level inputs, and outputs at the sentence
level; then the sentence-level representations are
used as the inputs to the next GRU layer.

6 Conclusion

This paper studies the problem of state generation
for multi-domain dialogues. Existing generation-
based models fail to model the dialogue depen-
dencies and ignore the slot-overlapping problem in
MDST. To overcome the limitation of existing mod-
els, we present novel Parallel Interactive Networks
(PIN) for more accurate and robust dialogue state
generation. The design of the PIN model is inspired
by the interactive nature of the dialogues and the
overlapping slots in the ontology. The Interactive
Encoder characterizes the cross-turn dependencies
and the in-turn dependencies. The slot-overlapping
problem is solved by introducing the slot-level con-
text. Furthermore, a distributed copy mechanism is
introduced to perform a selective copy from either
the historical system utterances or the historical
user utterances. Empirical studies on two bench-
mark datasets demonstrate the effectiveness of the
PIN model.
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