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Abstract
Deep learning models for linguistic tasks re-
quire large training datasets, which are expen-
sive to create. As an alternative to the tradi-
tional approach of creating new instances by
repeating the process of creating one instance,
we propose doing so by first collecting a set
of seed examples and then applying human-
driven natural perturbations (as opposed to
rule-based machine perturbations), which of-
ten change the gold label as well. Such per-
turbations have the advantage of being rela-
tively easier (and hence cheaper) to create than
writing out completely new examples. Further,
they help address the issue that even models
achieving human-level scores on NLP datasets
are known to be considerably sensitive to small
changes in input. To evaluate the idea, we
consider a recent question-answering dataset
(BOOLQ) and study our approach as a function
of the perturbation cost ratio, the relative cost
of perturbing an existing question vs. creating
a new one from scratch. We find that when nat-
ural perturbations are moderately cheaper to
create (cost ratio under 60%), it is more effec-
tive to use them for training BOOLQ models:
such models exhibit 9% higher robustness and
4.5% stronger generalization, while retaining
performance on the original BOOLQ dataset.

1 Introduction

Creating large datasets to train NLP models has
become increasingly expensive. While many
datasets (Bowman et al., 2015; Rajpurkar et al.,
2016) targeting different linguistic tasks have been
proposed, nearly all are created by repeating a fixed
process used for writing a single example. This
approach results in many independent examples,
each generated from scratch. We propose an alter-
native, often substantially cheaper training set con-
struction method where, after collecting a few seed
examples, the set is expanded by applying human-
authored minimal perturbations to the seeds.
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Figure 1: Training set creation via minimal-
perturbation clusters. Left: Seed dataset DS with 3 in-
stances (shown as different shapes). Right: Expanded
dataset D with 10 instances, comprising 2-4 minimal-
perturbations (illustrated as rotation, fills, etc.) of each
seed instance. Human-authored perturbations aren’t re-
quired to always preserve the answer (yes/no in the ex-
ample) and often add richness by altering the answer.

Fig. 1 illustrates our proposal of using natural
perturbations. We use the traditional approach to
first create a small scale seed dataset DS , shown
as the red rectangle on the left with three instances
(denoted by different shapes). However, rather than
simply repeating this process to scale up DS to a
larger dataset D, we set up a different task: ask
crowdworkers to create multiple minimal perturba-
tions of each seed instance (shown as rotation, fills,
etc.) with an encouragement to change the answer.
The end result is a larger dataset D of a similar
size as D but with an inherent structure: clusters of
minimally-perturbed instances with mixed labels,
denoted by the green rectangle at the right in Fig. 1.

An inspiration for our approach is the lack of
robustness of current state-of-the-art models to mi-
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nor adversarial changes in the input (Jia and Liang,
2017). We observed a similar phenomenon even
with model-agnostic, human-authored changes to
yes/no questions (as shown in Fig.1), despite mod-
els achieving near-human performance on this task.
Specifically, we found the accuracy of a ROBERTA

model trained on BOOLQ (Clark et al., 2019) to
drop by 15% when evaluated on locally perturbed
questions. These new questions were, however, no
harder for humans. This raises the question: Can
a different way of constructing training sets help
alleviate this issue? Minimal perturbations, as we
show, provide an affirmative answer.

Perturbing a given example is generally a simpler
task, costing only a fraction of the cost of creating
a new example from scratch. We call this fraction
the perturbation cost ratio (henceforth referred to
as cost ratio), and assess the value of our perturbed
training datasets as a function of it. As this ratio
decreases (i.e., perturbations become cheaper), one,
of course, obtains a larger dataset than the tradi-
tional method, at the same cost. More importantly,
even when the ratio is only moderately low (at 0.6),
models trained on our perturbed datasets exhibit
desirable advantages: They are 9% more robust to
minor changes and generalize 4.5% better across
datasets than models trained on BOOLQ.

Specifically, our generalization experiment with
the MULTIRC (Khashabi et al., 2018) dataset
demonstrates that models trained on perturbed data
outperform those trained on traditional data when
evaluated on unseen, unperturbed questions from a
different domain. Second, we assess robustness by
evaluating on BOOLQ-e (Gardner et al., 2020), a
test set of expert-generated perturbations that devi-
ate from the patterns common in large-scale crowd-
sourced perturbations. Our zero-shot results here
indicate that models trained on perturbed questions
go beyond simply learning to memorize particular
patterns in the training data. Third, we find that
training on the perturbed data, for the most part,
continues to retain performance on the original
task.

Even with the worst case cost ratio of 1.0 (when
perturbing existing questions is no cheaper than
writing new ones), models trained on perturbed ex-
amples remain competitive on all our evaluation
sets. This is an important use case for situations
that simply do not allow for sufficiently many dis-
tinct training examples (e.g., low resource settings,
limited amounts of real user data, etc.). Our results

at ratio 1.0 suggest that simply applying minimal
perturbations to the limited number of real exam-
ples available in these situations can be just as ef-
fective as (hypothetically) having access to large
amounts of real data.

In summary, we propose a novel method to con-
struct datasets that combines traditional indepen-
dent example collection approach with minimal nat-
ural perturbations. We show that for many reason-
able cases, using perturbation clusters for training
can result in cost-efficiently trained high-quality,
robust models that generalize across datasets.

2 Related Work

Data augmentation. There is a handful of work
that studies semi-automatic contextual augmenta-
tion (Kobayashi, 2018; Cheng et al., 2018), often
with the goal of creating better systems. We, how-
ever, study natural human-authored perturbations
as an alternative dataset construction method. A re-
lated recent work is by Kaushik et al. (2020), who,
unlike the goal here, study the value of natural-
perturbations in reducing artifacts.

Adversarial perturbations. A closely relevant
line of work is adversarial perturbations to ex-
pose the weaknesses of systems upon local changes
and criticize their lack robustness (Ebrahimi et al.,
2018; Glockner et al., 2018; Dinan et al., 2019). For
instance, Khashabi et al. (2016) showed significant
drops upon perturbing answer-options for multiple-
choice question-answering. Such rule-based per-
turbations have simple definitions leading to them
being easily reverse-engineered by models (Jia and
Liang, 2017) and generally use label-preserving,
shallow perturbations (Hu et al., 2019). In con-
trast, our natural human-authored perturbations are
harder for models.1 More broadly, adversarial
perturbations research seeks examples that stumble
existing models, while our focus is on expanding
datasets in a cost-efficient way.

Minimal-pairs in NLP. Datasets with minimal-
pair instances are relatively well-established
in certain tasks, such as Winograd schema
datasets (Levesque et al., 2011; Peng et al., 2015;
Sakaguchi et al., 2020), or the recent contrast
sets (Gardner et al., 2020). However, the impor-
tance of datasets with pairs (i.e., clusters of size
two) is not well-understood. Our findings about

1We tried the system by Hu et al. (2019) on our questions,
but it resulted in very limited variations. See Appendix E.
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perturbation clusters could potentially be useful for
the future construction of datasets for such tasks.

3 Expansion via Perturbation Clusters

Our approach mainly differs from traditional ap-
proaches in how we expand the dataset given seed
examples. Rather than repeating the process to gen-
erate more examples, we apply minimal alterations
to the seed examples, in two high-level steps:

(b) Quality
Verification 

(a) Natural 
Minimal 

Perturbations

“Seed” 
Dataset
DS D

“Perturbed” 
Dataset

The first step generates the initial set of exam-
ples with natural perturbations. It should respect
certain principles: (a) The construction should ap-
ply minimal changes (similar to the ones in Fig. 1),
otherwise the resulting clusters might be too het-
erogeneous and less meaningful. (b) A substantial
proportion of natural perturbations should change
the answer to the questions. (c) It should incen-
tivize creativity and diversity in local perturbations
by, for instance, showing thought-provoking sug-
gestions, using a diverse pool of annotators (Geva
et al., 2019), etc. The second independent verifica-
tion step ensures dataset quality by (a) getting the
true gold label and (b) ensuring all generated ques-
tions are answerable given the relevant paragraph,
in isolation from the original question.

BOOLQ : BOOLQ Expansion. We obtain DS

by sampling questions from BOOLQ (Clark et al.,
2019), which is a QA dataset where each boolean
(“yes”/“no” answer) question could be inferred
from an associated passage. We then follow the
above two-step process, resulting in BOOLQ , a
naturally perturbed dataset with 17k questions de-
rived from 4k seed questions:

a) minimal perturbations: Crowdworkers are
given a question and its corresponding gold answer
based on supporting paragraph. Then the workers
are asked to change the question in order to flip the
answer to the question. While making changes, the
workers are guided to keep their changes minimal
(adding or removing up to 4 terms) while resulting
in proper English questions. Additionally, for each
seed question, crowd-workers are asked to generate
perturbations till the modified question is challeng-
ing for a machine solver (i.e., ROBERTA trained
on BOOLQ, should have low confidence on the cor-
rect answer). Note that we do not require the model
to answer the question incorrectly and not all ques-

tions are challenging for the model. Our main goal
here is to encourage interesting questions by using
the trained model as the guide.

b) question verification. Given the perturbed
questions, we asked multiple annotators to answer
these questions. These annotations served to elim-
inate ambiguous questions as well as those that
cannot be answered from the provided paragraph.
The annotation was done in two steps: (i) in the
first step, we ask 3 workers to answer each ques-
tion with one of the three options (“yes“, “no“ and
“cannot be inferred from the paragraph”). We fil-
tered out the subset of the questions that were not
agreed upon (i.e., not a consistent majority label)
or were marked as “cannot be inferred from the
paragraph” by majority of the annotators. To speed
up the annotations, the annotation were done on
a cluster-level, i.e., annotators could see all the
different modified questions corresponding to a
paragraph. (ii) subsequently, each modified ques-
tions is also annotated individually to ensure that
questions can be answered in isolation (as opposed
to answering them while seeing all the questions in
a cluster.) The annotations in this step only have
two labels (“yes”/“no”) and again questions that
were not agreed upon were filtered.

Sample questions generated by our process are
shown in Fig. 1. We evaluate the impact of pertur-
bations via this dataset.

Dataset subsampling. We sample questions
from this expanded dataset to evaluate the value of
perturbations as a function of different parameters.
To simplify exposition, we will use the following
notation. We assume a fixed budget b for construct-
ing the dataset where each new question costs 1
unit, i.e., traditional methods would construct a
dataset of size b in the given budget. The pertur-
bation cost ratio r ≤ 1 is the cost of creating a
perturbed question. When r ≈ 1, perturbations
are equally costly as writing out new instances. If
r � 1, perturbations are cheap. For instance, if
r = 0.5, each hand-written question costs the same
as two perturbed questions.

We denote the total number of instances and clus-
ters with N,C, respectively. We use BOOLQb,c,r

to denote the largest subset of BOOLQ that can be
generated with a total budget of b, with a maximum
cluster size of c, and relative cost ratio of r. In the
special case where all clusters are of the exact same
size c, these parameters are related as follows:

b =
(
1 + (c− 1)r

)
× C,

3
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Figure 2: Model accuracy (y-axis) with a fixed budget b and varying cluster size c (x-axis), for two extreme cases:
(i) r = 1.0 denoting a fixed total number of questions, (ii) r = 0.0 denoting a fixed total number of clusters.
The plots indicate that including additional perturbations in each cluster (going left to right), particularly when
they are cheap (closer to the r = 0 case), adds value to the dataset by increasing model accuracy.
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Figure 3: Model accuracy (y-axis) with a fixed total budget b and varying cost ratio r (x-axis), in two cases: (i)
c = 1 denoting singleton clusters (standard approach), (ii) c = 4 denoting cluster size 4 (our approach). The

smaller the cost, the higher the returns. For a moderately low cost ratio such as 0.6, the model trained on our
perturbed datasets gains of 3-5% over a model trained on the traditionally constructed dataset.

where 1 + (c − 1)r is the cost of a single cluster
calculated as the cost of one seed examples and its
c− 1 perturbations.

To create BOOLQb,c,r we subsample a maxi-
mum of c questions from each perturbation cluster,
such that total number of clusters is no more than

b
1+(c−1)r and the ratio of “yes” to “no” questions
is 0.55. Our subsampling starts with clusters of
size at least c and also considers smaller clusters
if necessary. BOOLQb,1,r (singleton clusters) cor-
responds to a dataset constructed in a similar fash-
ion to BOOLQ, whereas BOOLQb,4,r (big clusters)
roughly corresponds to the BOOLQ dataset.

4 Experiments

To assess the impact of our perturbation approach,
we evaluate standard RoBERTa-large model that
has been shown to achieve state-of-the-art results
on many tasks. Each experiment considers the
effect of training on subsamples of BOOLQ ob-
tained under different conditions.

Each of the points in the figures are averaged
over 5 random subsampling of the dataset (with
error bars to indicate the standard deviation). The
Appendix includes further details about the setup
as well as additional experiments.

We evaluate the QA model trained on various
question sets on three test sets. (i) For assessing ro-
bustness, we use an expert-generated set BOOLQ-
e published in Gardner et al. (2020) with 339 high-
quality perturbed questions based on BOOLQ. (ii)
For assessing generalization, we use the subset of
260 training questions from MULTIRC (Khashabi
et al., 2018) that have binary (yes/no) answers,
from training section of the their data.2 (c) The
original BOOLQ test set, to ensure models trained
on perturbed questions also retain performance
on the original task.

4.1 Effect of Cluster Size (c)
We study the value of clusters sizes in the perturba-
tions in two extreme cases: (i) when perturbations
cost the same as new questions (r = 1.0) and the
only limit is the our overall budget (b = 3.7k), and
(ii) when the perturbations cost negligible (r = 0.0)
but we are limited by the max cluster size c and
b = 1k.3 For each case, we vary the max cluster
size in the following rage: [1, 2, 3, 4]. As a result,
in (i), C vary from 3.7k to 951 (N = 3.7k), and in
(ii), N vary from 1k to 4k (C = 1k).

2The yes/no subset of dev was too small.
3In practice, we expect r to lie somewhere in-between

these two extremes, such as r = 0.3 as discussed in §4.2.

4
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Fig. 2 shows the accuracy of models trained
on these subsets across our three evaluation sets.
In scenario (i) with a fixed number of instances
(r = 1), it is evident that the size of the clusters
(the number of perturbations) does not affect the
model quality (on 2 out of 3 datasets). This shows
that perturbation clusters are equally informative
as (traditional) independent instances. However,
in scenario (ii) with a fixed number of clusters
(r = 0), the system performance consistently gets
higher with larger clusters, even though the number
of clusters is kept constant. This indicates that each
additional perturbation adds value to the existing
ones, especially in terms of model robustness and
retaining performance on the original task.

4.2 Effect of Perturbations Cost Ratio (r)

We now study the value of perturbations as a func-
tion of their cost (r). We vary this parameter within
the range (0, 1] for b = 1.5k and two max clusters
sizes, c = {1, 4}. When c = 1 (no perturbations),
N stays constant at 1.5k. When c = 4 , N varies
from 4.6k to 1.5k. Fig. 3 presents the accuracy of
our model as a function of r.

While we don’t know the exact crowdsourc-
ing cost for BOOLQ, a typical question writing
task might cost USD 0.60 per question. With our
perturbed dataset costing USD 0.20 per question,
we have r = 0.33. Given the same total budget
b = 1500, we can thus infer from Fig. 3 that train-
ing on a dataset of perturbed questions would be
about 10% and 5% more effective on BOOLQ-e
and MULTIRC, respectively.

The result on all datasets indicates that there is
value in using perturbations clusters when r ≤ 0.6,
i.e., larger clusters can be more cost-effective for
build better training sets. Even when they are not
much cheaper, they retain the same performance as
independent examples, making them a good alter-
native for dataset expansion given few sources of
examples (e.g., low resource languages).

5 Discussion

A key question with respect to the premise of this
work is whether the idea would generalize to other
tasks. Here, we chose yes/no questions since this
is the least-explored sub-area of QA (compared to
extractive QA, for example) and hence could ben-
efit from more efficient dataset construction. We
(the authors) are cautiously optimistic that it would,
although that is subject to factors such as the rel-

ative cost of creating diverse and challenging per-
turbations. Concurrent works have also explored a
similar construction for other tasks but with differ-
ent purposes (Gardner et al., 2020; Kaushik et al.,
2020).

We note that we assume a typical QA dataset con-
struction process where workers write questions
based on given fixed contexts (Rajpurkar et al.,
2016). This assumption may not always hold for al-
ternative dataset generation pipelines, such as using
an already available set of questions (Kwiatkowski
et al., 2019). Even in such cases, one can still use
the lessons learned here to apply natural perturba-
tions to a different stage in the annotation pipeline
to make it more cost efficient.

6 Conclusion

We proposed an alternative approach for construct-
ing training sets, by expanding seed examples via
natural perturbations. Our results demonstrate that
models trained on perturbations of BOOLQ ques-
tions are more robust to minor variations and gen-
eralize better, while preserving performance on
the original BOOLQ test set as long as the natu-
ral perturbations are moderately cheap to create.
Creating perturbed examples is often cheaper than
creating new ones and we empirically observed
notable gains even at a moderate cost ratio of 0.6.

While this is not a dataset paper (since our focus
is on more on the value of natural perturbations for
robust model design), we provide the natural per-
turbations resource for BOOLQ constructed during
the course of this study.4

This work suggests a number of interesting lines
of future investigation. For instance, how do the
results change as a function of the total dataset
budget b or large values of c? Over-generation
of perturbations can result in overly-similar (less-
informative) variations of a seed example, making
larger clusters valuable only up to a certain extent.
While we leave a detailed study to future work,
we expect general trends regarding the value of
perturbations to hold broadly.
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A Question Perturbations: Further
Details

We provide further details about the annotation.
The task starts with a qualification step: we ask

annotators to read a collection of meticulously de-
signed instructions that describe the task. The anno-
tators are allowed to participate, only after success-
fully passing the test included in the instructions.

In addition, we restrict the task to “Master” work-
ers from English-speaking countries (USA, UK,
Canada, and Australia), at least 500 finished HITs
and at least a 95% acceptance rate.

Here is an screen cast of the relevant anno-
tation interface interface: https://youtu.be/

MWbCRwanbOA

During our earlier pilot experiments, we ob-
served that the strategies used for perturbing “yes”
questions tend to be different from those used for
“no” questions. To make the task less demanding
and help workers focus on a limited cognitive task,
the annotation is done in two phases; one for “yes”
questions, and another for “no” questions.

Table 1 provides a summary of BOOLQ stats.

Measure Full Train Dev Test

# of questions 17,323 9727 4434 3162
# of “yes” questions 9,724 5733 2263 1728
# of “no” questions 7,599 3994 2171 1434

# of clusters 4064 2408 919 737
average cluster size 4.3 4.1 4.8 4.3
median cluster size 3.0 3.0 3.0 3.0

Table 1: Statistics of BOOLQ .

B Details of ROBERTA Training

We train the model on two-way questions using the
input format: “[CLS] passage [SEP] question
[SEP] answer”. The model scores each answer
(“yes” or “no”) by applying a linear classifier over
the [CLS] representation for each answer’s cor-
responding input. We train the linear classifier
(and fine-tune ROBERTA weights) on the train-
ing sets and evaluate them on their corresponding
dev/test sets. We fixed the learning rate to 1e-5 as
it generally performed the best on our datasets. We
only varied the number of training epochs: {7, 9,
11} and effective batch sizes: 16, 32. We chose
this small hyper-parameter sweep to ensure that
each model was fine-tuned using the same hyper-
parameter sweep while not being prohibitively ex-
pensive. Each model was selected based on the

best validation set accuracy. We report the num-
bers corresponding to the selected models on the
test set.

C Performances Across Datasets

We compare a collection of solvers across our target
datasets: the complete BOOLQ dataset (dataset
constructed from DS via perturbation), the original
BOOLQ dataset, expert perturbations on BOOLQ,
and binary subset of MULTIRC.

The results are summarized in Table 2. Most
of the rows are ROBERTA trained on a specified
dataset. We have also included a row correspond-
ing a system trained on the union of BOOLQ and
BOOLQ , referred to as BOOLQ++ for brevity.
Most of the datasets are slightly skewed between
the two classes, which is why the majority la-
bel baseline (Always-Yes or Always-No) achieves
scores above 50%. Rows indicated with * are re-
ported directly from prior work. The human predic-
tion on BOOLQ is the majority label of 5 indepen-
dent AMT annotators. The human performance on
BOOLQ and MULTIRC are directly reported from
SuperGLUE (Wang et al., 2019) leaderboard.5

Here are the key observations in this table:

• While ROBERTA has almost human-level
performance when trained and tested within
BOOLQ, it suffers significant performance
degradation when evaluated on other datasets
(e.g., 68.7% on BOOLQ ).

• The systems fine-tuned on BOOLQ++ consis-
tently generalize better across datasets.

D Cluster-Level Evaluation

An additional benefit of our approach is that it pro-
duces datasets with an inherent cluster structure.
This enables the use of metrics such as Consen-
susScore (Shah et al., 2019) to evaluate the extent
to which a model acts consistently within each clus-
ter, which provides another measure of robustness.

While evaluation measures are often computed
on per-instance level, the cluster structure of
BOOLQ enables us to provide per-cluster metrics
of quality. In particular, we are interested in the
following question: to what extent do our models
act consistently across questions in each cluster?

To measure this, we use the consensus score
CS(k) introduced by Shah et al. (2019). For an

5https://super.gluebenchmark.com/leaderboard/
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Model Trained on Evaluated on Acc.

Human* — MULTIRC ∼83
ROBERTA BOOLQ++ MULTIRC 78.8
ROBERTA BOOLQ MULTIRC 70.3
ROBERTA BOOLQ MULTIRC 76.5
Maj-Vote — MULTIRC 63.4

Human* — BOOLQ 89.0
ROBERTA BOOLQ++ BOOLQ 85.5
ROBERTA BOOLQ BOOLQ 86.1
ROBERTA BOOLQ BOOLQ 78.6
Maj-Vote — BOOLQ 62.2

Human — BOOLQ 89.4
ROBERTA BOOLQ++ BOOLQ 81.1
ROBERTA BOOLQ BOOLQ 68.7
ROBERTA BOOLQ BOOLQ 78.4
Maj-Vote — BOOLQ 53.2

Human — BOOLQ-e ?
ROBERTA BOOLQ++ BOOLQ-e 76.4
ROBERTA BOOLQ BOOLQ-e 71.1
ROBERTA BOOLQ BOOLQ-e 69.3
Maj-Vote — BOOLQ-e 50.7

Table 2: Various systems trained and evaluated on dif-
ferent datasets. Best non-human scores are in bold.
Numbers in percentage.

integer parameter k ≥ 1, the score CS(k) for a
single cluster C is defined as the fraction of size-k
sub-clusters of C where the model answers all in-
stances correctly. The CS(k) score for a clustered
dataset is the average of these scores across all clus-
ters. Intuitively, k = 1 represents the traditional
un-clustered accuracy (assuming all clusters with
the same size). As k grows to reach the cluster size,
models must answer the entire cluster correctly in
order to score positively on that cluster.

We plot this score for k ∈ {1, 2, 3, 4} for various
QA models in Fig 4. While all the models (includ-
ing human) have deceasing consensus score for
larger values of k, machine solvers have a steeper
slope compared to human. As a result, we have an
even larger gap of 17% between human-ROBERTA

(at k = 4), when evaluated on their consistency.

E Rule-Based Perturbations

An alternate way to get cheap perturbations would
be to use rule-based paraphrase systems — which
are arguably cheaper than human-annotated pertur-
bations.

Our intuition is that rule-based perturbations gen-
erally have simplistic definitions and hence, rarely
benefit general reasoning problems in language. In-
teresting and diverse rule-based perturbations can
be difficult to develop, and existing approaches

k
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Figure 4: Consensus metric CS(k) on the y-axis for
various values of k on the x-axis.

are often reverse-engineered by QA models. Fur-
ther, unlike our proposal, automatic perturbation
approaches, such as question rephrasing, generally
preserve the answer and do not use the provided
context the question is referring to, limiting their
richness.

That being said, we put some effort into devel-
oping rule-based/machine-generated baselines for
comparison. However, since these efforts did not
result in any reasonably sophisticated baselines, we
decided to not include them in the main text.

Here we’re showing examples of perturbations
generated via a recent machine paraphraser sys-
tem.6

Original Question: Will there be a season 4 of da vincis
demons? FALSE

The corresponding machine-perturbed questions
are:

Will there be a season four of da vinci demons? FALSE
Will there be season four of da vinci demons? FALSE
Is there a season four of da vinci demons? FALSE
Is there gonna be a season four of da vinci demons?
FALSE

These automated perturbations stand in contrast
with our human-perturbed questions, which also
take the provided context into account:

Was there a season 3 of da vinci’s demons? TRUE
There be a season 4 of da vinci’s demons? FALSE
Will there be no season 4 of da vinci’s demons? TRUE

As evident by the example, the machine-
generated perturbations are generally minor and,
not surprisingly, did not provide a useful enough
signal to the model to improve its accuracy. We
are open to suggestions if the reviewers have any
suggestion on creating more reasonable rule-based
perturbation baselines.

6https://github.com/decompositional-semantics-
initiative/improved-ParaBank-rewriter
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