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Abstract

Event extraction (EE) is a crucial informa-
tion extraction task that aims to extract event
information in texts. Previous methods for
EE typically model it as a classification task,
which are data-hungry and suffer from the
data scarcity problem. In this paper, we pro-
pose a new learning paradigm of EE, by ex-
plicitly casting it as a machine reading com-
prehension problem (MRC). Our approach in-
cludes an unsupervised question generation
process, which can transfer event schema into
a set of natural questions, followed by a BERT-
based question-answering process to retrieve
answers as EE results. This learning paradigm
enables us to strengthen the reasoning process
of EE, by introducing sophisticated models in
MRC, and relieve the data scarcity problem, by
introducing the large-scale datasets in MRC.
The empirical results show that: i) our ap-
proach attains state-of-the-art performance by
considerable margins over previous methods.
ii) Our model is excelled in the data-scarce sce-
nario, for example, obtaining 49.8% in F1 for
event argument extraction with only 1% data,
compared with 2.2% of the previous method.
iii) Our model also fits with zero-shot scenar-
ios, achieving 37.0% and 16% in F1 on two
datasets without using any EE training data.

1 Introduction

Event extraction (EE), a crucial information extrac-
tion (IE) task, aims to extract event information
in texts. For example, in a sentence S1 (shown
in Figure 1 (a)), an EE system should recognize
an Attack event1, expressed by an event trig-
ger stabbed with four event arguments — Sun-
day (Role=Time), a protester (Role=Attacker),
an officer (Role=Target), and a paper cutter
(Role=Instrument). EE is shown to benefit a
wide range of applications including knowledge

1According to the ACE event ontology.

Figure 1: Comparison of the event extraction task and
machine reading comprehension task.

base augmentation (Ji and Grishman, 2011), docu-
ment summarization, question answering (Berant
et al., 2014), and others.

In the current study, EE is mostly formulated
as a classification problem, aiming to locate and
categorize each event trigger/argument (Ahn, 2006;
Li et al., 2013; Chen et al., 2015; Nguyen et al.,
2016). Despite many advances, classification based
methods are data-hungry, which require a great
deal of training data to ensure good performance
(Chen et al., 2017; Li et al., 2013; Liu et al., 2018a).
Moreover, such methods generally cannot deal with
new event types never encountered during training
time (Huang et al., 2018).

In this particular study, we introduce a new learn-
ing paradigm for EE, shedding lights on tackling
the above problems simultaneously. Our major mo-
tivation is that, essentially EE may be viewed as a
machine reading comprehension (MRC) problem
(Hermann et al., 2015; Chen et al., 2016) involving
text understanding and matching, aiming to find
event-specific information in texts. For example, in
S1, the extraction of role-filler of Instrument is
semantically equivalent to the following question-
answering process (as shown in Figure 1 (b)):

Q1: What Instrument did the protester use
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to stab the officer? A1: a paper cutter. 2

This implies new ways to tackle EE, which come
with two major advantages: First, by framing EE as
MRC, we can leverage the recent advances in MRC
(e.g., BERT (Devlin et al., 2019)) to boost EE task,
which may greatly strengthen the reasoning process
in the model. Second, we may directly leverage the
abundant MRC datasets to boost EE, which may
relieve the data scarcity problem (This is referred to
as cross-domain data augmentation). The second
advantage also opens a door for zero-shot EE: for
unseen event types, we can list questions defining
their schema and use an MRC model to retrieve
answers as EE results, instead of obtaining training
data for them in advance.

To bridge MRC and EE, the key challenge lies in
generating relevant questions describing an event
scheme (e.g., generating Q1 for Instrument).
Note we cannot adopt supervised question gen-
eration methods (Duan et al., 2017; Yuan et al.,
2017; Elsahar et al., 2018), owing to the lack of
aligned question-event pairs. Previous works con-
necting MRC and other tasks usually adopt human-
designed templates (Levy et al., 2017; FitzGerald
et al., 2018; Li et al., 2019b,a; Gao et al., 2019; Wu
et al., 2019). For example, in QA-SRL (FitzGerald
et al., 2018), the question for a predicate publish
is always “Who published something?”, regardless
of the contexts. Such questions may not expressive
enough to instruct an MRC model to find answers.

We overcome the above challenge by propos-
ing an unsupervised question generation process,
which can generate questions that are both rele-
vant and context-dependent. Specifically, in our
approach, we assume that each question can be de-
composed as two parts, reflecting query topic and
context-related information respectively. For exam-
ple, Q1 can be decomposed as “What instrument”
and “did the protester use to stab the officer?”.
To generate the query topic expression, we design
a template-based generation method, combining
role categorization and interrogative words realiza-
tion. To generate the more challenging context-
dependent expression, we formulate it as an unsu-
pervised translation task (Lample et al., 2018b) (or
style transfer (Prabhumoye et al., 2018)), which
transforms a descriptive statement into a question-
style expression, based on in-domain de-noising
auto-encoding (Vincent et al., 2008) and cross-
domain back-translation (Sennrich et al., 2016).

2Figure 1 (b) gives another example.

Note the training process only needs large volume
of descriptive statements and unaligned question-
style statements. Finally, after the questions are
generated, we build a BERT based MRC model
(Devlin et al., 2019) to answer each of question and
synthesize all of the answers as the result of EE.

To evaluate our approach, we have conducted ex-
tensive experiments on the benchmark EE datasets,
and the experimental results have justified the ef-
fectiveness of our approach. Specifically, 1) in
the standard evolution, our method attains state-of-
the-art performance and outperforms previous EE
methods by a margin (§ 4.2). 2) In the data-low
scenario, our approach demonstrates promising re-
sults, for example, achieving 49.8% in F1 using 1%
of training data, compared with only 2.2% in F1 of
the previous EE method (§ 4.3). 3) Our approach
also fits with zero-shot scenarios, achieving 37.0%
and 16.6% in F1 on two datasets without using any
EE training data (§ 4.4).

To sum up, we make the following contributions:

• We investigate a new formulation of EE, by
framing it as an MRC problem explicitly. We
show this new formulation can boost EE by
leveraging both model and data in the area of
MRC. Our work may encourage more works
studying transfer learning from MRC to boost
information extraction.

• We propose an unsupervised question gener-
ation method to bridge MRC and EE. Com-
pared with previous works using templates
to generate questions, our method can gener-
ate questions that are both topic-relevant and
context-dependent, which can better instruct
an MRC model for question-answering.

• We report on state-of-the-art performance on
the benchmark EE dataset. Our method also
demonstrate promising results in addressing
data-low and zero-shot scenarios.

2 Related Work

Event Extraction. EE is a crucial IE task that
aims to extract event information in texts, which
has attracted extensive attention among researchers.
Traditional EE methods employ manual-designed
features, such as the syntactic feature (Ahn, 2006),
document-level feature (Ji and Grishman, 2008),
entity-level feature (Hong et al., 2011) and other
features (Liao and Grishman, 2010; Li et al., 2013)
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Figure 2: The overview of the proposed model RCEE. Given S1, RCEE first uses a special query [EVENT] to
locate event trigger and predict the type. Then RCEE generates questions for each semantic role related to the
predicted event type. Finally, RCEE answers each question and synthesizes all of the answers as the EE result.

for the task. Modern EE methods employ neu-
ral models, such as Convolutional Neural Net-
works (Chen et al., 2015), Recurrent Neural Net-
works (Nguyen et al., 2016; Sha et al., 2018),
Graph Convolutional Neural Networks (Liu et al.,
2018b, 2019b), and other advanced architectures
(Yang and Mitchell, 2016; Liu et al., 2018a, 2019a;
Nguyen and Nguyen, 2019; Zhang et al., 2019).
Despite many advances, as mentioned in Introduc-
tion, most previous approaches formulate EE as a
classification problem, which usually suffer from
the data scarcity problem, and they generally can-
not deal with new event types never seen at the
training time.

MRC for Other Tasks. Our work also relates to
works connecting MRC and other tasks, such as re-
lation extraction (Levy et al., 2017; Li et al., 2019b),
semantic role labeling (FitzGerald et al., 2018),
named entity recognition (Li et al., 2019a), and oth-
ers (Wu et al., 2019; Gao et al., 2019). Particularly,
Du and Cardie (2020) adopt a similar idea to frames
EE as MRC. But different from our work, most of
the above methods (Levy et al., 2017; Li et al.,
2019b; FitzGerald et al., 2018; Du and Cardie,
2020) adopt human-designed, context-independent
questions, which may not provide enough contex-
tual evidence for question-answering. Some works
indeed do not adopt question-style queries (Li et al.,
2019a; Gao et al., 2019). For example, Li et al.
(2019a) use “Find organizations in the text” as
a query command to find ORGANIZATION en-
tity. The discrepancy between such non-natural
“queries” and natural questions in MRC datasets
may hinder effective transfer learning from MRC

to the task. By contrast, our work aims to generate
both relevant and context-related questions via an
unsupervised question generation method.

3 The Approach

Our approach, denoted by RCEE (Reading
Comprehension for Event Extraction), is visual-
ized in Figure 2. Specifically, given a sentence
S1, RCEE first identifies an event trigger “stabbed”
and its event type Attack, on receiving a special
query “[Event]”. Secondly, RCEE generates a ques-
tion for each semantic role corresponding to the
event schema of Attack. Thirdly, RCEE builds
an MRC model to answer each question as event
argument extraction. Finally, RCEE synthesizes all
of the answers as the final result of EE.

The technical details of RCEE are presented
in the following. In the illustration, we denote
a sentence as c = {c1, · · · , cn}, and we structure
the illustration as event trigger extraction, unsuper-
vised question generation, event argument extrac-
tion, and the training procedure of RCEE.

3.1 Event Trigger Extraction

To extract event triggers, we use “[EVENT]” as
a special query command, indicating finding all
event triggers in texts3. The reason is that event
triggers are usually verbs, and it is hard to design
questions for them. Also note here this special
query command enables event trigger and argument
extraction share a same encoding model.

3We have also tried questions like “What events are men-
tioned in texts?” and type-related questions like “Which are
ATTACK/DIE events?” but found no improvement.
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CATEGORY ROLE TEMPLS.

Time-related Time When
Place-
related

Place Where

Person-
related

Victim,Attacker, ... Who is the
ROLE

General role Instrument,Target,
...

What is the
ROLE

Table 1: Role categorization and generation templates.

Next, we adopt classification-based (instead of
span-based method) for trigger extraction, consid-
ering that most triggers (over 95% in ACE) are
single words, and span-based answer generation
may be too heavy. Specifically, we first jointly en-
code “[EVENT]” with the sentence c to compute
an encoded representation (we refer to § 3.3 for
details). Then for each word ci in c, we take its
encoded representation as the input of a logistic
regression model, and compute a vector oci con-
taining probabilities of different event types. Fi-
nally, the probability of the lth event type for ci is
p(l|ci) = o

(l)
ci , which is the lth element of oci .

3.2 Unsupervised Question Generation
After trigger extraction, RCEE generates a set of
questions according to the predicted event type.
Here we assume each question can be composited
as: 1) query topic, which reflects the relevance of
a question, and 2) question-style event statement,
which encodes the context-related information.

Question Topic Generation. We devise
template-based methods for query topic generation.
Note to make a question natural enough, we should
consider different interrogative words for different
semantic roles. For example, the query topic for
the semantic role Time might be “When [...]”, but
for Attacker might be “Who [...]”. With the
above motivation, we first group semantic roles
into different categories, and then design different
templates for each category. Table 1 shows our
categorization (i.e., time-related, place-related,
person-related and general roles) and templates for
the ACE 2005 event ontology. According to the
table, the generated query topic for Victim is
“Who is the Victim”.

Question Contextualization. Question contex-
tualization aims to generate the remaining question-
style event statement. Here formulate it as an unsu-
pervised translation task (Lample et al., 2018a,b),
with a goal to maps descriptive statement (such as

Figure 3: Illustration of (1) in-domain auto-encoding,
(2) de-noising auto-encoding, and (3) cross-domain
online-back translation. ES (EQ) and DS (DQ) are en-
coder and decoder in domain S (Q). σ denotes random
noise such as word masking (Lample et al., 2018b).

the sentence) to a question-style statement, with no
parallel resources. It can also be viewed as style
transfer (Prabhumoye et al., 2018). To achieve the
goal, we first build large corpora of descriptive
statements (denoted as S) and unaligned natural
questions (denoted as Q)4, and we restrict each in-
stance in S a window of words centered at a verb,
and each instance of Q a question removing inter-
rogative words such as When/Where/Who/What.
Second, following Lample et al. (2018b), we build
two MT models: PS→Q(qs|s), which maps a de-
scriptive statement s ∈ S as a question-style state-
ment qs, and PQ→S(sq|q), which conducts the
translation reversely. Each MT model includes
an encoder and a decoder in the source and target
domains respectively. For example, PS→Q(qs|s)
has an encoder ES in S, and a decoder DQ in
Q. Third, We train PS→Q(qs|s) and PQ→S(sq|q)
jointly via in-domain auto-encoding, de-noising
auto-encoding (Vincent et al., 2008), and cross-
domain online-back translation (Sennrich et al.,
2016), as shown in Figure 3. Finally, at the in-
ference time, a window of words centered at the
predicted trigger (denoted by sx) is considered as
input ofPS→Q(qs|s), and we compute the question-
style statement qsx via:

qsx = arg max
qsx

PS→Q(qsx |sx) (1)

qsx is concatenated with the pre-generated query
topic to generate the final question.

3.3 Event Argument Extraction
RCEE then performs event argument extraction as
question answering, by using a BERT based MRC
model. Let a question be q = {q1, · · · , qm}

4In our approach, S contains sentences extracted from
Wikipedia, and Q contains user-generated questions from a
QA site https://question.com/. After filtering, S and
Q have a size of 70M and 43M respectively

https://question.com/
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Learning Input Representations. We first en-
code q and c jointly to learn the input representa-
tions, by constructing an sequence “[CLS] q [SEP]
c” as input of BERT. To further enhance the repre-
sentation, we devise a new embedding, word shar-
ing embedding, as the input of BERT, with a moti-
vation that shared words of q and c are more likely
to convey event information. Specifically, the word
sharing embedding of a word wi (in q or c) is:

pwi =

{
psh ∈ Rd1 if wi is shared by q and c
pno ∈ Rd1 otherwise

(2)
where psh and pno are two embedding vectors get-
ting updated during training. After encoding, we
take the last hidden layer of BERT, Hq

c ∈ RN×d2 ,
as the final representation of q and c, where N
= m + n + 25, and d2 designates BERT’s hidden
dimension.

Adaptive Argument Generation. Different
from triggers, event arguments generation is
tackled by span-based algorithms (Hermann et al.,
2015), as they are usually entities and contain
multiple words. While we note over 14% of
semantic roles have zero or multiple arguments,
we revise the existing algorithm to tackle the issue
(shown in Algorithm 1). Specifically, given the
joint representation Hq

c of q and c, we fist compute
two probability vectors containing the start and
end positions of the answer over every position in
c:

pstart = softmax(Hq
cWstart) (3)

pend = softmax(Hq
cWend) (4)

where Wstart and Wend ∈ R2d4×1 are model pa-
rameters. Then, we regard the special token
“[SEP]” as “no-answer” indicator, and we only use
start/end positions whose probabilities are higher
than that of “[SEP]” to construct candidate answers.
We adopt several heuristics regarding i) relative po-
sition of start/end index, length constraint, and like-
lihood threshold δ to filter out illegal answers. The
new algorithm can generate both zero or more than
one answers for a question. Additionally, when en-
tity information is known (this setting is adopted in
many approaches (Chen et al., 2015; Nguyen et al.,
2016)), we further adopt golden entity refinement,

5For simplicity of illustration, we assume the output of
BERT has a same length of “[CLS] q [SEP] c”. In fact, BERT
may split a word based on byte pair encoding.

Algorithm 1 Adaptive Argument Generation
1: procedure FUN(c, pstart, pend)
2: answer list = []
3: s list← filter by probability(pstart)
4: e list← filter by probability(pend)
5: . Construct candidate answers using s list

and e list
6: for each candidate (s idx, e idx) do
7: . s idx should be ahead of e idx
8: . length should less than 4
9: if pstart[sidx] + pend[eidx] > δ then

10: ans = make span(c, s idx, e idx)
11: answer list.add(ans)
12: end if
13: end for
14: golden entity refinement(answer list)
15: return answer list
16: end procedure

which enforces answers have the same boundaries
as ground-truth entities.

3.4 Training
To train RCEE, we adopt a pre-training followed
by fine-tuning strategy, which can jointly train a
model using datasets of MRC and EE.

Pre-training Stage. In the pre-training stage, we
train RCEE on MRC datasets, with a loss:

Lrc(θ) =
∑
〈c,q,a〉

P(a|c, q) (5)

where 〈c, q, a〉 denotes an MRC example consist-
ing of context c, query q, and answer a; P(a|c, q)
indicates the likelihood of the ground-truth answer
a given c and q, which is defined as:

P(a|c, q)=log p(gas |c, q)+log p(gae |c, q) (6)

where gas and gae are respectively the ground-truth
start/end positions.

Fine-Tuning Stage. In the fine-tuning stage, we
train RCEE on EE datasets with a loss:

Lev(θ)=−
∑
e

(
log p(ge|we)+

∑
r∈A(ge)

P(ar|ce, qr)
)

(7)

where e ranges over each event instance; we indi-
cates the trigger of e; ge indicates the event type
of e; Arg(e) designates the role set of ge; r ranges
over each rule. We adopt Adam (Kingma and Ba,
2014) to update parameters of RCEE.
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TRIGGER EX. ARGUMENT EX. ARGUMENT EX.(O)

METHOD P R F1 P R F1 P R F1

JointBeam (Li et al., 2013) 73.7 62.3 67.5 64.7 44.4 52.7 - - -
DMCNN (Chen et al., 2015) 75.6 63.6 69.1 62.2 46.9 53.5 59.0† 54.8† 56.8†

JRNN (Nguyen et al., 2016) 66.0 73.0 69.3 54.2 56.7 55.4 57.5† 58.2† 57.9†

dbRNN (Sha et al., 2018) 74.1 69.8 71.9 66.2 52.8 58.7 58.4† 64.2† 61.2†

JMEE (Liu et al., 2018b) 76.1 71.3 73.7 66.8 54.9 60.3 59.8† 64.2† 62.0†

BERTEE 74.8† 73.9† 74.3† 70.5† 52.2† 60.6† 66.8† 62.6† 64.7†

RCEE ER (ours) 75.6 74.2 74.9∗ 63.0 64.2 63.6∗ 71.2 69.1 70.1∗
RCEE ER w/o DA (ours) - - - 61.8 63.6 62.7 69.6 68.4 69.0

Table 2: Results of trigger extraction (TRIGGER EX.), argument extraction (ARGUMENT EX. ), and argument
extraction with golden triggers (ARGUMENT EX.(O)). P, R and F1 stand for precision, recall, and f1-score respec-
tively; † denotes our re-implementation; ∗ denotes a significance level of p = 0.05.

4 Experiments

4.1 Experimental Setups
Datasets and Evaluation. Our experiments are
conducted on the widely-used ACE 2005 bench-
mark6, which defines 33 different event types and
35 semantic roles. We split the dataset as training,
validating, and testing sets according to previous
works (Li et al., 2013; Chen et al., 2015; Yang and
Mitchell, 2016), and we also adopt precision (P),
recall (R), and F1-score (F1) as evaluation metrics
to ensure comparability. Significance tests are con-
ducted using methods proposed by Yeh (2000) with
a significance level of p = 0.05.

Implementation Details. We adopt BERT-
Large, which has 24 layers, 1024 hidden units,
and 16 attention heads, as our MRC model. Other
hyper-parameters are tuned on the validating set
via a grid search. Specifically, the dimension of
word sharing embedding is set as 100 (from 10, 50,
100, 200, to 500). The answer prediction threshold
δ is set as 0.3 (from [0.1, 0.2, .., 0.9]). The batch
size is set as 10 (from 2, 5, 10, 15). The dropout
rate is set as 0.5. We adopt SQuAD 2.0 (Rajpurkar
et al., 2018) for cross-domain data argumentation
(Our MRC model achieves 83.9% in F1). Imple-
mentations of unsupervised question generation are
in supplement materials. Our code will be released
at https://github.com/jianliu-ml/EEasMRC.

Baseline Models. We compare our model with:
1) JointBeam (Li et al., 2013), a state-of-the-art
feature-based method for EE; 2) DMCNN (Chen
et al., 2015) and 3) JRNN (Nguyen et al., 2016),

6https://catalog.ldc.upenn.edu/LDC2006T06

two models adopting Convolution Neural Networks
(CNNs) and Recurrent Neural Networks (RNNs)
respectively for EE; 4) dbRNN (Sha et al., 2018)
and 5) JMEE (Liu et al., 2018b) two models ex-
ploring syntax information via RNNs and Graph
Convolotional Neural Networks (GCNs) for EE.
Joint EE models are also considered, including: 6)
Joint3EE (Nguyen and Nguyen, 2019), which uses
a unified architecture to predict entities and events;
7) JointTrans (Zhang et al., 2019), which adopts a
left-to-right transaction-based method for EE. To
further investigate whether the improvement are
introduced by BERT representation, we also con-
sider: 8) BERTEE, which adopts BERT represen-
tations but uses classification strategy for EE. Our
model is denoted as RCEE and RCEE ER (“ER”
denotes with golden entity refinement). We use DA
to indicate cross-domain data augmentation.

4.2 Standard Evaluation

In the standard evaluation, we consider two set-
tings with 1) known entities, which is considered
by many previous methods, and 2) unknown enti-
ties, which is a more realistic setting.

Results with Known Entities. Table 2 gives the
results of trigger (Trigger Ex.) and argument ex-
traction (Argument Ex.) with known entities. We
also report on results of argument extraction with
oracle triggers (Argument Ex.(O)), to exclude the
potential error propagation from trigger extrac-
tion results. From the results, 1) RCEE ER at-
tains state-of-the-art performance, outperforming
all baselines by considerable margins (+0.6% in
trigger extraction; (+3.6% (5.4%)) in argument ex-

https://github.com/jianliu-ml/EEasMRC
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METHOD GE PE ∆F1

JointBeam (2013) 52.7 41.8 ↓10.9
DMCNN (2015) 56.8 48.0† ↓8.8
JMEE (2018b) 60.3 50.4† ↓9.9
BERTEE 60.6† 51.9† ↓8.7

Joint3EE (2019) - 52.1 -
JointTrans (2019) - 53.3 -

RCEE 63.6 59.3∗ ↓4.3
RCEE w/o DA 62.7 58.7 ↓4.0

Table 3: Results of argument extraction with unknown
entities (PE). ∆F1 indicates the performance gap com-
pared with results with known entities (GE).

traction). 2) Especially, RCEE ER outperforms
BERTEE (which also use BERT representations)
with over 5% in argument extraction, which indi-
cates that the improvements are mainly from prob-
lem reformulation, rather than introducing BERT
representations. 3) The high recall of RCEE ER
indicates that it can predict more examples than
baselines, which may imply that RCEE ER can
tackle difficult cases that fail baseline models.

Results with Unknown Entities. Table 3 gives
results with unknown entities. In this setting,
classification-based methods need to identify enti-
ties first, thus we implement a BERT-base one for
them7. Joint EE methods are also compared, which
do not require entity information. We use RCEE
for comparison, which excludes entity refinement.
From the results, RCEE still demonstrates the best
performance — it beats both classification based
methods (over 9.3% in F1) and joint models (over
6.0%). By checking ∆F1, we note RCEE relies
relatively less on golden entities (-4.3% in F1 with-
out them), but classification-based methods depend
heavily on them, suffering from a drop of over 8%
in F1 with the predicted entities.

4.3 Results in Data-Scarce Scenarios
Figure 4 compares models and BERTEE in data-
scarce scenarios, and Table 4 gives results in the
extremely data-low scenario (≤ 20% training data)8.
From the results, our model demonstrates superior
performance, for example, obtaining 49.8% in F1
with only 1% of EE training data, in comparison

7One tagger reaches 85.4%/85.9%/85.6% in P/R/F1,
matching the state-of-the-art (Yang and Mitchell, 2016).

8To simplicity discussion, we assume golden triggers in
the following experiments.

Figure 4: Results on different ratios of EE training data.

METHOD 1% 5% 10% 20%

DMCNN - 8.7 16.6 23.7
dbRNN - 8.1 17.2 24.1
BERTEE 2.20 10.5 19.3 28.6

RCEE 38.8 51.3 55.7 59.4
RCEE w/o DA 2.00 23.8 35.2 49.2

RCEE ER 49.8 59.9 65.1 67.6
RCEE ER w/o DA 2.20 26.5 37.8 54.1

Table 4: F1 score (%) on exploring the extremely data-
scarce scenarios.

to 2.2% in F1 of BERTEE. We note the improve-
ment comes from two aspects: 1) Data augmen-
tation (DA). For example, DA improves +47.6%
and +33.4% for RCEE ER in experiments with
1% and %5 data according to Table 4. 2) Answer
generation algorithm. Note RCEE ER without DA
still consistently outperforms BERTEE in data-low
scenarios. This implies the answer generation al-
gorithm is data-efficient than classification method.
The reason might be that, the answer generation
algorithm in our approach is position-based, which
might be robust for unseen words. While the classi-
fication method in previous EE methods are largely
word-based, which requires more labeled data.

4.4 Results in Zero-Shot Scenarios

Table 5 shows the results regarding zero-shot EE,
where EE data is completely banned for train-
ing (Only using DA for model pre-training). To
increase the persuasiveness of results, we adopt
another dataset, FrameNet (Baker, 2014) (where
frames are treated as meta event type) for evalua-
tion. From the results: without any EE data, our
model achieves 37% and 16.6% in F1 on ACE and
FrameNet. This illustrates the effectiveness of our
model handling unseen types.
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DATASET MODEL P R F1

ACE2005
RCEE 25.5 26.0 25.8
RCEE ER 38.2 35.8 37.0

FrameNet RCEE 18.2 15.3 16.6

Table 5: F1 score (%) on exploring the zero-shot sce-
narios on ACE 2005 and FrameNet.

5 Further Discussion

5.1 Impact of Question Generation

We compare different question generation strate-
gies: 1) QRole, which uses a role’s name as
query; 2) QCommand, which uses ”Find the #Role”
as query (Li et al., 2019a), and 3) QTemplate,
which uses a template “What is the #ROLE in the
#event trigger event?” as query (FitzGerald et al.,
2018). From the results, QRole, QCommand, and
QTemplate achieve 60.1%, 64.9%, and 68.%5 in
F1 in argument extraction; compared with 70.1%
of our approach. We note the inferiority of those
methods may lay in their poor expression ability.
For example, in a sentence “The pair flew to Sin-
gapore last year after ...”, QNAME uses ”Time”
as query; QCommand uses “Find the Time” as
query; QTemplate uses “What is the Time in the
flew event?” as query. While our approach directly
generates a nearly perfect question “[When] do the
pair fly to Singapore?” We provide more examples
in supplement materials.

5.2 Performance on Different Roles

Figure 5 shows the performance of RCEE on dif-
ferent semantic roles, regarding four randomly se-
lected roles with 1) plenty data, e.g. Defendant
with 359 training examples; 2) medium-sized data,
e.g. Money with 75 examples; and 3) limited data,
e.g. Seller and Price with only 32 and 9 ex-
amples (rare roles). From the results, classifica-
tion based methods, e.g. BERTEE, can achieve
a good result for roles with plenty data, but their
performance deteriorates seriously when a role has
insufficient data. By comparison, our approach
RCEE demonstrates excellent performance in han-
dling rare roles, for example, obtaining 61.5%
and 78.2% in F1 for Seller and Price (note
Price has only 9 examples), in compared with
8.9% and 1.7% of BERTEE.

Figure 5: Performance on different roles. RCEEZS and
RCEEFL indicate zero-shot and full-training scenarios.
NT denotes number of training data of a role.

(a) Putin were scheduled to leave ... 16 words omit ...
nations in Evian, France.
Role=Destination | G=“Evian, France” | P=NONE

(b) Attempts by Laleh and Ladan to have ... 14 words omit
... both of them could die.
Role=Victim | G=“Laleh and Ladan” | P=“them”

Table 6: Example error cases. Bold denotes trigger; G
and P denote the ground-truth and predicted argument.

5.3 Error Analysis

We conduct error analysis in this section. One
typical error is related to long-range dependency,
accounting for 23.4% (here “long-range” denotes
the distance between a trigger and an argument is≥
10). Table 6 (a) shows a case, where the argument
Evian, France is about 20 words away from the
trigger leave, making it difficult to identify the ar-
gument. 2) The second error relates to roles whose
meaning are general, e.g., Entity, Agent — it
is usually difficult to generate meaningful ques-
tions for these roles, causing 32.7% errors among
all cases. 3) The third error relates to co-reference,
which accounts for 17.2%. Considering the exam-
ple in Table 6 (b), where die evokes a Die event
with “Laleh” and “Ladan” fulfilling a semantic role
Victim. Our model predicts “them” (two words
ahead of die) as answer — though “them” is a ref-
erence of “Laleh and Ladan”, it considered as an
error according to current evaluations. This also
raises the question of whether we should consider
co-reference when we evaluate EE systems.

6 Conclusion and Future Work

In this paper, we take a fresh look at EE by cast-
ing it as an MRC problem. Our method includes
an unsupervised question generation process which
can generate both relevant and context-related ques-
tions, whose effectiveness is verified by empirical
results. In the future, we would adapt our method
to other IE tasks to study its application scope.
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stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In NIPS.

Yu Hong, Jianfeng Zhang, Bin Ma, Jianmin Yao,
Guodong Zhou, and Qiaoming Zhu. 2011. Using
cross-entity inference to improve event extraction.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 1127–1136, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

Lifu Huang, Heng Ji, Kyunghyun Cho, Ido Dagan, Se-
bastian Riedel, and Clare Voss. 2018. Zero-shot
transfer learning for event extraction. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 2160–2170, Melbourne, Australia. As-
sociation for Computational Linguistics.

https://www.aclweb.org/anthology/W06-0901
https://doi.org/10.3115/v1/W14-3001
https://doi.org/10.3115/v1/W14-3001
https://doi.org/10.3115/v1/D14-1159
https://doi.org/10.3115/v1/D14-1159
https://doi.org/10.18653/v1/P16-1223
https://doi.org/10.18653/v1/P16-1223
https://doi.org/10.18653/v1/P17-1038
https://doi.org/10.18653/v1/P17-1038
https://doi.org/10.3115/v1/P15-1017
https://doi.org/10.3115/v1/P15-1017
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/2004.13625
http://arxiv.org/abs/2004.13625
https://doi.org/10.18653/v1/D17-1090
https://doi.org/10.18653/v1/N18-1020
https://doi.org/10.18653/v1/N18-1020
https://doi.org/10.18653/v1/N18-1020
https://doi.org/10.18653/v1/W19-5932
https://doi.org/10.18653/v1/W19-5932
https://doi.org/10.18653/v1/W19-5932
https://www.aclweb.org/anthology/P11-1113
https://www.aclweb.org/anthology/P11-1113
https://doi.org/10.18653/v1/P18-1201
https://doi.org/10.18653/v1/P18-1201


1650

Heng Ji and Ralph Grishman. 2008. Refining event ex-
traction through cross-document inference. In Pro-
ceedings of ACL-08: HLT, pages 254–262, Colum-
bus, Ohio. Association for Computational Linguis-
tics.

Heng Ji and Ralph Grishman. 2011. Knowledge base
population: Successful approaches and challenges.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 1148–1158, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Guillaume Lample, Alexis Conneau, Ludovic Denoyer,
and Marc’Aurelio Ranzato. 2018a. Unsupervised
machine translation using monolingual corpora only.
In International Conference on Learning Represen-
tations (ICLR).

Guillaume Lample, Myle Ott, Alexis Conneau, Lu-
dovic Denoyer, and Marc’Aurelio Ranzato. 2018b.
Phrase-based & neural unsupervised machine trans-
lation. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke
Zettlemoyer. 2017. Zero-shot relation extraction via
reading comprehension. In Proceedings of the 21st
Conference on Computational Natural Language
Learning (CoNLL 2017), pages 333–342, Vancou-
ver, Canada. Association for Computational Linguis-
tics.

Qi Li, Heng Ji, and Liang Huang. 2013. Joint event
extraction via structured prediction with global fea-
tures. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 73–82, Sofia, Bulgaria.
Association for Computational Linguistics.

Xiaoya Li, Jingrong Feng, Yuxian Meng, Qinghong
Han, Fei Wu, and Jiwei Li. 2019a. A unified mrc
framework for named entity recognition.

Xiaoya Li, Fan Yin, Zijun Sun, Xiayu Li, Arianna
Yuan, Duo Chai, Mingxin Zhou, and Jiwei Li. 2019b.
Entity-relation extraction as multi-turn question an-
swering. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 1340–1350, Florence, Italy. Association
for Computational Linguistics.

Shasha Liao and Ralph Grishman. 2010. Using doc-
ument level cross-event inference to improve event
extraction. In Proceedings of the 48th Annual Meet-
ing of the Association for Computational Linguistics,
pages 789–797, Uppsala, Sweden. Association for
Computational Linguistics.

Jian Liu, Yubo Chen, and Kang Liu. 2019a. Exploit-
ing the ground-truth: An adversarial imitation based
knowledge distillation approach for event detection.
In AAAI.

Jian Liu, Yubo Chen, Kang Liu, and Jun Zhao. 2018a.
Event detection via gated multilingual attention
mechanism. In AAAI Conference on Artificial Intel-
ligence.

Jian Liu, Yubo Chen, Kang Liu, and Jun Zhao. 2019b.
Neural cross-lingual event detection with minimal
parallel resources. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 738–748, Hong Kong, China. As-
sociation for Computational Linguistics.

Xiao Liu, Zhunchen Luo, and Heyan Huang. 2018b.
Jointly multiple events extraction via attention-
based graph information aggregation. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1247–1256,
Brussels, Belgium. Association for Computational
Linguistics.

Thien Huu Nguyen, Kyunghyun Cho, and Ralph Gr-
ishman. 2016. Joint event extraction via recurrent
neural networks. In Proceedings of the 2016 Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies, pages 300–309, San Diego,
California. Association for Computational Linguis-
tics.

Trung Minh Nguyen and Thien Huu Nguyen. 2019.
One for all: Neural joint modeling of entities and
events. In AAAI Conference on Artificial Intelli-
gence.

Shrimai Prabhumoye, Yulia Tsvetkov, Ruslan Salakhut-
dinov, and Alan W Black. 2018. Style transfer
through back-translation. In Proceedings of the
56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 866–876, Melbourne, Australia. Association
for Computational Linguistics.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for SQuAD. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 784–
789, Melbourne, Australia. Association for Compu-
tational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
86–96, Berlin, Germany. Association for Computa-
tional Linguistics.

https://www.aclweb.org/anthology/P08-1030
https://www.aclweb.org/anthology/P08-1030
https://www.aclweb.org/anthology/P11-1115
https://www.aclweb.org/anthology/P11-1115
https://doi.org/10.18653/v1/K17-1034
https://doi.org/10.18653/v1/K17-1034
https://www.aclweb.org/anthology/P13-1008
https://www.aclweb.org/anthology/P13-1008
https://www.aclweb.org/anthology/P13-1008
http://arxiv.org/abs/1910.11476
http://arxiv.org/abs/1910.11476
https://doi.org/10.18653/v1/P19-1129
https://doi.org/10.18653/v1/P19-1129
https://www.aclweb.org/anthology/P10-1081
https://www.aclweb.org/anthology/P10-1081
https://www.aclweb.org/anthology/P10-1081
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16371
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16371
https://doi.org/10.18653/v1/D19-1068
https://doi.org/10.18653/v1/D19-1068
https://doi.org/10.18653/v1/D18-1156
https://doi.org/10.18653/v1/D18-1156
https://doi.org/10.18653/v1/N16-1034
https://doi.org/10.18653/v1/N16-1034
https://doi.org/10.18653/v1/P18-1080
https://doi.org/10.18653/v1/P18-1080
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.18653/v1/P16-1009


1651

Lei Sha, Feng Qian, Baobao Chang, and Zhifang Sui.
2018. Jointly extracting event triggers and argu-
ments by dependency-bridge rnn and tensor-based
argument interaction. In AAAI Conference on Artifi-
cial Intelligence.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and
Pierre-Antoine Manzagol. 2008. Extracting and
composing robust features with denoising autoen-
coders. In Proceedings of the 25th International
Conference on Machine Learning, ICML ’08, pages
1096–1103, New York, NY, USA. ACM.

Wei Wu, Fei Wang, Arianna Yuan, Fei Wu, and Ji-
wei Li. 2019. Coreference resolution as query-based
span prediction.

Bishan Yang and Tom M. Mitchell. 2016. Joint extrac-
tion of events and entities within a document context.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 289–299, San Diego, California. Association
for Computational Linguistics.

Alexander Yeh. 2000. More accurate tests for the statis-
tical significance of result differences. In COLING
2000 Volume 2: The 18th International Conference
on Computational Linguistics.

Xingdi Yuan, Tong Wang, Caglar Gulcehre, Alessan-
dro Sordoni, Philip Bachman, Saizheng Zhang,
Sandeep Subramanian, and Adam Trischler. 2017.
Machine comprehension by text-to-text neural ques-
tion generation. In Proceedings of the 2nd Workshop
on Representation Learning for NLP, pages 15–25,
Vancouver, Canada. Association for Computational
Linguistics.

Junchi Zhang, Yanxia Qin, Yue Zhang, Mengchi Liu,
and Donghong Ji. 2019. Extracting entities and
events as a single task using a transition-based neu-
ral model. In Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intel-
ligence, IJCAI-19, pages 5422–5428. International
Joint Conferences on Artificial Intelligence Organi-
zation.

A Implementation Details of
Unsupervised Question Generation

Following Lample et al. (2018b), we use FastBPE
to split each example into sub-word units, with a
vocabulary size of 60k. We implement both en-
coders and decoders as 4-layer transformers, where
one layer is domain-specific for both the encoder
and decoder and the rest are shared. Moreover,
we use the standard hyper-parameter settings rec-
ommended by (Lample et al., 2018b). The input
word embeddings are initialized as FastText vec-
tors trained on the concatenation of the S and Q.

Negotiations between Washington and Pyongyang on
Role = Time/Place
(When/Where) did the negotiations between Washington
and Pyongyang begin ?

founder Stelios Haji-Ioannou , who set up easyJet in 1995
and built
Role = Time/Place
(When/Where) did founder Stelios Ioannescu set up his
company ?

divorce in September after their marriage broke down .
Role = Time/Place
(When/Where) did the divorce occur after their marriage ?

The total purchase cost is estimated at 300
Role = Price
(What is the price) of the total cost of building a nuclear
power plant ?

His wife will go on trial next week on charges of
Role = Defendant
(Who is the defendant) on trial next week?

Security Council for its 1990 invasion of Kuwait should
be removed
Role = Attacker
(Who is the attacker) for its 1990 Gulf War ?

in U.S. troops for a war against Iraq even though it
Role = Attacker
(Who is the attacker) for a war against Iraq ?

Kuvaldin of a research center funded by former Soviet
president Mikhail
Role = Organization
(What is the organization) of Kubidran University funded
by ?

Table 7: Examples of generated questions. In each cell,
the first line is the original sentence (event triggers are
in italic); the second line is the semantic role; the third
line is the generated question. () denotes the query
topic generated by templates, and the remaining part
is the query-style expression generated by our model.

During training, we reduce the coefficient of auto-
encoding loss from 1.0 to 0.5 by 100K steps and
to 0 by 300K steps. We cease training when the
BLEU scores between back-translated and input
questions stop improving, usually around 800K
steps. For inference, we use a beam size of 5 and
a language model to evaluate all the candidates to
yield the best one.

B Generated Questions

Some generated questions are given in Table 7.
Note these examples are directly taken from our
model’s output without any manual edition (We do
not even add a question mark at the end of each
question).
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